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Test statistics are proposed for testing equality of two p-variate probability
density functions. The statistics are based on the integrated square distance between
two kernel-based density estimates and are two-sample versions of the statistic
studied by Halt (1984, J. Mulrivariate Anal. 14 1-16). Particular emphasis is laid on
the case where the two bandwidths are fixed and equal. Asymptotic distributional
results and power calculations are supplemented by an empirical study based on
univariate examples.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Hall (1984) analyses the integrated squared error between a kernel-based
density estimate of a multivariate probability density function (pdf) and the
true pdf itself. In an obvious, brief notation, the quantity of interest is

1={ (-2

where f,, denotes the density estimate, # denotes the associated bandwidth,
and f is the true pdf. In particular, Hall (1984) derives a central limit
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theorem for I which relies, among other things, on conditions imposed on
the bandwidth used within f,. From a practical point of view, 7 is a natural
test statistic for a significance test against the hypothesis that f is indeed
the correct pdf.

The objective of the present paper is to investigate two-sample versions
of I; the most patural statistic is

Ton=| (=AY, (L.1)
in which, for j=1, 2, /f is a density estimate based on the jth sample and
using smoothing parameter A,.

In the main section, Section 2, we concentrate on the case where the
kernel function underlying the density estimates is a spherically symmetric
p-variate density and our point of departure is the (unweighted) statistic
T, Some generalizations are described in Section 3.

2. THEORY AND APPLICATIONS OF THE TWO-SAMPLE STATISTICS
BASED ON A SPHERICALLY SYMMETRIC KERNEL FUNCTION

2.1. Introduction

As indicated at the end of Section I, we concentrate here on the case
where, given two independent random samples {X,, .., X j,,j}, j=1,2, from
p-variate distributions with densities f, j=1, 2, we estimate f; by

F= )t Y K= Xk} =12,

i=1

in which #; is a bandwidth and K is a spherically symmetric p-variate
density.

In Section 2.2 we examine T, ,, given in (1.1), as a statistic for testing
the hypothesis f; = f;. It turns out to be convenient to concentrate on the
case h, = h,=h (with 7, , then written as 7,), and to show that the mini-
mum distance at which the statistic can discriminate between f; and f, is
6=n"'?h"?2 where n=n,+n,, and n, and n, are assumed to be of the
same order of magnitude. The results suggest that the bandwidth A should
be fixed if close alternatives are to be distinguished. Section 2.3 derives the
theory related to the case A= 1, with the notation 7; = T. It turns out that
T is not now asymptotically Normal. Section 2.3 also suggests an alter-
native test statistic, U, defined in (2.9), the practical implementation of
which is easier than it is for 7. Section 2.4 investigates the power of tests
based on U, Section 2.5 discusses the implementation of the bootstrap, and
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Section 2.6 illustrates the relative performance of T and U by carrying out
an empirical bootstrap study for simple univariate examples.

2.2. Basic Asymptotic Results

We begin our discussion by examining
Tow= [ = F)

where £, and f, are as defined at the beginning of Section 2.1.
Under the hypothesis that f, = f,, and assuming that f; has two con-
tinuous, square-integrable derivatives, we may show that

E(Tyyp) =1 { (i hy) "+ (ko) '} o+ sk = 1) [ (V)2
+O0(n; " +n7t)+ o(|hE =A%), 2.1)

where k= [ K% Kk, =14 | (z'"")* K(z) dz, and V? is the Laplacian operator.
In the event that 4, and A, are different, say h,/h, »c#1 as n,, n, — o,
it is generally necessary to estimate | (V?f;)% and even the smaller order
terms represented by o(|h7 — h2|?) in (2.1), in order properly to centre the
test statistic T, ,,. While this can be done root-n consistently, subject to
appropriate smoothness conditions on f, it is nevertheless cumbersome.
Therefore we assume that h, =h,=h, say, and base our test directly on
L1, = T,, without any empirical centring.

In order to assess the power of a test based on 7, we should ascertain
its performance against a local alternative hypothesis. To this end, let f, = f
denote a fixed density, let g be a function such that f, = f + dg is a density
for all sufficiently smali |4{, and let 7, denote the a-level critical point of the
distribution of 7, under the null hypothesis H, that 6 =0:

Pu(T,> 1) =0

Our test consists of rejecting H, if T, > t,. We claim that, if 4 is chosen to
converge to zero as n,, #, — oo (which is necessary if jj is consistently to
estimate f), then the minimum distance at which the test can discriminate
between f, and f, is s =n"12h P2,

This claim may be formalized as follows. Let H,= H (c) denote the
alternative hypothesis that 6 =n~'2h~72¢c, where ¢ #0, and define

n(c)= lim Py (T,>1,).

n— oc

We shall show below that this limit is well-defined, that a <n(c)<1 for
0<|c] < oo, and that n(c)—1 as |¢| = cc.
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To verify the claims above, observe first that
To=[ {h-fi—Eu(hi-R))
+2 [ {i—fim En(fi—R)} Enlfi— A)
+ [ {Ew(i- PP
and | {Ey (fi —f)}2~8? | g% Arguing as in Hall (1984), we may show

that if n,, n, » oo such that n,/n, is bounded away from zero and infinity,
and if h - 0 and nh? — oo, then under H,,

? | [ U= him Eni= )Y =it 4 47|

126~ [ {fi=fo= Bl £)} En(fi— )

are asymptotically independent and normally distributed with zero means
and finite, nonzero variances, the latter not depending on c¢. Therefore, if
d=n""2h"?"¢, then under H,,

nhp/z[Th_x,(n;‘+n;‘)h“- {1+o0(1)} & f g2]

is asymptotically normally distributed with zero mean and finite, nonzero
variance o2(c), the latter being an increasing function of ¢. The claims made
about n(c) in the previous paragraph follow directly from this result.

2.3. The Case of Fixed Bandwidth

The results in the previous subsection suggest that, in order to dis-
criminate between distributions distant only n~"/? apart, we should fix the
bandwidth 4. Without loss of generality we take A=1.

Define

a(x)=[ Kx=y) () dy,  j=1,2.

Then the squared distance between a, and a,, I(f;, ,)={ (a,—a,)? is a
measure of the distance of £ from f,. By Parseval’s identity,

1=2m) = [ [RG- A2,
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where fl, fz, and K denote the Fourier transforms of f;, £, and X, respec-
tively. We may deduce from this result that, provided K does not vanish on
an interval, I(-, -}/? is a metric on the class of all densities.

This observation motivates the following regularity condition on X:

K is bounded, absolutely integrable, and has a Fourier
transform which does not vanish on any interval. (2.2)

The kernel K(x)=(x"!sinx)*, for any integer k> 2, is bounded and
integrable but has a Fourier transform which vanishes outside (— 3k, 1k);
it would be unsuitable for our purposes. On the other hand, functions such
as the p-variate uniform and standard normal densities, and a p-variate
form of Epanechnikov’s kernel (Silverman, 1986, p. 76) all satisfy (2.2). For
most purposes the condition of integrability may be dropped from (2.2);
for example, if K(x) denotes the indicator function of the semi-infinite
rectangle n(— oo, x'’] then the test which we shall propose below is a
p-variate version of the familiar Kolmogorov-Smirnov test. However,
without the assumption of integrability the Fourier transform of X is not
well-defined, and then it is awkward to characterize the class of K’s for
which (-, -) separates densities (e.g., such that f(-,-)"? is a metric).

As in Subsection 2.1, let {X},.., Xj,,j}, j=1,2, represent random
samples from distributions with densities f, j= 1, 2. An unbiased estimator
of a;(x) is given by

d;(x)=n;" i K(x—X}),

J
i=1
motivating the test statistic
:r=j (G, — d,)% (23)

We could include a weight function in the integrand. Theory and practice
for that case are virtually identical to those for the basic statistic defined in
(2.3).

Under the null hypothesis H, that f,=f,, the expected value and
asymptotic variance of T are given by

Eg(Ty=(n"+n;")J,, varg(T)~(n;'+ny ") J,,

where it is assumed that #,, n, — co such that »n,/n, is bounded away from
zero and infinity, and where

L= f @ L[] Mx, %) f(x) flx) dx, dx,, a=ay,
M(x;, %)= [ {K(x—x) —a(x)}{K(x—x;) —a(x)} dx.  (24)

If X is bounded and integrable then M is bounded, and so J, < .
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However, T is not asymptotically normally distributed. As a prelude to
describing the asymptotic distribution of T we first note that we may repre-
sent M as an orthogonal expansion in its eigenfunctions with respect to the
weight f,

M(x,, x2)=k§l Arr(x)) o (x,), (2.5)

where —
[ Mex1, %2 ox0) £0x0) dxy = B (xa), (2.6)
[ @xx) 0,(x) f(x) dx = 34, (2.7)

{the Kronecker delta). The expansion in (2.5) converges in L?, in the sense
that

m 2
H {M(xls X,)— Z ;Lkwk(xl)wk(xz)} S(xp) f(x2)dx, dx; =0
k=1

as m — cc. See Indritz (1963, p. 209ff), and also Neuhaus (1977) and Hall
(1979). Note too that in the notation of (2.5), J,=3 1.

Let Z,,, Zs, ... Z3;, Z;,,... denote independent standard normal ran-
dom variables. Assume that for a parameter »n diverging to + oc we have
n;=n;(n)~ p;n, where 0 <p, < cc. We shall show in the Appendix that

aA{T—(n " +n;")J,} > S

=Y ApPZy—ps PZy) = (o o7 ')} (2.8)

k=1

in distribution.

For practical implementation of the test based on T it is necessary to
estimate the centring constant, (n, ' +n5 ') J,, and hence to estimate J,. It
is also of interest to estimate the asymptotic variance under H,, ie., to
estimate J,. Observe that J,= | a” and J, are estimated root-n consistently
by

Jy={nn,~ 1)} ' T Y L(X;, — X)),

V£ 0

jzj: {n(m, = 1)} XX LXKy~ X))~ 2{m(m;— 1)(m; = 2)} 7

i # iz

x XY LX —X) (X, — X) + jé,,

#RFi#N
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respectively. Alternatively, J, and J, may be estimated from the pooled
sample, Z = { X\, ., X1n» X215 s Xan, }- Let J, denote any one of the three
possible etimators of J, (based on either one of the individual samples,
or on the pooled sample), for k=0, 2. Put J,=«,—~J, Then
Je=J,+0,(n""?), and so under H,, noting (2.8),

Usn{T—(n{'+n;H)J} >S5S (2.9)

in distribution. An asymptotic statistical test may be based on the value of
U, by rejecting the null hypothesis if U exceeds the appropriate critical
point. However, the distribution of S depends on the unknowns 4,, 4,, ...,
and the larger values of these quantities would have to be estimated. There-
fore it seems that a more practical approach is to consider bootstrap
methods, discussed in subsection 2.5.

In many instances it is not absolutely essential to centre the statistic T,
as done in (2.8) and (2.9). If we were to work directly with T then of course
the limit result (2.8) would change to

nT— Y ApTVPZy—p; ' Zy)? (2.10)
k=1
in distribution. Then we would not need to compute J,. However, for this
approach to be valid the right-hand side of (2.10) must be well-defined,
which virtually requires us to assume that 3 |A,| <oco. Our present
regularity conditions only guarantee the weaker condition ¥ A2 < oo,
which is sufficient for the series defining S to converge in L%

2.4. Power of Tests Based on U

We assume that for a parameter » diverging to +oo, we have
,=n,(n)~ p;n where 0 < p, < oo. Let H| denote the alternative hypothesis
that £, = f (fixed) and f, = f + 6g, where  =n"c and ¢ #0. Here, g is a
fixed, bounded, integrable function with the property that f+Jg is a
density for all sufficiently small |§|. Define

2
=] [j {K(x—y)~a(x)} g(x)de a,

re= ([ {K(x=y)—ax)} g(x) 0u(y) fy) dx dy
= [[ Kx =) g(x) 003) £13) dx ay,
the last identity holding if A, #0. On the probability space supporting the
Z;’s, define random variables Y,, Y, such that E(Y;)= E(Y,)=0, E(Y?)=
E(Y})=4J,, E(Y,Y,)=0, E(Y,Z,)=r,, E(Y,Zy)=E(Y,Z,)=0, and

683/50/1-4
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the Y’s and Z’s have joint normal distributions. We shall prove in the
Appendix that under H,,

U—-S+2cp, Y, —p, Y+ 2,

in distribution, where S was defined at (2.3) and J, =j' (K » g)%. Therefore,
the asymptotic value of the probability that the version of our test with
nominal level « correctly rejects H, when H, is true equals

n(c)=P{S+2c(p; 'Y, —p; 2 V) >s,— 2},

where s, denotes the upper a-level point of the distribution of S. Our
assumption at (2.2) that the Fourier transform of K does not vanish on any
interval guarantees that J,#0, and so n(¢)— 1 as |¢| - 0.

2.5. Bootstrap

Since the distribution of S is unknown, bootstrap methods provide an
attractive approach to determining a critical point for the test. Resampling
may be from either the pooled sample & = {X|;, .., X1, X21, ..., Xy, } OF
from one of the individual samples. Using the pooled sample will provide
somewhat greater level accuracy when H, is true, and obviously there are
disadvantages in resampling from one of the individual samples if it is
much smaller in size than the other. However, neither of the two
approaches to bootstrap resampling appears to have any general advan-
tages from the viewpoint of power.

Since the distribution of § depends on the unknowns A, in a manner
which does not allow the effect to be removed by simply Studentizing, there
seems little point in using sophisticated bootstrap methods such as
percentile-7. The Studentized statistic is not even asymptotically pivotal on
this occasion. Therefore we suggest a simpler, percentile method. Let
{X, .. X ;',‘,j}, j=1,2, denote independent resamples drawn randomly,
with replacement, using one of the two approaches. Compute

7y
a*x)=n"1Y K(x—X}), T*=j (GF —a3)2
i=1
Let J denote the version of J, calculated from the resamples rather than
the samples, and define J* =x, —J¥ and

U=n{T*—(n;'+n; ") J}}.
Given 0 <a < 1, let 4, denote the solution of the equation
PU*>d4,|¥)=q.

A nominal a-level test of H, is to reject that hypothesis if U> i,.
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2.6. Some Numerical Results

In this section we report a simulation study that compares the perfor-
mance of T (from (2.3)) and U (from (2.9)). The study was based on
Normal mixture distributions and two cases were considered. In each case,
we took

S (x)=¢(x;0, 1),

where ¢(x; 4, 2) denotes the univariate Normal probability density
function corresponding to X ~ N(u, ¢?), and

fi(x)=(1-p) $(x;0,1) + pg(x; 0, 0°),

with p=cn~'2 Of the two cases, 62 =2 in case (a), and 6> =4 in case (b),
so that both cases, and case (a) in particular, are demanding so far as
testing is concerned. The Epanechnikov kernel function was used.

Table I displays the empirical powers obtained from bootstrap tests
based on T and U, carried out as described in Section 2.5, for various
values of n,, n,, and c. In each bootstrap test 199 bootstrap resamples were
generated, and each quoted value for power was based on 1000 replica-
tions. In general and not surprisingly, values of power increase with ¢ and

TABLE I

Empirical Powers for T and U with f,(x)=(1—p) é(x; 0, 1) + pé(x; 0, 62),
and p=cn~'%; 1000 Replications with 199 Bootstrap Resamples

4

1 2 Statistic 1.0 20 40 6.0
(a) o2=2
20 60 T 0.076 0.053 0.079 0.131
U 0.066 0.082 0.107 0.172
50 150 T 0.066 0.072 0.063 0.130
U 0.054 0.075 0.087 0.132
100 300 T 0.047 0.064 0.071 0.079
U 0.048 0.054 0.104 0.136
(b) a*=4
20 60 T 0.068 0.109 0.166 0.334
14 0.076 0.115 0.259 0.498
50 150 T 0.056 0.064 0.162 0.279
U 0.058 0.087 0.235 0.480
100 300 T 0.065 0.066 0.107 0.233
U 0.048 0.094 0.241 0451
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the values for case (b) are typically larger than those for case (a). Also,
typically, U turns out to be more powerful than T.
Note that in this paper we are not trying optimally to estimate

[r=-p2

the population-based measure of which T, might be regarded as an
estimate. As a referee has remarked, optimal choices for 4, and 4, in T, ,,
would then correspond to undersmoothing, relative to the values that
would be best for density estimation, in order to compensate for the
smoothing effect of the integral. Here, in contrast, relative oversmoothing
is appropriate; T, ,, is being used for a totally different purpose.

3. GENERALIZATIONS

We begin by generalizing our definition of 7 given in Section 2; see (2.3).
First, in our definition of 4, we generalize K(x, —x,) to K(x,, x,), where
K is now a bivariate function of the p-vectors x, and x,. In this notation,
d, becomes

&)
d;(x)=n;"3 K(x, X,).
i=1
Secondly, we incorporate a nonnegative weight function w into our defini-
tion of 7, as discussed just subsequent to (2.3):
T=J (G, — d,)* w. (3.1)

If we take K to be symmetric and square-integrable with respect to the
weight function, ie., to satisfy

f K2(x,, X,) w(x;) w(x,) dx, dx, < o, (3.2)

then we may represent K as an orthogonal expansion with respect to w,

[}

K(x,, x;)= Z Vi@ (xy) 04 (x,),
k=1

where

[ ke x) o) wix) dr =), [ oow=4,
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In this notation,

X0 n n 2
T= Z Vi {nfl Z wk(Xli)_n;1 Z wk(Xn)} . (3.3)
k=1 i=1 i=1

Formula (3.3) makes it explicitly clear that T is based on comparing the
means of the eigenfunctions w,, i.e., comparing Ew.(X,,) and Ew,(X;;).
The weights vZ apportion the amount of emphasis we give to individual
eigenfunctions. The analogue of v? in Section 2 is A,. This is perhaps
clearer from an asymptotic analysis, as follows. If n,, n, — 00 in such a way
that n;~ p;n then, under the null hypothesis that f, = f, = f,

nT—~5=3 vip; Zy—p; P Zx)?
k=1
in distribution, where {Z,, j=1,2, k>1} denote jointly normally dis-
tributed random variables with zero means and covariances E(Z,Z,)=
[ wew, f, E(Z,xX5)=0. Note that condition (3.2) guarantees 3 v; < o0,
and so S’ is well-defined.

We may test H,: f, = f; by rejecting this hypothesis if the value of T is too
large. Again, the distribution of T may be approximated using bootstrap
methods, much as discussed in Subsection 2.5. Let & and {X}, ... X} },
j=1, 2, be as described there, and re-define

nj
arx)=nt Y KxnXp),  T*=|(@t-a).
i=1
A test with asymptotic level o may be obtained by rejecting H, if T>1,,
where 7, is the solution of the equation

P(T*>i, | Z)=u

To appreciate that this test has good power properties, let us consider
local alternatives of the type discussed in Subsection 2.4, where f,=f
(fixed) and f,=f+n~"2cg. Assume that each v, #0 and {w,} is 2 com-
plete orthonormal sequence in the space of all functions sharing the same
support as f and g. Then the asymptotic value, n(c), of the probability that
the test rejects H, when H, is true, satisfies n(c)— 1 as |c| - o0. Without
the assumptions that the sequence {w,} is complete, the test may not be
able to discriminate against certain alternatives. (Consider, for example, the
case where g is orthogonal to {w,}.) However, in many practical problems
we are interested in detecting departures which, if they exist at all, are most
likely reflected in location or scale difference. We could confine attention to
such departures, and so increase the power of the test for discriminating
against them. Of course, the penalty paid is that such a test has no power
for discriminating against departures orthogonal to location and scale.
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Consider the problem of testing for location and scale differences among
two-dimensional distributions. Let x = (xV, x®)T. Given two bivariate
functions ¥, and y/,, and bivariate data & = {X\,, .., X},,, Xa1, . Xo,},

put
2 n;
¥y =(ny+ny)7! Z Z U (X5) Yo X), lWill?=<dy, 1),

j=1 k=1
2 2
lﬁ“(x)=x“’, l/’]z(x)=x(2)5 ‘//13(x)=x“)a Wla(x)':xma

Yis=xx?, Ya=¥,
Ya=Wu— W Wa i Waall 22— -
— W oy Wl ~2 s
@i =Yyl =" 1<igs

Then the functions «, are orthonormal with respect to the weight dF,
where F is the empirical distribution function of &. In effect, the first two
;s represent location, and the next three denote principally scale.

APPENDIX

Mean, Variance, and Asymptotic Distribution of the Test Statistic,
T, Defined in (2.3)

Under the hypothesis that f, = f and f, = f+ dg we have

E(T)= | [E(@, - E&\) + E(a, — E&;)* + {B(d, - 4,)}?]
—ni K= [ K7

+n;‘[xl—f {K*(f+6g)}2]+52 [(xspp

_{(nr‘+n;‘)J1 if 6=0
Tl ey ){1+o(1)} ), + 82 [ (K g if 80

Further, defining

Sy= i j {K(x“'in)_al(x)}zdx’

Sy=Y ¥ [ {K(x—X,)— a,()}{K(x— X)) — a,(x)} dx,

HE )]
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Sy= 2 i j{K(x_Xlil)_al(x)}{K(x_XZiz)_az(x)} dx,

=1 iz=1
S4j= ZJ: .[ {K(X‘Xj,')*aj(x)} g(x) dx’

we have

2
T—E(T)=Y n 2{(S;—ESy;)+ Sy}

i=1
—2n7 ' 183+ 26(n; 'Sy —ny'Sy,).

Now, S, — ES,,;= 0,(n;"?), which means that the contribution of §,,— ES;
to the formula above is of order n~*2 This means that it is negligible
relative to the contributions of the other terms, which are all of size n".
Indeed, the asymptotic variances of S,;, Sy, S;, Sq and S, are niJ,,
n3J,, nynyJ,, n,J, and n,J,, respectively. These quantities all have zero
means and are uncorrelated with one another. It follows that T— E(7T) has
asymptotic variance {n; > +n; 2 +4(n,n,)" "'} J,+48*(n; +n, ") J,.
With M, A, and w, defined by (2.4)-(2.7), we have

o ny

2 ny
Szj= Z '1k I:{Z wk(",ﬂ)} _AZ wk(’Yﬁ)z:l'

k=1 i=1 =1

This representation is correct for j=1, 2 under H,, and for j=1 under H,.
Under H,, when j=2, the 4,’s and w,’s should be replaced by versions
which depend on é and converge to their counterparts (under H,, i.e., with
8=0) as § —» 0. Since | M(x,, x,) f(x,) dx,=0 then we may deduce from
(2.6) that if 1, #0 then E{w,(X;)} =0. By (2.7), E{w,(X;) 0,(X;})} =64,
whence it follows that under H, or H,,

”;‘lszj'* Z lk(sz“l) (j=1,2), (’11"2)»1/2 Sy— Z MZZy

k=1 k=1
jointly in distribution. Therefore,

2

n ( Y nj‘zSzj—Zn{‘n;‘S3>

j=
d Z P;l Z Ak(sz“l)“zl’fl/zpz‘m Z A Z i Z g

k=1

k=1

=Y L{pTPZu—ps ' PZu)Y —(p7 +py )}
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More simply, S, is asymptotically normally distributed with zero mean
and variance n;J,. Its asymptotic correlation with 3, w,(X,) is np;r,. Joint
asymptotic normality may be proved using the Cramér-Wold device.
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