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Abstract

This paper studies robust stability of uncertain impulsive dynamical systems. By introducing the
concepts of uniformly positive definite matrix functions and Hamilton—-Jacobi/Riccati inequalities,
several criteria on robust stability, robust asymptotic stability and robust exponential stability are
established. An example is also worked through to illustrate our results.
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1. Introduction

Impulsive dynamical systems have been widely studied in recent years; see [1-5] and
references cited therein. Such systems arise in many applied fields such as control tech-
nology, communication networks, and biological population management. Since impulsive
dynamical systems provide a natural framework for mathematical modelling of many phys-
ical phenomena, their study is assuming a greater importance. For the basic concept and
theorems of impulsive dynamical systems, we refer the reader to [1,2]. On the other hand,
uncertainties happen frequently in various engineering, biological, and economical sys-
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tems due to modelling errors, measurement inaccuracy, linear approximation, and so on. It
is well known that uncertainties often result in instability. Therefore, robustness analysis
of uncertain systems is very important. Several interesting results have been established
in [6-8] for continuous dynamical systems. But so far very few robust stability results for
uncertain impulsive dynamical systems have been reported.

In this paper, we shall investigate the robust stability properties of uncertain impul-
sive dynamical systems. By utilizing the ideas developed in [4], we shall establish several
criteria on robust stability, robust asymptotic stability and robust exponential stability. The
organization of this paper is as follows. In Section 2, we introduce the concept of uniformly
positive definite matrix function and some other notations. We state and prove our main re-
sults in Section 3, where both linear and nonlinear uncertain impulsive dynamical systems
are considered. By using Riccati and Hamilton—Jacobi inequalities, we establish several
robust stability criteria. Finally, we work through an example to illustrate the applicability
of our results.

2. Preliminaries

Let R” denote the:-dimensional Euclidean space. IRt = [0, +00), N={1,2,...}.
Denote byx the class of functiong : Ry — R, which are continuous, strictly increasing
and ¢ (0) =0, xg the class of continuous functions: R, — R, such thaty (s) = 0 if
and only if s =0, andPC the class of functions.: R, — R, where is continuous
everywhere except (k € N) at whicha is left continuous and the right Iim}I(t]j') exists.

In this paper, we lef, = {x e R": |x|| < p}.
Consider the uncertain impulsive dynamical systems of the form

x=f@t,x)+gt x), t#tu,
Ax=Li(x)+ Jr(x), t=t, keN, Q)
wherex e R", f,g:Ry x R" - R", I, Jy :R" — R", andAx = x(1;") — x(t;), where

x(t,j') is the right limit of x(r) at7 = #, andx(z,) is the left limit. The functiong(z, x),
Ji(x) represent structural uncertainty or uncertain perturbation characterized by

8e(t, )| < mg e )|}

g€, =1{g g(t,x) =ey(t,x)-8,(1,%), |
and
Je€ 2y = Je(x) =ex(x) - & (x), |8 @) < [|mx0)|}. keN,

whereeg :Ry x R — R™ and e :R" — R"*™" are known matrix functions whose
entries are smooth functions of the state, @pgs; are unknown vector-valued func-
tions whose norm are bounded, respectively, by the norm of the vector-valued functions
mg(t, x), mg(x), respectively. Heren, :R; xR" — R™, m; :R" — R™ (k € N) are given
smooth functions, anfil- || stands for the Euclidean normIRf.

Let 7o € Ry andxg € R”. Denote byx(z, ro, xo) the solution of (1) satisfying the ini-
tial conditionx(tar) = xo. We assume, for simplicity, that the functioni$z, x), g(t, x),
I (x) and Ji (x), k € N satisfy all the required conditions [1] so that all solutior(s) =
x(t, to, xo) of (1) exist for allz > 1.
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We also assumg (t,0) =0, 8,(¢,0) =0, [t(0) =0, 8:,(0) =0 forallt e Ry, k e N.
Hencex = 0 is a solution of system (1).

Definition 2.1. Let X : Ry — R™*" be ann x n matrix function. ThenX (¢) is said to be

(i) a positive definite matrix function if for anye R, X (¢) is a positive definite matrix;
(i) a positive definite matrix function bounded above if it is a positive definite matrix
function and there exists a positive real numbgr 0 such that

)»max(X(f)) <M, teRy, (2

whereAmax(+) is the maximum eigenvalue;
(iii) a uniformly positive definite matrix function if it is a positive definite matrix function
and there exists a positive real numbet- 0 such that

Amin(X(®) =m, 1eRy, (3)

whereimin(-) is the minimum eigenvalue of matrix)(
Definition 2.2. Let V:R; x R" — R,; thenV is said to belong to clasg if

(i) Viscontinuousin_1,#] x R" and for eaclx e R”, ¢ € (tx—1, fx], k € N,

im V@, y)=V( . x) (4)
(t.3)= (67 4.%)
>t
exists;
(i) V islocally Lipschitzian in.

Definition 2.3. For (¢, x) € (tx_1, tx] x R", we define
1
DYV (t,x)= Jim supE[V(t +h,x+h(f,x)+ g, x)) =V, x)] (5)

Definition 2.4. The uncertain impulsive dynamical system (1) is called robustly stable,
robustly asymptotically stable, and robustly exponentially stable, respectively, if for any
8 € 82¢, Ji € 25 (k € N), the trivial solutionx = 0 of system (1) is stable, asymptotically
stable, and exponentially stable, respectively.

3. Robust stability criteria

The present section consists of three parts. In Part A, we summarize the existing stability
results given in [4] for the nominal system of system (1). In Part B, we establish some ro-
bust stability criteria for linear uncertain impulsive dynamical systems. The corresponding
results for nonlinear uncertain impulsive dynamical systems are given in Part C.



522 B. Liu et al. / J. Math. Anal. Appl. 290 (2004) 519-533

Part A. Stability results of nominal impulsive systems

The nominal impulsive system of system (1) is given by
x=f(t,x), t#u,
Ax=L(x), t=t;, keN,
x(tar) = xg. (6)

For system (6), we summarize the following general results.
Proposition 3.1 [4]. Assume that

(i) there existsop with 0 < pg < p such thatx € S, implies thatx + I (x) € S, for all
keN;
(i) V €vg, and there exist, b € x, such that

b(llxll) < V(. x) <a(llxl). (7)
where(z, x) e Ry x Sp;
(i) V(i xe+ Do) < v (V (e, x0)). (8)

wherey, € xo, k € N;
(iv) there exist € x, p € PC such that

DYV (t,x) < p@t) - c(V(t,x)), (9)

where(t, x) € (tx, tr1] X Sp, k € N;
(v) there exists a constant > 0 such that for allz € (0, o),

sl Yk (2)

/ p(s)ds + / NP, (10)
c(s)

175 Z

for some constantg € R andk € N.

Then the systelt6) is stable ifr, > 0for all k € N, and asymptotically stable if in addition
Zlfil ry = +00.

Proposition 3.2 [4]. Assume that condition(§—(iii) of Proposition3.1 hold. Suppose fur-
ther that

(iv*) there exist € x, A € PC such that
DTV (t,x) < —A@) - c(V(t,x)), (11)

where(t, x) € (tx, tig1l X Sp, ke N;
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(v*) there exists a constaat > 0 such that for allz; € (0, o),

T4 Vi (2) J
—/A(s)ds—i— / D < (12)
c(s)
tr Z

for some constantg € R andk € N.

Then systeni®) is stable ifr; > 0 for all k¥ € N, and asymptotically stable if in addition
Zlfil ry = +00.

Part B. Robust stability results for linear uncertain impulsive dynamical systems

The time-varying linear uncertain impulsive dynamical system is of the form
f=AM)x+ B)x, t#n,
Ax=Ct)px + D(t)kx, t=1t,
x(tar)zxo, keN, (13)

whereA(t), C(t); € R™" are known matrices, anl(t), D(t); € R™*" (k € N) are in-
terval matrices, i.e B(t) € N[P(t), Q(1)] = {B() e R"*": B(t) = (b(1)ij)nxn. P(1)ij <
b()ij <q@)ij, i,j=1,2,...,n}, D)k € N[P(®)r, Q(1)i], WwhereP(t) = (p(1)ijJnxn,
Pk = (p(Ok;; Inxns Q) = (q(1)ijInxn, Q) = (k) )nxn, k € N, are known matri-
ces.

In order to obtain robust stability results for system (13), we shall first establish some
lemmas.

Lemma 3.1. Let X(r) € R"™*" be a positive definite matrix function ant(r) € R"**"
a symmetric matrix. Then for anye R", t € R, the following inequality holds

xTY (0)x <amad XY () -xT X (0)x. (14)
Proof. It follows from the properties of positive definite matricesa

Lemma 3.2. Let B(r) € N[P(1), Q(t)], whereP = (p(t)ij)nxn aNd Q = (q(1);j)nxn are
known matrices. TheB(¢) can be written as

B(t)=BM)o+ E@)X@)F(1), (15)
where
B(t)o= %(P(t) +00),  H@®=(h®)i)),,,= %(Q(t) - P(1)),
S e T ={20) e R (1) =diage ()11, - €D 1ns -, 6t -
eWm), le@ij| <1, i, j=1,2,...,n},

E@) = (\/h(t)llel, v h@®mer, ..., Vh(n1en, ... V() n en) € Rnxnz,

L]
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2
F(t) = (V h(t)llelv BRI Y h(t)ll’l €nyeeey \Y h(t)l’llels BRI Y, h(t)nn en)T GRH an
ei=(0,...,0,1,0,....0" eR", i=12...,n.

Proof. ForanyB(t) € N[P(¢), Q(t)], we have
1 1
b(t)ij = E(P(t)ij +q®)ij) +e@)ij - E(q"-/' = Dij)

1
= E(p(t)ij +q@®)ij +e®)ijh(t)ij)

for somee(r);; € R satisfyingle(?);;| <1,i,j=1,2,...,n,t € Ry. Thus we can ex-
pressB(t) by

B(t)=B(t)o+ Y e()ijB1)ij, (16)

ij=1

whereB(t);; € R"*" whose entry in positiont, j) is 2(¢);; and all other entries are zero,
i,j=12,...,n. SinceZﬁj:ls(t)UB(t)U =E@)X(t)F(t), we get Eq. (15) foB(r).

a
Remarks. (1) Clearly, for anyX (¢t) € X*, we get
DIOPIGEEDIGEIOEYS
n n
ENOE®N! = diag{ Zh(r)lj .. Zh(l‘)nj} e RV,
j=1 j=1
FOTF@) = diag: > h)ja... Zh(;)jn} e RV,
j=1 j=1
wherel is then x n identity matrix.
(2) By Lemma 3.2, system (13) can be rewritten as
X=AM)ox+ EOX()F(t)x, t#H,
Ax =Cx + EORZ O F(ex, 1=,
x(tar)zxo, keN, (17)

whereA (1o = A(1)+ B(1)o, C (1 = C(1)k+ DDk, D(t)k = D()ko + E i Z (0 F (D).
Here,B(t)o, E(1), X(t), F(t), D(t)ky, E()k, X ()i, andF (), (k € N) are defined as in
Lemma 3.2.

Lemma 3.3. If X (t) € X*, then for any positive scalar functian(z) > 0 and for any
e R, ne R"” the following inequality holds

26T 2t < A0 7XeTe + ATy (18)
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Proof. It follows from the Schwarz inequality anB(1) X (1) = X)X () <1. O

Theorem 3.1. Assume that there exist scalar functions) > 0, «(¢) > 0 and a uniformly
positive definite matrix functioX () bounded above such that
(i) X () is differentiable at # 7, and the Riccati inequality holds
X+ XA+ AYX + 27 IXEETX +AFTF <aXx forallr #4, keN; (19)
(i) there exist some, € R, & > 0 (k € N) such that
Tk+1
/ as)ds +Inpy < —rp forall k e N, (20)
Tk
where
Br = Amax{ X (t) M [(1 + C0)] ) (X (@) + & X (0) Er Et0)f X ()
x (I +C(t)r) + (& + rmax(E @)L X @) Et)r)) F (0] F(t)k]}-

Then the systerfl7) is robustly stable if, > 0 for all £ € N, and it is robustly asymptoti-
cally stable if in additiony 2 ; rx = +o0.

Proof. To prove this theorem, we only need to check all the conditions of Proposition 3.1.
Let V(¢,x) =xT X (¢)x. Clearly,V belongs tayg and
dmin(X (@) - x> <V <hmad X @) - |x0[%, @,%) € Ry x R™. (21)

SinceX (¢) is a uniformly positive definite matrix function and bounded above, there exist
positive real numbera/ > m > 0 such that

m < Amin(X (1)) < Amax(X (1)) < M. (22)

Definea(s) = M - s? andb(s) = m - s2, s € Ry; thena, b € x and from (21) and (22), we
have

b(Ilxl) < Ve, x) < a(lxl). (23)

Hence, condition (ii) of Proposition 3.1 holds. ~ 5 3 ~ ~
Denotexy = x(t), Xr = X (&), Ck = C(t)k, Ex = E(@)k, Tk = X (t1)k, Fr = F (i)«
Whent = #;, by Lemmas 3.1 and 3.3, we get

V(55 x+ L) = xF [+ Co + ExZe B X[+ Co) + Ex ExFi ]
=x {(I + CO) Xk +Ci) + I + Co) Xy Ex Zi Fi
+ (ExZcE)T X (I + Co) + (Ex ZeF) T Xi(Ex S Fio) Jx
Sl {(L+ CH X+ Co + 671U + COT Xk EEF X1 + Cro) + & EL FieJxi
+)\maX(EkTXkEk) -kaI*:'kT Fkxk
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=x[{(I + Co" [Xi + & "Xy ExE] Xi ] + Cr)
+ (& + Amax(E{ XkEx)) - Fl F}xk
< BV (te, xi). (24)
Let Y (s) = Br - s, s € Ry. Then, it is easy to se@; € xp. From (24), condition (iii) of
Proposition 3.1 is satisfied.
Denotex = x(#), X =X(), E=E(), ¥ = X(t), F = F(t). Using Lemma 3.3 and
condition (i), fort # %, we get
DYV, x)=xTXx +xT Xx +xT Xx
=x" (X +A{X + XAo)x + 2" XEXFx
<xT(X+AJX + XAo+ 2" XEETX + AFT F)x
<alt) -x'Xx=a(r) Vit x). (25)
Thus, lettinge(s) = s, p(t) = a(z), s € R4, we get
DYV (t,x) < p@t) - c(V(t,x)). (26)

Hence, by (26), condition (iv) of Proposition 3.1 is also satisfiedrB% 0 and (20), we
haveg, < 1 for all k € N. In view of (24), condition (i) of Proposition 3.1 is satisfied. The
condition (v) of Proposition 3.1 is satisfied as well by using (20) ¢nt) = B« - s and

c(s) = s. Therefore, all conditions of Proposition 3.1 are satisfied. Hence the theorem is
true and the proof is complete.d

Theorem 3.2. Assume that there exist scalar functions) > 0, «(¢) > 0 and a uniformly
positive definite matrix functioX () bounded above such that

(i) X(¢) is differentiable at # 7, and the following Riccati inequality holds
X+ XA+ AYX + 2" IXEETX +0AFTF < —puX, t#n, keN; (27)
(ii) there exist some; € R, & > 0 (k € N) such that
Tk+1
- / ws)ds+Inpy < —ry, ke, (28)
Tk
where
Br = Amax{ X (t) M [(1 + C0)] ) (X (@) + & X (0) Er E )] X ()
(I + Ct)k) + (5 + 2max(E (6] X (0) E)x)) F (@) F (1]}

Then the systerfl7) is robustly stable if; > O for all £ € N, and it is robustly asymptoti-
cally stable if in additiony_; ; rx = +o0.

Proof. It follows from Proposition 3.2 and similar arguments to those used in the proof of
Theorem 3.1. The details are omitteda
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Theorem 3.3. Assume that

(i) there exist a scalar functiok(r) > 0 and an uniformly positive definite matrix function
X (1) bounded above ank (¢) is differentiable at # 1, such that the following Riccati
inequality holds

X+ XAg+AYX + 2" 1XEETX +0FTF <0, (29)
and that— (X + X Ao+ Al X +271XEETX +1FTF) is auniformly positive definite
matrix function

(i) TTz=, Bx converges, where

Bre = hmaxd X 1) (1 + Ct ] ) (X (1) + 72X (1) E )k E() ] X (1))
x (I 4+ C(t)k) + (& + Amax(E (0] X 0 E 1)) F (1) F ()] }-

Then the systerfl7) is robustly exponentially stable.

Proof. Using Theorem 3.1, we see that system (17) is robustly asymptotically stable. Let
Y(t)=—(X + XAo+ Al X + A" 1XEETX + AFT F). Then by condition (i)Y (t) is a
uniformly positive definite matrix function. Moreover, sin&gt) is a uniformly positive
definite matrix function bounded above, there exist positive real nunahess, o3 satis-
fying
01 < )»min(Y(f)), 03 < )»min(x(f)) < )»max(X(f)) <oz, rER;.
Let V(¢,x) =xT X (¢)x. Then, for any # #,, we have
DTV(t,x)=x" (X + Al X + XAo)x + 2x" XEX Fx
<xT(X+AJX + XAo+ A ' XEETX + AF" F)x
=—x'yY)x<—0o - x"X(t)x=—0-V(t,x), (30)
wheres 2 o1/02 > 0. Whent = 1, by the similar proof of (24) of Theorem 3.1, we get

V(td. b)) < B Vi xi). (31)
From (30) and (31), for, < ¢ < #tx+1, We get

V(ex@®) < V(65 x0) e 7T B Vi xi) e

k
< V(to, x0) - l_[,Bi el (32)
i=1
Hence, for all € (#, tx+1], k € N, we get
/2

Jx®] < [ V(t?;(x((;;) H'B’] o~ (0/D(t~10)

12
02 _ -
< ||xo|||:6_3.1_[,3i:| e~ (@/2)(t—10) (33)
i=1
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and

o3

el < ()" ol @

Hence, from (33) and (34), system (17) is robustly exponentially stable and the proof is
complete. O

Remark. As a special case, we can get some corresponding results for the time-invariant
linear uncertain impulsive dynamical systems, i.e., all matriégsE, F, X, Cx, Xk, Fy

in (17) are constant matrices. To save space, we just give one result here and other corre-
sponding results are omitted.

Corollary 3.1. Assume that syste(?) is time-invariant. Suppose further that

(i) there exist real numbers, ¢ > 0 and a positive definite matriX such that the follow-
ing algebraic Riccati equation holds

XAo+ AYX + A IXEETX + AFTF + 1 =0, (35)

or
(i") Ao is asymptoatically stable matrix and

|F(sT— A0 'E| <1 (36)
(i) condition(ii) of TheorenB.3 holds.

Then systenil?) is robustly exponentially stable.

Proof. From [9], it is easy to see that condition (i) of)(is equivalent to condition (i) of
Theorem 3.3. Thus the corollary is true. The proof is complete.

Part C. Robust stability results for nonlinear uncertain impulsive dynamical systems
For uncertain impulsive system (1), we establish some general results as follows.

Theorem 3.4. Assume that there I8 € vg such thatV (¢, x) is differentiable on(#;—1, ;) x
R" for anyk € N, and conditiongi), (i) and (v) of Proposition3.1 hold. Suppose further
that

(i) there exist function®y, (R x R* — R P, ‘R, x R" — R™ ™ with Py, (¢, x)
>0,andforreR;, xeR*, ye R" keN,

V(t x4+ I (x) + ex(x)y)
<V (t,x + L)) + Pr (1, x)y + y" Po (8, x)y; (37)
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(ii) there are positive constanig (k € N) such that
V(7 x4+ I () + e PPy PL+ ek + Amax(P2,))mj my
g W(V(txa -xk))v (38)

whereyy € xo, Py, = Py, (tk, xk), P2y = Po, (tk, xi), mig = my(xp), k € N;
(i) there exist € », p € PC and scalar function, € C[R”, R ] such that

av v Azav avl 1
v f egel + _zmeg < p(t) - c(V(t,x)), (39)
o T Sox o al ¢

where(t, x) € (t, trg1] x Sp, k e N.

Then systenl) is robustly stable ifx > 0 for all k € N, and it is robustly asymptotically
stable if in addition) ;2 ; rx = +00.

Proof. From Proposition 3.1, we only need to verify conditions (iii) and (iv) of Proposi-
tion 3.1. Wherr = ¢, k € N, by conditions (i), (ii) and Lemma 3.3, we get

V(5 xk + L) + T (x0))
SV(tF x + L)) + P S + 8 (i)™ P, 8k (x)
SV(F xk + L) + e Py PL + exm mi + dmax(Pa, )m] my
= V(i x + Ie () + e Py P+ (e + Amax(P2))mi mye

<Y (V (ks xi)). (40)

Let V=V (t,x), f = f(t,x), g = g(t,x), mg = my(t, x), 84 = 8,(t, x), andr, = A(z).
Then forr # 1, k € N, in view of inequality (39), we have

I avV.aV av. aV 8V
DIV (e.x(0) =S+ - (f+ @) =—-+ — [+ ——edy
at at
Vv AZSV T8VT 1 5
=S T2

1(. av 1 avl 1
— da—e, — =8IV el - =3
2{ k8xeg Ak g} { kCe ox Ak g}

- K%{mgmg — 8, 8]

vV AZ av TBVT 1 4
Sar T f % oy T X,fmg e
< pt) -C(V(t,x(t))). (41)

Thus, by (40) and (41), conditions (iii) and (iv) of Proposition 3.1 are satisfied. Therefore,

by Proposition 3.1, system (1) is robustly asymptotically stable and the proof is complete.
a



530 B. Liu et al. / J. Math. Anal. Appl. 290 (2004) 519-533

Theorem 3.5. Assume that there i€ € vg such thatV (¢, x) is differentiable on(#,_1, 1) x
R”" for anyk € N, and conditiongi) and (ii) of Proposition3.1 and conditiongi) and (ii)
of TheorenB.4 hold. Suppose further that

(i") there exist € x, A € PC and scalar functions; € C[R", R, ] such that

v v A2av Lovl 1 o
— 4 — -~ —+ — <A - c(V(t,x)); 42
o TS T o %% e +2)L]%mgmg (t)-c(V(,x)) (42)

(ii") there exists a constant> 0 such that for allz € (0, o),

ty Yk (2) d
—/X(S)der / —Sé—rk (43)
c(s)

tr—1 Z
for some constant, andk € N.

Then the systeml) is robustly stable ifry, > 0 for all k =1,2,..., and it is robustly
asymptotically stable if in additiop ;> ; rx = +o0.

Proof. It follows from Proposition 3.2 and similar arguments to those used in the proof of
Theorem 3.4. The details are omitted:

Corollary 3.2. Assume that all conditions of Theore8rb hold. Moreover, ifi(t) = 0,

t € Ry, andy(s) = ug-s, s € Ry, for some positive constants (k € N), then systerl)

is robustly stable ifux < 1 for all & € N, and robustly asymptotically stable if in addition
Zlfil In Mk = —0OQ.

Proof. The result is a direct consequence of Theorem 35.

Theorem 3.6. Assume that there i € vg such thatV (¢, x) is differentiable on(#,_1, 1) x
R" for anyk € N, and condition(i) of TheorenB.4 holds. Suppose further that
(i) there are positive real numbers, 12 such that

| xO)? <V, ) < x|,

(t,x) e Ry x Sp; (44)
(ii) there are positive constanig (k € N) such that
V(t,j', Xr + Ik(xk)) + gk_lplk PlTk + (ek + AmaX(sz))mka
g V(tx ’ -xk)a (45)

where Py, = Py, (tx, xi), Pa, = P, (tk, xi), my = my(x), k € N;
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(iii) there ares > 0 and scalar functiong; € C[R"”, R] such that
v v . A2av Lavl 1 e
—+ — - —_—t+ — — <0, 46
or T ax T2 ox %% oy +2A,§mgmg+2xx (46)
where(t, x) € (tx, tr+1] X Sp, k € N.
Then systenl) is robustly exponentially stable.

Proof. From the assumptions, it is easy to get the following inequalities:

1 2
x@] < IIXOII,/%GXP{—E<i> G —to)}, t € (t, trt1l, (47)
d
+ K2
[+ @ < 2 vl

From (47) and (48), system (1) is robustly exponentially stable and the proof is complete.

an

, keN. (48)

O
4. Example
Finally, we shall discuss an example to illustrate our results.
Example 4.1. Consider the following uncertain impulsive dynamical system:
Xx=f(t,x)+g(t,x), tek,k+1],
Ax=<_1+k_}rz 0 ) )xk, t=k keN, (49)
0 -1+ &3

where

B 2, .2
x=<Xl>, f(t,x):( x1+x2(x1+x2))7

X2 —x2 + x1(x2 + x3)

x1 O
g(t,x) €2y =18 g =¢€g-0g, ¢g= 0 1 s 18Il < llmgll,

I (x1+xz >}

E\V2xe )
Let V(t,x) = (1/2)(x? + x3). Then, obviously,V € vp and V is differentiable at any

t e RT. Foranyr € (k, k + 1] andi; = 1, we get
ov oV +A§av TavT+ 1 4
-— 4+ — ——ege, —— + —m,m
ar  Ox 20x % ax  2ES
2

1 1
=—x?—x24 lexz(x% + x%) + E(xf +x§) + E{(xl +x2)% + Zx%x%}
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1 1
= X1X2 — > (x% + x22) + 2x1x2(xf + x%) + > (x% + x22) < 4v2, (50)
Hence, if letp(r) = 1, c(s) = 4s2, then the Hamilton—Jacobi inequality

v av  A2av Lavl 1
o T T2 e gy T e e <P eV )
k

is satisfied. Furthermore, whenr=k, k € N, we get

1/ 1 \?
V(t]j, X]j) = E(m) . (.X']z_(tk) +x%(tk))

1 72
= [k——l—Z} -V (e, xi) < Y (V (s xi)),

whereyy (s) = (1/(k 4+ 2))2 - s, s € R4. Seto = 1; then, for any; € (0, 0),

K+l "o "o .
d L ods=1 ds=14 —[1—(k+2)?
/p(S) S+/c(s) ’ +/4szs +4z[ (k+27]
k 4 <
1 2 1 2
<1+Z[1—(k+2)]=—2[(k+2) -5]. (51)

Hence, setting; = (1/4)[(k + 2)2 - 5], we getf ' p(s) ds + [P*2 /c(s) ds < —n,
andry > 0 for allk e N. Clearly,} %2 rx = (1/4) 372, [(k +2)? — 5] = +00. Therefore,
by Theorem 3.4, system (49) is robustly asymptotically stable.
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