
Journal of Discrete Algorithms 18 (2013) 100–112

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

ESP-index: A compressed index based on edit-sensitive parsing

Shirou Maruyama a,1, Masaya Nakahara b,2, Naoya Kishiue b,3, Hiroshi Sakamoto b,c,∗,1

a Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
b Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan
c PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 7 August 2012

Keywords:
Grammar-based compression
Self-index
Edit-sensitive parsing
Succinct data structure

We propose ESP-index, a self-index based on edit-sensitive parsing. Given a string S , ESP
tree is equivalent to a CFG deriving just S , which can be represented as a restricted DAG G .
Finding pattern P in S is reduced to embedding the parsing tree of P into G . Adopting
several succinct data structures, G is decomposed into two bit strings and a single array,
requiring (1 + ε)n log n + 4n + o(n) bits of space, where n is the number of variables of G
and 0 < ε < 1. The counting time for the occurrences of P in S is in O ((1/ε)(m logn +
occc log m log u) log∗ u), where m = |P |, u = |S|, and occc is the number of the occurrences
of a maximal common subtree in ESP trees of P and S . With the additional array of n log u
bits of space, our index supports the locating and extracting. Locating time is the same as
counting time and extracting time for any substring of length m is O ((1/ε)(m + log u)).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The problem

We propose a novel self-index that supports the fast search and extract functionalities for a string without requiring its
explicit storage. Given a string S , the search answers the counting and locating queries for any pattern P , and the extract
returns the substring S[i, j] for any interval [i, j]. Most self-indexes that have been proposed are based on sorting or parsing.
Grammar-based compression, which includes our method, is categorized as parsing, where the string S is represented by
the context-free grammar (CFG) that uniquely derives S . Because of the advantage CFG holds for highly redundant text,
the ability of self-index based on grammar-based compression has attracted the attention of many researchers in the last
decade. Indeed, we can access various types of redundant text in massive repositories, which is one of the most important
tasks in managing them with limited resources. We provide a practical self-index, which is especially suited to this problem.

1.2. Our contributions

This study focuses on Edit-Sensitive Parsing (ESP) by Cormode and Muthukrishnan [9], which is the derivation tree of a
CFG G for S . We develop the self-index on ESP and analyze its performance in theoretical and practical aspects. We use the
following notations: u and m are the length of S and P respectively, n is the number of variables in G (i.e., the number of
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Table 1
Space and time complexities. σ is the number of alphabet symbols, z is the number of phrases in LZ77 parsing, d is the depth of nesting in LZ77 parsing,
and occ is the number of occurrences of P in S . O -notations are omitted in Search and Extract time. n depends on the form of CFG, e.g., only balanced
SLPs are allowed in the proposal by Gagie et al. [13].

Source Space (bits) Search time Extract time

Ours (1 + ε)n log n + n log u + 4n + o(n) (1/ε)(m log n + occc log m log u) log∗ u (1/ε)(m + log u)

[7] O (n logn) + n log u (m2 + h(m + occ)) logn (m + h) log n
[19] 2z log(u/z) + z log z + 5z logσ + O (z) + o(u) m2d + (m + occ) log z md
[13] 2n log n + O (z(log u + log z log log z)) m2 + (m + occ) log log u m + log log u

production rules, since for any variable exactly one production rule is defined), ε is any real number in the interval (0,1),
log∗ is the iterated logarithm, and occc is the number of occurrences of a core.4 Our contributions are the following.

(1) Fast algorithms for the search and extract on ESP. The time to check if P exists in S as S[i, i + m] = P is
O (log m log u log∗ u) for a given i.

(2) Compact data structures to simulate the above algorithms on ESP-index. The counting time is O ((1/ε)(m log n +
occc log m log u) log∗ u) with (1 + ε)n log n + 4n + o(n) bits of space, the locating time is bounded by the complexity
of counting time with (1 + ε)n log n + n log u + 4n + o(n) bits of space, and the extracting time is O ((1/ε)(m + log u))

with the same space assuming the standard word random access model.
(3) Implementation of ESP-index. Performance is examined for both natural language texts and biological sequences.

We also compare ESP-index to recent self-indexes [7,13,19] based on SLP and LZ77 in Table 1. We mention the advantages
of the related works. The proposal by Claude and Navarro [7] is applicable to all grammar-based compressions. Among them
Re-Pair [20] achieves potentially better compression than LZ78 [42] and BWT [11]. The proposal by Kreft and Navarro [19]
is based on LZ77 [41]. Rytter showed that the number of phrases in LZ77 parsing is smaller than that of variables of any
CFG equivalent to it [31]. The proposal by Gagie et al. [13] achieves the fastest search time under the assumption that a
balanced SLP is given. Besides, we can construct a balanced SLP from any string adopting Rytter’s technique [31].

Our contributions are further summarized below. We first formalize the pattern matching problem on ESP. For the
derivation trees T S of S and T P of P , we consider an embedding of T P into T S ; that is, P appears in S as a substring. T P

is decomposed into a sequence of subtrees, whose roots are labeled by variables x1, . . . , xk . This sequence is an evidence of
any occurrence of P in T : S contains an occurrence of P iff there is a sequence v1, . . . , vk of nodes in T S such that vi is
labeled by xi and the subtrees rooted by vi, vi+1 are adjacent in this order. Note that P itself, that is, the sequence of the
leaves, is invariably one of evidences. The aim is to find as short evidence as possible and to embed it into T S efficiently.

Next, we develop several compact data structures for the proposed algorithms. An ESP represented by a restricted CFG
is equivalent to a DAG G where every internal node has exactly two children. G is then decomposed into two in-branching
spanning trees. The one called the left tree is constructed by the left edges, whereas the other, called the right tree, is
constructed by the right edges. Both left and right trees are encoded by LOUDS [16], one of the succinct data structures
supporting many operations for ordered trees. Further, correspondence among the nodes of the trees is stored in a single
array. Adding the data structure for the permutation [26] over the array makes it possible to traverse G .

We finally design the mechanism of the binary search on the variables. The compression algorithm must refer to a
function, called reverse dictionary to get the name of any variable associated with a digram. For example, if a production rule
Z → XY exists, any occurrence of the digram XY , which is determined to be replaced, should be replaced by the same Z .
However, the hash function H(XY ) = Z when preprocessing P compels the index size to be increased immoderately. Thus
our algorithm shall obtain the name of any variable for P from the compressed G itself. Adopting the above succinct data
structures, we can develop the index to answer the counting query. By storing the length of each variable in array, we can
solve the locating and extracting problems because ESP tree is inherently balanced.

We also implement ESP-index and compare its performance with other practical self-indexes [24,28,33] under several
reasonable parameters. Beyond that, we give the experimental result for maximal common substring detection. These com-
mon substrings are obtained to find the common variables in T S and T P . We conclude that the proposed index is efficient
enough for cases where the pattern is long.

1.3. Related work

The framework of grammar-based compression was introduced explicitly by Kieffer and Yang [17]. For the leading
grammar-based compression algorithms [1,17,18,20,40,42], their approximation ratios to the optimum grammar size were
investigated and the NP-hardness of the minimum CFG problem was proved by Lehman and Shelat [22]. The O (log(u/g))-
approximation ratio, the smallest ratio at the present time, was achieved by Charikar et al. [4] and Rytter [31] almost
simultaneously, and another algorithm for the same ratio was presented by Sakamoto [37], where g is the size of minimum

4 This is nearly equal to the number of the occurrences of P , when P is long.
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CFG. As mentioned by Lehman and Shelat [22], this approximation ratio is, however, unlikely to be significantly improved
due to the relationship between the minimum CFG and the shortest addition chain. The relation between ESP and mini-
mum CFG was investigated by Sakamoto et al. [38] and an online algorithm for simplified ESP was recently presented by
Maruyama et al. [25].

On the other hand, various self-indexes have been developed in parallel with data compression progress. The first self-
indexes were built on BWT [11] and on suffix array [14,23,32]. Afterwards, self-indexes based on grammar-based compres-
sion were produced, e.g., LZ78 [2,12,30], LZ77 [13,19], and SLP [7]. As shown by Lehman [21], among these grammar-based
compressions, only SLP and LZ77 are potentially powerful.

Succinct representation of trees is one of the most important techniques in our study. LOUDS was introduced by Jacob-
son [16], and improved by Clark [6] and Delpratt et al. [10] to support a number of operations. Although we cannot refer to
all relevant data structures, recent results were presented by Sadakane and Navarro [34] and Bille et al. [3].

ESP is closely related to deterministic coin tossing by Cole and Vishkin [8], which is a technique in parallel algorithms
applicable to string [35,36]. ESP was originally introduced to approximate a variant of the string edit distance problem
where a moving operation for any substring with unit cost is permitted. For instance, anbn is transformed to bnan by a
single operation. The edit distance with move is NP-hard, and has proved to be O (log u)-approximable by Shapira and
Storer [39]. The harder problem, edit distance matching with move, was also proved to be approximable within almost
O (log u) ratio by embedding of string into L1 vector space using ESP [9]. Our pattern matching problem is a restricted
version of the embedding problem.

2. Definitions

2.1. Grammar-based compression

The set of all strings over the alphabet Σ is denoted by Σ∗ . The length of a string w ∈ Σ∗ is denoted by |w|. For a
symbol a, a+ denotes the set {ak | k � 1}, and ak is called a repetition if k � 2. S[i] and S[i, j] denote the i-th symbol of S and
the substring from S[i] to S[ j], respectively. We let log(1) u = log u, log(i+1) u = log log(i) u, and log∗ u = min{i | log(i) u � 1}.
In practice, we can consider log∗ u to be constant, since log∗ u � 5 for u � 265536.

We assume that any CFG G is admissible, i.e., G derives just one string and for each variable X , exactly one production
rule X → α exists. The set of variables is denoted by V (G), and the set of production rules, called dictionary, is denoted by
D(G). We also assume that, for any α ∈ (Σ ∪ V (G))∗ , at most one X → α ∈ D(G) exists. We use V and D instead of V (G)

and D(G) when G is omissible. The string derived by D from a string S ∈ (Σ ∪ V )∗ is denoted by S(D). For example, when
S = aY Y and D = {X → bc, Y → Xa}, we obtain S(D) = abcabca. For X ∈ V , |X | denotes |X(D)|, that is, the length of the
string derived by D from X . Additionally, |V | denotes the cardinality of the set V .

2.2. Edit-sensitive parsing (ESP)

A string w ∈ (Σ ∪ V )∗ is uniquely partitioned into w1x1 w2x2 · · · wkxk wk+1 by its maximal repetitions, where each
xi is a maximal repetition of a symbol in Σ ∪ V and wi is (possibly empty) string containing no repetition. There are
nonoverlapping substrings of three types: a repetition xi is Type1, a substring wi of length at least log∗ |w|, not of the
aforementioned Type1, is Type2, and a remaining wi , not of Type1, is Type3. If |wi | = 1, this is attached to xi−1 or xi , with
preference xi−1 when both cases are possible. Thus, if |w|� 2, any metablock is longer than or equal to two.

Let S be a metablock and D be a current dictionary starting with D = ∅. We set ESP(S, D) = (S ′, D ∪ D ′) for S ′(D ′) = S
and S ′ described as follows:

1. In case S is Type1 or Type3 of length k � 2,
(a) If k is even, let S ′ = t1t2 · · · tk/2, and make ti → S[2i − 1,2i] ∈ D ′ .
(b) If k is odd, let S ′ = t1t2 · · · t(k−3)/2 t , and make ti → S[2i − 1,2i] ∈ D ′ , t → S[k − 2]t′ , and t′ → S[k − 1,k] ∈ D ′ , where

t0 denotes the empty string for k = 3.
2. In case S is Type2,

(c) for the partitioned S = s1s2 · · · sk (2 � |si | � 3) by alphabet reduction [9], let S ′ = t1t2 · · · tk , and make ti → XY ∈ D ′
if si = XY and make ti → XY ′, Y ′ → Y Z ∈ D ′ if si = XY Z .

Cases (a) and (b) denote the typical left aligned parsing, e.g., if S = a6, S ′ = x3 and x → a2 ∈ D ′ , and if S = a9, S ′ = x3 y
and x → a2, y → ay′, y′ → aa ∈ D ′ .

For case (c), we give only the essence of the alphabet reduction by Cormode and Muthukrishnan [9]. For S[i] and S[i −1]
in their binary representations, let p be the position of the least significant bit in which S[i] differs from S[i − 1], and let
bit(p, S[i]) ∈ {0,1} be the value of S[i] at the p-th position. Then label(i) = 2p + bit(p, S[i]) is defined,5 and the maximal
values in label(1), . . . , label(|S|) indicate the delimiters in the partitions in case (c).

5 bit(p, S[i]) is the trick to obtain the condition of label(i) �= label(i − 1) for any i.
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Finally, we define the ESP for S ∈ (Σ ∪ V )∗ partitioned into S1 S2 · · · Sk by k metablocks; ESP(S, D) = (S ′, D ∪ D ′) =
(S ′

1 · · · S ′
k, D ∪ D ′), where D ′ and each S ′

i satisfying S ′
i(D ′) = Si are defined in the above.

Iteration of the ESP is defined as ESPi(S, D) = ESPi−1(ESP(S, D)). In particular, ESP∗(S, D) denotes the iterations until
|S| = 1. After computing ESP∗(S, D), the final dictionary represents the rooted ordered binary tree deriving S , which is
denoted by ET(S). We recall some useful properties of ESP in the following.

Lemma 1. (Cormode and Muthukrishnan [9].) The depth of the tree ET(S) is O (log |S|) and ET(S) can be computed in time
O (|S| log∗ |S|) time.

Lemma 2. (Cormode and Muthukrishnan [9].) Let S be Type2 and S = s1s2 · · · sk be its partition by alphabet reduction. If Sα is Type2
and its partition is of Sα = t1t2 · · · tn, we have ti = si for all 1 � i � k − 5. If αS is Type2 and its partition is of αS = t′

1t′
2 · · · t′

m, we
have t′

m− j = sk− j for all 0 � j � k − log∗ |S| − 5.

2.3. Pattern embedding problem

We focus on the problem to find occurrences of P in S by embedding P into a parsing tree. For the parsing tree
T S = ET(S) by D S and a pattern P , the key idea is to compute ESP(P , D S ) and find an embedding of the resulting tree T P

into T S . The label of node v is denoted by L(v) ∈ Σ ∪ V , and L(v1 · · · vk) = L(v1) · · · L(vk). Let yield(v) denote the substring
of S derived by L(v), and yield(v1 · · · vk) = yield(v1) · · ·yield(vk). Note that T S and T P are ordered binary trees.

In an ordered binary tree, the parent and left/right child of node v are denoted by parent(v) and left(v)/right(v),
respectively. For an internal node v , the edges (v, left(v)) and (v, right(v)) are called left edge and right edge. Node v is
called the lowest right ancestor of x, denoted by lra(x), if v is the lowest ancestor of x such that the path from v to x contains
at least one left edge. If x is a rightmost descendant, lra(x) is undefined. Otherwise, lra(x) uniquely exists. The lowest left
ancestor of x, denoted by lla(x), is similarly defined. Let v1, v2 be different nodes, if lra(v1) = lla(v2), v1, v2 are adjacent in
this order, and v1 is left adjacent to v2 (or v2 is right adjacent to v1).

Fact 1. v1 is left adjacent to v2 iff v2 is a leftmost descendant of right(lra(v1)), and v2 is right adjacent to v1 iff v1 is a rightmost
descendant of left(lla(v2)).

Let v1, . . . , vk be a sequence of nodes. If any vi, vi+1 are adjacent in this order and z is the lowest common ancestor of
v1, vk denoted by z = lca(v1, vk), the sequence is said to be embedded in z, denoted by (v1, . . . , vk) ≺ z. If yield(v1 · · · vk) =
P , z is called the occurrence node of P .

Definition 1. A string Q ∈ (Σ ∪ V )∗ of length k satisfying the following condition is called an evidence of P : a node z
in T S is an occurrence node of P iff there is a sequence v1, . . . , vk such that (v1, . . . , vk) ≺ z, yield(v1 · · · vk) = P , and
L(v1 · · · vk) = Q .

For any T S and P , at least one evidence of P exists because P itself is an evidence of P . We propose an algorithm to
find as short evidence as possible for given T S and P ; we also propose another algorithm to find all occurrences of P in S
for the obtained evidence.

3. Algorithms and data structures

We propose two algorithms: one generates an evidence Q of pattern P with respect to (S ′, D S ) = ESP∗(S, D). The other
algorithm finds the occurrence node z of P such that (v, v1, . . . , vk) ≺ z for the obtained Q and a node v in T S satisfying
L(v) = Q [1]. Finally, we propose the data structures to access the next node v ′ satisfying L(v ′) = L(v) for each v in T S . By
this, the number of occurrences of P are found to check if (v, v1, . . . , vk) ≺ z for all candidates v satisfying L(v) = Q [1].

3.1. Finding evidence of pattern

The algorithm to generate evidence Q of pattern P is described in Fig. 1. An outline follows. Input is a pair of P and
D S . P is partitioned into P = P1 P2 · · · P� by some metablocks Pis. Let P = αβγ for α = P1, γ = P� , and β = P2 · · · P�−1.
Depending on the types of metablocks, P is further partitioned into P = αpαsβγpγs . The algorithm then updates cur-
rent Q = Q p Q s by Q p ← Q pαp and Q s ← γs Q s , and current P by P ← P ′ such that P ′ is the string produced by
ESP(αsβγp, D S ). This is continued until P is entirely deleted.

Lemma 3. Let Q be the output string of Find_evidence(P , D S ) and let Q = Q 1 · · · Q k, Q i ∈ q+
i for some symbol qi where qi �=

qi−1,qi+1 . Then Q is an evidence of P satisfying k = O (log m log∗ u).
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Find_evidence(P , D S )

let D ′ ← ∅, Q p = Q s be the empty string;
while(|P | > 1){ /* appending prefix and suffix of P to Q */

let P = αβγ for the first/last metablock α/γ ; /* possibly |βγ | = 0 */
(P ′, D S ∪ D ′) ← ESP(P , D S ), where

P ′ = α′β ′γ ′ , α′(D ′) = α, β ′(D ′) = β , γ ′(D ′) = γ ;

if(α is Type1 or 3) {Q p ← Q pα, remove the prefix α′ of P ′;}
else{

let α = α1 · · ·α� , α′ = p1 · · · p� , where pi → αi ∈ D ′;
Q p ← Q pα1 · · ·α j , remove the prefix p1 · · · p j of P ′ for j = min(log∗ u + 5, �);

}/* the bound j for prefix is guaranteed by Lemma 2 */

if(γ is Type1 or 3) {Q s ← γ Q s , remove the suffix γ ′ of P ′;}
else{

let γ = γ1 · · ·γr , γ ′ = q1 · · ·qr , where qi → γi ∈ D ′;
Q s ← γr− j · · ·γr Q s , remove the suffix qr− j · · ·qr of P ′ for j = min(5, r);

}/* the bound j for suffix is also from Lemma 2 */
P ← P ′ , D S ← D S ∪ D ′ , D ′ ← ∅; /* update */

} if(|Q p Q s| > 0) return Q ← Q p Q s ; else return P ;

Fig. 1. Algorithm to find the evidence of P with D S .

Proof. When P is partitioned into metablocks, let α and γ be the first and last metablocks respectively, and let P = αβγ
for a substring β . If α,γ are Type1 or 3, any occurrence of β inside S[n,m] = αβγ is transformed into a same β ′ in the
while loop. Thus, αβ ′γ is an evidence of P and αγ contains O (log∗ u) different symbols.

If α,γ are Type2, by alphabet reduction, the prefix α of P is partitioned into α = α1 · · ·α� (2 � |αi | � 3). Then j =
min(log∗ u + 5, �) is determined and α1 · · ·α j is appended to current Q , and a short suffix of γ is similarly appended to Q .
By Lemma 2, for any S = xβ y (|x| � log∗ u + 5, |y| � 5), any occurrence of β inside S[n,m] = xβ y is transformed into the
same β ′ in the while loop. The selected j for α satisfies either |α1 · · ·α j | � log∗ u + 5 or α1 · · ·α j = α, and similarly, the
selected j for β satisfies either |γr− j · · ·γr | � 5 or γr− j · · ·γr = γ . Thus we can obtain the evidence α1 · · ·α jβ

′γr− j · · ·γr
of P . The other cases are similarly proved, in which one of α,γ is Type1 or 3 and the other is Type2.

Applying the above analysis to β ′ until it becomes the empty symbol, we obtain the final Q as the evidence of P .
The number of iterations of ESP(P , D) = (P ′, D ∪ D ′) is O (log m) because |P ′| � |P |/2. In the i-th iteration, when the
current Q = Q p Q s is updated to Q pαpγs Q s , the string αpγs contains O (log∗ u) different symbols. Therefore we conclude
k = O (log m log∗ u). �
3.2. Finding pattern occurrence

The algorithm to find an occurrence node of P is described in Fig. 2. Using Find_evidence(P , D S ) as subroutine,
Find_pattern(Q , D S , v, T S ) finds the embedding (v, v1, . . . , v�) ≺ z satisfying yield(v v1 · · · v�) = P for the fixed v . By
Lemma 3, such a z exists iff z is the occurrence node of P . We show the correctness and the time complexity of this
algorithm.

Lemma 4. Find_pattern(Q , D S , v, T S ) outputs node z in T S iff z is the occurrence node of P satisfying (v, v1, . . . , v�) ≺ z for some
v1, . . . , v� and the fixed v in T S . The time complexity is O (log m log u log∗ u).

Proof. For any node v in T S and q ∈ Σ ∪ V , we can check if (v, v ′) ≺ z and L(v ′) = q for some nodes v ′, z in O (log u) time
since v ′ must be a leftmost descendant of right(lra(v)) and the height of T S is O (log u).

Let Q = Q 1 · · · Q k and Q i ∈ q+
i for some qi ∈ Σ ∪ V . We assume that Q contains no repetition and (v1, . . . , v j) ≺ z

is already found for the prefix Q 1 · · · Q j = q1 · · ·q j . From (v j, v j+1) ≺ z′ and L(v j+1) = q j+1, we obtain (v1, . . . , v j+1) ≺
lca(z, z′) in O (log u) time since z, z′ must be in a same path. By Lemma 3, the embedding of such Q of length at most
O (log m log∗ u) from v is computed in O (log m log u log∗ u) time.

Generally, let Q j = q� for some symbol q and � � 2. In ESP, any repetition is transformed into a shorter string by the
left aligned parsing, and this transformation is continued as long as the resulting string contains a repetition. Thus, by T S ,
the occurrence S[s, t] = q� is partitioned into S[s, t] = S[s1, t1]S[s2, t2] · · · S[sk, tk] such that |S[si, ti]| = 2�i � 1, each S[si, ti]
is derived by the maximal complete binary tree rooted by vi , and k = O (log �). Let [si, ti] be the longest interval. Recall
that all symbols in the current string are replaced by the next iteration of ESP. By this characteristic, when S[si, ti] is
transformed into S ′[ j], the digram S ′[ j − 2, j − 1] derives the string containing S[s1, t1] · · · S[si−1, ti−1] as its proper suffix.
If not, S ′[ j − 2, j] = X3 for some variable X because the left aligned parsing is determined by the height only. In the next
loop, a greater tree is produced for the repetition. This, however, contradicts the assumption that S[si, ti] is the longest
segment derived by a complete binary tree. Thus, we can check if (v1, . . . , vi−1) ≺ v p for some v p in O (log � + log u) =
O (log m + log u) time. The time to check if (v p, vi) ≺ z is O (log u). Hence, the time to embed q� is O (log m + log u).
Therefore, the time complexity is O ((log m + log u) log m log∗ u) = O (log m log u log∗ u). �
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Find_pattern(Q , D S , v, T S ) /* L(v) = Q [1] */
let Q = Q 1 · · · Q k , Q i is a repetition of qi ∈ Σ ∪ V , qi �= qi−1,qi+1;
initialize j ← 1, z ← v; /* current block Q j and embedding in z */
if(|Q | = 1) return z;
while( j � k){

if(|Q j | = 1){ /* block Q j is just one symbol */
if((v, v ′) ≺ z′ , L(v ′) = q j+1 for some v ′, z′ in T S )

v ← v ′ , z ← lca(z, z′), j ← j + 1;
else return 0;

}
else{ /* block Q j is a repetition */

� ← |Q j |;
while(� > 0){ /* find maximal complete binary tree parsing q�

j */
if((v, v ′) ≺ z′ , L(v ′) = q j for some v ′, z′ in T S ){

let va be the highest ancestor of v ′ satisfying X0 = L(va), Xd = q j ,
X0 → X2

1 , . . . , Xd−1 → X2
d ∈ D S , 1 � 2d � �;

v ← va , z ← lca(z, z′), � ← � − 2d ;
}/* next complete binary tree until whole q�

j is covered */
else return 0;

} j ← j + 1;
}

}return z;

Fig. 2. Algorithm to find occurrence node of P from the fixed node v .

Fig. 3. Outline of the pattern embedding algorithm. S is preprocessed by ESP, the evidence Q formed by the symbols is obtained by Find_evidence(P , D S ),
and Find_pattern(Q , D S , v, T S ) tries to embed Q from the indicated node v .

The sketch of the Find_evidence(P , D S ) and Find_pattern(Q , D S , v, T S ) is shown in Fig. 3.

3.3. Data structures

We develop the compact data structures for Find_pattern(Q , D S , v, T S ) to access the next occurrence of v with L(v) =
Q [1]. From here on, we attack two issues: one is the compact representation of DAG by its decomposition; the other is the
simulation of the reverse dictionary. We first treat the decomposition of DAG G , which is the graph representation of D S .
Introducing single super sink v0 together with the left and right edges from any sink of G to v0, G is modified to have the
unique source and sink. We consider only the such modified G .
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Fig. 4. Compact representation of a CFG by the left tree and right tree in LOUDS bit-strings with the permutation array.

Fact 2. For any in-branching spanning tree of G, the graph defined by the remaining edges is also an in-branching spanning tree of G.

The in-branching spanning tree of G constructed by the left edges only is called the left tree of G and denoted by T L .
The complementary tree, denoted by T R , is similarly defined. Examples of G , T L , and T R are shown in Fig. 4 with compact
representation proposed below.

When a DAG G is decomposed into T L and T R , G is represented by the succinct data structures for ordered trees and
permutations. The bit-string by LOUDS [10] for an ordered tree is defined below. We visit any node in level-order from the
root. As we visit a node v with d � 0 children, we append 1d0 to the bit-string beginning with the empty string. Finally, we
add 10 as the prefix corresponding to the imaginary root, which is the parent of the root of the original tree. For the n-node
tree, LOUDS uses 2n + o(n) bits of space to support constant time access to the parent, the i-th child, and the number of
children of a node, required for our ESP-index.

By the trees T L, T R and the correspondence of nodes between them, we can traverse G without explicit link structure.
For this purpose, we employ the succinct data structure for permutation [26]. For any permutation π of N = (1,2, . . . ,n),
using (1 + ε)n log n + o(n) bits of space, this data structure supports access to π [i] in O (1) time and to π−1[i] in O (1/ε)

time. For instance, if π = (2,5,1,3,4), then π [3] = 1 and π−1[5] = 2; that is, π [i] is the i-th member of π and π−1[i] is
the position of the member i. For each node i in LOUDS(T L) and the corresponding node j in LOUDS(T R), we can get the
correspondence by π [i] = j and π−1[ j] = i.

We introduce another preprocess for G . In each iteration ESP(S, D) = (S ′, D ∪ D ′), we rename all variables; by sorting all
production rules X → Xi X j ∈ D ′ by (i, j), if the rank of X → Xi X j is k, all occurrences of X in D ′ and S ′ are renamed to
Xk , e.g.,

D ′ = {X1 → ab, X2 → bc, X3 → ac, X4 → aX2} and S ′ = X1 X2 X3 X4

are renamed to

D ′ = {X1 → ab, X2 → ac, X3 → aX4, X4 → bc} and S ′ = X1 X4 X2 X3.

By this trick, the variable Xi in G coincides with node i in LOUDS of T L because they are both named in level-order. The
variables in Fig. 4 are already renamed. Adopting this, the size of the array required for node correspondence is reduced to
n log n bits of space.

Finally we simulate the reverse dictionary for pattern compression. When computing ESP∗(S, D), the naming function
H S(XY ) = Z for Z → XY ∈ D is realized by a hash function. However, when compressing P , we must get the name Z by
G only because our index does not explicitly contain H S . By preprocessing, the variable Xk corresponds to the rank of its
left-hand side Xi X j for Xk → Xi X j . Conversely, given Xi , the children of Xi in T L are already sorted by the ranks of their
parents in T R . This idea is summarized in Fig. 5.

Because LOUDS supports constant time access to the number of children and the i-th child, H S (Xi X j) = Xk is obtained
by the binary search in the following time complexity.

Lemma 5. For the maximum degree k of T L , the function H S(XY ) = Z is computable in O ((1/ε) log k) = O ((1/ε) log n) time.
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Fig. 5. Binary search for H(XY ) = Z on the nodes of T L . For each node x in T L , the children xi of x are already sorted by the variables in T L corresponding
to the parents of xi in T R .

Fig. 6. Locating of pattern P .

Theorem 1. The size of ESP-index is (1 + ε)n log n + 4n + o(n) bits of space. The number of occurrences of P in S can be evaluated in
O ((1/ε)(m log n+occc logm log u) log∗ u) time, where occc is the number of occurrences of a maximal common subtree in T S and T P .

Proof. We can modify Find_pattern to find (v1, . . . , vk) ≺ z from vk to v1. Starting with v� labeled by the symbol q ob-
tained in the final loop in ESP for P , we can check if there is a node z satisfying (v1, . . . , v�) ≺ z1, (v�, . . . , vk) ≺ z2, and
(v1, . . . , vk) ≺ lca(z1, z2) = z. This derives the time bound. �

To store the length of any variable X , that is, the length of substring encoded by X , we can support the locating and
extracting. Locating process is illustrated in Fig. 6.

Theorem 2. With an auxiliary array of n log u + o(n) bits of space, ESP-index supports locating in the same time complexity as the
case of counting, and extracting S[i, i + m] in O ((1/ε)(m + log u)) time.

Proof. We first show the locating time. By Theorem 1, we can find the leaf v1 in T S satisfying (v1, . . . , vk) ≺ z for the
occurrence node z of P . If v1 is the i-th leaf of T S , i − 1 is the required position. For the path (v1, z1, . . . , zh) from v1 to
the root zh , we can compute i − 1 = ∑r

j=1 ‖z j‖ where

‖z j‖ =
{ |left(z j)|, left(z j) /∈ {z1, . . . , zh},

0, otherwise.

The time to count up all the ‖z j‖ is O (h) = O (log u) because the depth of T S is O (log u). Thus, the locating time is the
same as the counting time.

We consider the extraction of S[i, i + m] such that v j is the leaf of T S whose label is S[i + j] (1 � j � m). Let z =
lca(v1, vm) and zh be the root again. Suppose T z is the induced subgraph of T S consisting of all nodes in the path from
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Fig. 7. Ratio of the core length to the pattern length.

z to v j for 1 � j � m. The algorithm can access the parent, left child, and right child of the current node in O (1/ε) time.
Thus S[i, i + m] is extracted in O ((1/ε)(t1 + t2)) time, where t1 is the time to traverse the path from zh to v1 and t2 is the
time to traverse T z from v1. Clearly, t1 = O (log u). Let Nk be the number of nodes in T z produced in the k-th loop in ESP
(0 � k � h). By the definition of ESP, |Nk+1| � (2/3)|Nk|. It derives t2 = O (log u + |N0| + · · · + |Nh|) = O (log u + m). �

Finally, for practical use, we propose the technique to save the space of the length of variables, called sparse ESP-index.
Let V i be the set of variables produced in the i-th loop for 1 � i � h. We prepare the array A to store the length of any
variable in V i for all even i. Additionally, we make the following bit-string. The string B = B1 · · · Bh is defined by

Bi =
{

1|V i |, i ≡ 0 (mod 2),

0|V i |, i ≡ 1 (mod 2).

The other string b is defined by b[ j] = 1 if V i exists such that X, Y ∈ V i for some X j → XY (possibly X = Y ), and b[ j] = 0
otherwise. If B[ j] = 1, |X j| = A[rankB(1, j)], where rankB(1, j) is the number of 1 in B[1, j]. Answering this query is O (1)

time using n + o(n) bits of space for any binary string of length n [16]. Let B[ j] = 0. In case of b[ j] = 1, |X j| = |X | + |Y | for
the recorded length |X |, |Y | in A. In case of b[ j] = 0, there exist X j → X X ′ and X ′ → Y Z such that |X j| = |X |+ |Y |+ |Z | for
the recorded length |X |, |Y |, |Z | in A. With n + o(n) bits of space, we can simulate the locating and extracting in the same
complexity.

4. Experiments

We examine the ESP-index in the environment of OS: CentOS 5.5 (64-bit), CPU: Intel Xeon E5504 2.0 GHz (Quad)×2,
Memory: 144 GB RAM, and Compiler: gcc 4.1.2.

Datasets of English text and DNA sequences of 200 MB each were obtained from the text collection Pizza&Chili.6 These
are denoted by ENGLISH and DNA.

We first show how a long string is encoded by the evidence Q in Fig. 7. This figure shows the maximum length of the
variable, called the core, in Q according to the increment of |P |. The core is obtained in the final loop of ESP for P . Each
value is the average of 1000 time trials. By this, a sufficiently long common substring in S and P is extracted as the core in
ET(S) and ET(P ); that is, any occurrence where S[i, j] = P is approximately detected by it.

We next compare our ESP-index with other compressed indexes referred to as LZ-index (LZI),7 Compressed Suffix Array,
and FM-index (CSA and FMI).8 These implementations are based on the results by Navarro [28], Sadakane [33], and Navarro
and Mäkinen [29]. Because of the trade-off between construction time and index size, these indexes are examined with
respect to several reasonable parameters.

For ESP-index, we set ε = 1,1/4 for the permutation. In CSA, the option (-P1:L) means that the ψ function is encoded
by the gamma function and L specifies the block size for storing ψ . In FMI, (-P4:L) means BWT is represented by Huffman-
shaped wavelet tree with the compressed bit-vectors and L specifies the sampling rate for storing rank values; (-P7:L) is the
uncompressed version. For detailed information, see the technical report [24] and README of the program.

6 http://pizzachili.dcc.uchile.cl/texts.html.
7 http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index-1.
8 http://code.google.com/p/csalib/.

http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/indexes/LZ-index/LZ-index-1
http://code.google.com/p/csalib/
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Fig. 8. Index size.

Fig. 9. Construction time.

The result of the index size is shown in Fig. 8, where the space for locating and extracting is not contained in indexes
other than LZI; the total sizes of such self-indexes are included in the tables for the results of locating and extracting, shown
later. In addition, the scalability of the construction time is shown in Fig. 9. ESP-index with ε = 1 is fastest.

Fig. 10 shows the counting time for all datasets. A substring of S is randomly selected as a pattern P (5 � m � 200 000),
and the counting time for P is measured. The time is the average of 1000 time trials for each length. In this implementation,
we modified our search algorithm so that a single core q is extracted for the short prefix of P . An occurrence of P in S is
detected by embedding the evidence P1qP2 into the ESP tree of S , where P1 and P2 are the remaining prefix and suffix
of P , respectively. The length of preprocessed prefix is fixed to be 100, where P is entirely compressed to extract the core
if |P |� 100. ESP-index is faster than LZI and comparable to CSA and FMI in case of longer patterns.

Finally, we present the results of the locating and extracting time. Table 2 shows the locating time with several param-
eters. Each value is the average of the total time to locate randomly selected P in 1000 time trials. In CSA/FMI, option
-I:{D}:{D2} indicates the sampling parameter D for suffix array and D2 for the inverse suffix array. As we described in the
previous section, ESP sparse denotes the ESP-index with reduced position array in which only the length of the variables
in even level is stored. In this table, we awake to the fact that the locating time for m = 100 is better than the time for
m = 1000. The frequency of P is, however, decreasing according to the increment of m. The reason is analyzed in Table 3.
Because the core is extracted from the fixed prefix of P , the total time consists almost entirely of the embedding of P and
locating of occurrence nodes. The total time is mainly occupied by embedding, and the embedding time grows according to
the increment of |P |. The results of the extracting time are listed in Table 4. The extracting time of ESP-index is comparable
to other practical self-indexes.

5. Discussion

We have a motivation to apply our data structures to practical use. Originally, ESP was proposed to solve a difficult variant
of the edit distance by finding the maximal common substrings of two strings. Thus, our method will exhibit its ability if
both strings are sufficiently long. Such situations are found in the framework of normalized compression distance [5] to
compare two long strings directly. Related to this problem, we obtained a preliminary result [27] based on the online ESP
compression [25]. Another important application of this index is found in the problem of ranking the top-k query on a
database [15]. There is a possibility to approximate this problem by detecting core and its frequency.
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Fig. 10. Counting time.

Table 2
Locating time [ms]. Size denotes the size of the self-index.

ENGLISH (200 MB) DNA (200 MB)

Size [KB] m = 10 m = 100 m = 1000 Size [KB] m = 10 m = 100 m = 1000

ESP (1/ε = 4) 224 309 2385.11 1.57 2.94 217 636 8899.43 1.99 3.04
ESP (1/ε = 1) 283 933 1462.89 1.10 2.13 275 486 6879.45 1.42 2.24
ESP sparse (1/ε = 4) 182 530 2067.52 1.60 2.95 176 677 9197.87 2.00 3.04
ESP sparse (1/ε = 1) 242 154 1580.60 1.11 2.13 234 527 6996.57 1.43 2.25

LZI 290 915 0.61 2.00 30.12 214 161 7.23 0.77 16.34

CSA (-P1:64 -I:4:0) 308 927 0.81 0.67 3.36 314 529 1.79 0.66 3.56
CSA (-P1:64 -I:256:0) 107 327 53.65 0.96 3.76 112 929 168.83 1.02 3.17
CSA (-P1:256 -I:4:0) 288 307 1.21 1.32 8.35 293 865 3.02 1.41 8.67
CSA (-P1:256 -I:256:0) 86 707 82.41 1.94 7.81 92 265 314.05 1.43 8.81

FMI (-P4:512 -I:4:0) 265 706 2.24 0.55 3.46 255 483 3.94 0.36 2.54
FMI (-P4:512 -I:256:0) 64106 180.51 1.22 4.26 53 883 412.22 0.64 2.59
FMI (-P7:128 -I:4:0) 336 193 0.80 0.33 1.43 268 264 1.17 0.19 0.67
FMI (-P7:128 -I:256:0) 134 593 55.48 0.78 1.77 66 664 96.22 0.25 0.59
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Table 3
Detailed locating time [ms]. Parsing, Embedding, and Locating mean the ratio of the time to extract the core, to find all occurrence nodes in which P is
entirely embedded, and to locate all occurrence nodes to the total locating time indicated by Time.

Length of P Time Parsing [%] Embedding [%] Locating [%]

ENGLISH 10 1447.80 0.001 99.3 0.6
100 1.12 45.8 50.6 3.5

1000 2.19 24.1 74.8 1.0

DNA 10 6921.90 0.0002 99.6 0.3
100 1.53 19.4 79.4 1.1

1000 2.27 12.7 87.0 0.2

Table 4
Extracting time [ms]. Index size is the same as locating.

ENGLISH (200 MB) DNA (200 MB)

Size [KB] m = 10 m = 100 m = 1000 Size [KB] m = 10 m = 100 m = 1000

ESP (1/ε = 4) 224 309 0.09 0.37 1.63 217 636 0.12 0.21 1.08
ESP (1/ε = 1) 283 933 0.07 0.25 1.18 275 486 0.05 0.16 0.80
ESP sparse (1/ε = 4) 182 530 0.16 0.47 2.58 176 677 0.14 0.34 2.20
ESP sparse (1/ε = 1) 242 154 0.10 0.37 1.99 234 527 0.09 0.30 1.80

LZI 290 915 0.01 0.04 0.27 214 161 0.01 0.03 0.20

CSA (-P1:64 -I:0:4) 308 927 0.04 0.28 1.20 314 529 0.03 0.27 1.16
CSA (-P1:64 -I:0:256) 107 327 0.30 0.47 1.22 112 929 0.31 0.34 1.28
CSA (-P1:256 -I:0:4) 288 307 0.04 0.31 1.83 293 865 0.05 0.21 1.69
CSA (-P1:256 -I:0:256) 86 707 0.25 0.53 2.17 92 265 0.22 0.60 2.01

FMI (-P4:512 -I:0:4) 265 706 0.09 0.39 2.52 255 483 0.05 0.27 1.41
FMI (-P4:512 -I:0:256) 64 106 0.09 0.41 2.27 53 883 0.04 0.27 1.67
FMI (-P7:128 -I:0:4) 336 193 0.05 0.30 0.94 268 264 0.05 0.18 0.58
FMI (-P7:128 -I:0:256) 134 593 0.08 0.37 1.10 66 664 0.05 0.16 0.44
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