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Abstract We investigated the role of microRNAs (miRNA) in
protection against ischemia/reperfusion (I/R) injury in heart.
Mice subjected to cytoprotective heat-shock (HS) showed a sig-
nificant increase of miRNA-1, miRNA-21 and miRNA-24 in the
heart. miRNAs isolated from HS mice and injected into non-HS
mice significantly reduced infarct size after I/R injury, which was
associated with the inhibition of pro-apoptotic genes and increase
in anti-apoptotic genes. Chemically synthesized miRNA-21 also
reduced infarct size, whereas a miRNA-21 inhibitor abolished
this effect. Overall, these studies for the first time provide
evidence for the potential role of endogenously synthesized
miRNA�s in cardioprotection following I/R injury.
� 2008 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

MicroRNAs (miRNAs) are family of small regulatory mol-

ecules that function by modulating protein production. There

are approximately 500 known mammalian miRNA genes, and

each miRNA may regulate hundreds of different protein-cod-

ing genes. miRNA biogenesis starts in the nucleus where miR-

NA is transcribed by RNA polymerase II to generate long

primary transcripts (pri-miRNA). The pri-miRNA is trimmed

by RNase III type enzyme drosha to release the hairpin inter-

mediates (pre-miRNA). The pre-miRNA is then exported to

the cytoplasm by expotin-5 where they are subjected to the sec-

ond processing by Dicer, the cytoplasmic RNase III type en-

zyme. The pre-miRNA is cleaved into the short-lived

miRNA duplex, whose one strand is degraded by an unknown

nuclease while the other strand remains as a mature miRNA

[1–5]. Binding with miRNAs in the cytoplasm is responsible

for negative regulation of the target either through degrada-

tion of the bound mRNA or by inhibition of its translation

[6]. Therefore, up-regulation of miRNAs leads to decreased

gene expression. However, they can also lead to up-regulation

of proteins by negatively modulating the expression of inhibi-

tory genes.

Recent studies suggest that miRNA participate in many cel-

lular processes, such as apoptosis [7–9], fat metabolism [10],

cell differentiation [11–13], tumorigenesis [14] and cardiogene-
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sis [15–19]. miRNAs are also critically involved in the patho-

logical process of adult hearts, including cardiac hypertrophy

[20–23], heart failure [24], angiogenesis [25] and arrhythmogen-

esis [26]. However, the potential role of endogenously synthe-

sized miRNAs in attenuation of myocardial ischemia/

reperfusion injury by well-established endogenous therapeutic

has never been studied.

It has been shown that exposing hearts to stresses such as

sub-lethal ischemia or mild heat-shock improves myocardial

survival after subsequent prolonged ischemia/reperfusion in-

jury [27–29]. Molecular chaperones that are rapidly synthe-

sized and deployed to prevent protein misfolding and to

assist in their refolding to the native state [30]. A set of genes

and signaling pathways involved in heat-shock-induced protec-

tion have been proposed [31,32]. However, the regulation of

cardioprotection following heat-shock at the pretranslational

level has never been investigated. In the present study, we

tested the hypothesis that miRNA may play an important role

in protection against ischemia/reperfusion injury in the heart.

We induced endogenous miRNA through heat-shock and in-

jected them into non-heat-shocked mice. This experimental de-

sign took advantage of testing the role of miRNA using the

animal�s own endogenously induced miRNA in vivo. Our re-

sults show that miRNA reproduced heat-shock like protection

against ischemia/reperfusion injury in the non-heat-shocked

mice, apparently through mechanisms involving repression of

apoptotic genes and upregulating anti-apoptotic genes.
2. Materials and methods

2.1. Animals
Adult outbred ICR mice from Harlan (Indianapolis, Indiana) were

used and the guidelines on humane use and care of laboratory animals
for biomedical research published by NIH (No. 85-23, revised 1996)
were strictly complied for all animal experiments.

2.2. miRNA induction
The mouse was anaesthetized with sodium pentobarbital (50 mg/kg

body weight, i.p.). Approximately 10 min after the injection, the ani-
mal was placed on an electric heating pad which was folded to cover
up the whole body except head. A small diameter rectal thermal probe
(YSI-402) was inserted into the animal�s colon (about 1 cm) to record
the core body temperature. The animals were then subjected to heat-
shock by raining the temperature to 42 �C for 15 min. Animals in
the sham control groups received identical treatment except their body
temperature was not raised. After their recovery at room temperature
for 2 h, the hearts and livers were removed for isolation of miRNA.
Since whole body heat-shock also affects liver in terms of the synthesis
of heat-shock proteins and inducing ischemic tolerance [48], we used
both liver as well as heart for extraction of miRNAs in order to have
sufficient amount of miRNA for in vivo treatments.
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2.3. miRNA verification
miRNA was isolated from the hearts of both heat-shocked and non-

heat-shocked mice using a miRNA Isolation Kit from Ambion
(Austin, TX, USA). The isolation method combines the chemical
and solid phase extraction techniques to obtain optimal miRNA.
The isolated miRNA was treated with DNase to eliminate DNA con-
tamination (DNA-free�, Ambion) and confirmed by RT-PCR using
specific primers to miRNA 1, 21 and 24 (Ambion). RT-PCR was per-
formed using Ambion�s miRNA Detection Kit. The RT-PCR ampli-
fied miRNA was visualized on 3.5% high resolution agarose gel and
measured by densitometer. miRNA signals from both treated and
non-treated mice were normalized by GAPDH from the same samples
to eliminate loading error.

2.4. miRNA treatment
Prior to injection, the isolated miRNAs were incubated in polyamine

solution at 22 �C for 30 min to form miRNA–amine complexes [49].
The complex containing 40 lg miRNA was then injected intraperitone-
ally into the non-heat-shocked mice. To verify the specific role of miR-
NA�s, a group of mice were treated with chemically synthesized
miRNA-21 to reproduce the results obtained by utilizing heat-
shock-induced miRNAs. Another sub-set of mice were treated with
miRNA-21 with and without antisense miRNA-21 to see if the infarct
limiting effect of miRNA-21 is abolished. The modified antisense oligo-
nucleotide (2 0OMe-miR-21), also called miRNA inhibitor [50], had the
following sequence and structure: 5 0-mUmCmAmAmCmAmUmCm-
AmGmUmCmU–mGmAmUmAmAmGmCmA-3 0.

2.5. Langendorff isolated perfused heart preparation
Twenty-four hours after miRNA injection, the animals were re-anes-

thetized with sodium pentobartital (100 mg/kg with 33 IU heparin,
i.p.). The heart was then removed quickly from the thorax and
dropped into a small dish containing ice-cold Krebs–Henseleit solution
with heparin. Under an illuminated magnifier, the aortic opening of
mouse heart was immediately cannulated and tied on a 20 gauge stain-
less steel blunt needle which was connected to a perfusion system in
Langendorff mode. Hearts were retrogradely perfused with a modified
Krebs–Henseleit solution (contained NaCl 118, NaHCO3 24, CaCl2
2.5, KCl 4.7, KH2PO4 1.2, MgSO4 1.2, Glucose 11, EDTA 0.5, in
mM; gassed with 95% O2 + 5% CO2; pH 7.39–7.42) at a constant pres-
sure of 55 mmHg. The perfusion solution was warmed through a
water-jacketed glass cylinder/heat exchanger system and the tempera-
ture was monitored continuously by a thermocouple thermometer
(COLE-PALMER, Model 8112-10) with a Type K micro-probe and
maintained at 37 ± 0.2 �C throughout the experiment. Hearts were
subjected to 20 min of global ischemia followed by reperfusion fro
30 min. At the end of reperfusion, the heart was immediately removed
from the Langendorff apparatus, weighed and frozen at �20 �C. The
frozen heart was cut into six to seven transverse slices, stained by
10% tetrazolium chloride for 30 min at room temperature (�22 �C)
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Fig. 1. Induction of miRNA following heat-shock in mice. (A) RT-PCR pro
Statistical analysis of miRNA following heat-shock. Data are normalized firs
and extracted 2-h later. The extracted miRNA was reverse transcribed int
condition used was: 30 cycles of 94 �C/30 s, 55 �C/30 s and 72 �C/30 s.
and subsequently fixed with 10% formalin for 2–4 h. The infarct area
and risk zone was measured using computer morphometry (Bioquant
98). The risk area was calculated as total ventricular area minus the
area of the cavities. The infarct size was presented as percentage of
the risk area.

2.6. Gene microarray analysis
Effect of miRNA treatment on apoptotic genes was assessed using

cDNA array containing 112 key genes involved in apoptosis. Total
RNA from both miRNA injected and control mouse hearts was iso-
lated and incubated with DNase to eliminate DNA contamination.
Thereafter, mRNA was reverse transcribed, labeled with biotin-
UTP, hybridized with the array as described by Superarray Biosci-
ence Corporation (Fredrick, MD, USA). The hybridized signal was
detected using Chemiluminescent Detection Kit from the same com-
pany.

2.7. Data analysis and statistics
All data were normalized by their corresponding control and pre-

sented as the group means ± S.E.M. The difference among experimen-
tal groups was compared by unpaired t-test or one-way ANOVA
followed by Student–Newman–Keuls post-hoc test. P < 0.05 was con-
sidered as statistically significant.
3. Results

3.1. miRNA induction

Mice subjected to heat-shock showed induction in miRNA

as compared to the non-heat-shocked control. The miRNA

induction was verified using RT-PCR which detected signifi-

cant increases in miRNA-1 (78%), miRNA-21 (103%) and

miRNA-24 (61%) in the heart as shown in Fig. 1. However,

only miRNA-1 was verified in the liver (not shown) although

a number of other miRNAs may have been induced as well.

3.2. Infarct size

Mice treated with the mixture of miRNA isolated from

heat-shocked mice demonstrated improved ischemic toler-

ance. Infarct size was reduced significantly e from 40 ± 2.7

(percentage of total risk area, mean ± S.E.M.) in the non-

heat-shocked controls to 18.5 ± 3.8 in mice treated with the

miRNA (Fig. 2). Moreover, chemically synthesized exogenous

miRNA-21 also reduced infarct size by 64% (P < 0.05 versus

control). The miRNA-21 induced protection was totally
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Fig. 3. Effect of miRNA treatment on apoptotic genes. (A) miRNA
treated hearts demonstrated a depressed expression of caspase family
members. (B) Except for Bnip-3miRNA treatment suppressed expres-
sion of several pro-apoptotic genes. (C) Increase in anti-apoptotic
genes in the heart in miRNA treatment mice. Total RNA was
extracted 4-h after miRNA injection and incubated with DNase to
eliminate DNA contamination. The purified total RNA was then
labeled and hybridized to apoptosis gene arrays following manufac-
turer�s manual.
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Fig. 2. Effect of miRNA-21 and its inhibitor on cardiac infarct size
following ischemia/reperfusion. Top: bar diagram showing a signifi-
cant reduction of infarct size compared to the non-treated controls.
Chemically synthesized miRNA-21 also reduced infarct size signifi-
cantly. The miRNA induced infarct size reduction was completely
abolished by miRNA-21 inhibitor. Bottom: representative images of
mouse heart slices stained with 10% of triphenyl tetrazolium chloride
(TTC). Heart samples were selected from the following experimental
groups: Control, miRNAs, miRNA-21 and miRNA-21 inhibitor. Note
that infarct area is significantly larger (as shown by the increased pale
areas) in the control and miRNA-21 inhibitor treated mice as
compared to the miRNAs and miRNA-21 groups. The hearts were
subjected to 20 min of global ischemia and 30 min of reperfusion 24-h
following miRNA injection. Infarct size was measured at the end of
ischemia–reperfusion using tetrazolium staining.
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abolished when mice were co-treated with the miRNA-21

inhibitor.

3.3. miRNA and apoptosis

miRNA treatment caused profound changes in several apop-

totic related genes as determined by gene microarray analysis.

As shown in Fig. 3A, the caspase family members 1, 2, 8 and

14 were suppressed in the hearts treated with miRNA from

heat-shock mice as compared to the controls. Except for

BNIP-3, most of the pro-apoptotic genes including Bid (BH3

interacting domain death agonist), Bcl-10 (B-cell leukemia/

lymphoma 10), Cidea (cell death-inducing DNA fragmenta-

tion factor, alpha subunit-like effector A), Ltbr (lymphotoxin

B receptor), Trp53 (transformation related protein 53), Fas

(TNF receptor superfamily member) and Fasl (Fas ligand,

TNF superfamily, member 6), were also repressed (Fig. 3C).

On the other hand, the anti-apoptotic genes, Bag-3 (Bcl-2-

associated athanogene and Prdx2 (Peroxiredoxin 2) were in-

creased (Fig. 3C).
4. Discussion

Several studies have shown that heat-shock treatment pro-

tects the heart against ischemia/reperfusion injury [33]. The

specific mechanisms underlying heat-shock protection include

synthesis of heat-shock proteins [34], antioxidant defenses
[35], and enhanced mitochondrial respiration [36]. In addition,

it has been shown that heat-shock protects by opening of mito-

chondrial KATP channels [37] and causes resistance to opening

of mitochondrial permeability transition pore [38], which may

contribute to heat-shock protection against cellular injury

through inhibition of apoptosis. In the present study, we have

observed a significant induction of miRNA-1, miRNA-21 and

miRNA-24 following whole body heat-shock in the heart.

Moreover, mice treated with miRNAs isolated from the

heat-shocked mice demonstrated significantly reduced infarct

size in the heart following global ischemia and reperfusion.
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Similarly, injection of chemically synthesized exogenous miR-

NA-21 reduced infarct size and the co-treatment with the 2 0-

O-methyl miRNA – which blocks miRNA-21 through anti-

sense inhibition abolished the protective effect. Except for

Bnip-3, miRNA injection caused downregulation of pro-apop-

totic proteins including caspases 1, 2, 8 and 14, Bid, Bcl-10, Ci-

dea, Ltbr, Trp53 and Fasl, while anti-apoptotic proteins

including Bag-3, and Prdx2 were increased. These results sug-

gest a potential role of miRNAs in reducing myocardial infarc-

tion through repression of apoptotic genes and up-regulation

of anti-apoptotic proteins.

Although only three miRNA, namely miRNA-1, 21 and 24,

were verified in the present study, heat-shock may well induce

many other miRNAs. We did not perform experiments to

demonstrate whether these intraperitoneally injected miRNAs

ended up in the heart. Nevertheless, a recent study showed that

the simple systemic delivery of a unconjugated locked-nucleic-

acid-modified oligonucleotide (LNA-antimiR) effectively

antagonized the liver-expressed miRNA-122 [39]. Acute

administration by intravenous injections of LNA-antimiR in

monkeys resulted in uptake of the LNA-antimiR in the cyto-

plasm of primate hepatocytes and formation of stable hetero-

duplexes between the antimiR and miRNA-122. This was

accompanied by depletion of mature miRNA-122 and dose-

dependent lowering of plasma cholesterol. Our data also sup-

ports these findings because the chemically synthesized miR-

NA-21 reduced infarct size in the heart which was blocked

with miRNA-21 inhibitor. These data suggest the possibility

that the physiological effect of the miRNA-21 and its antago-

nist were actually occurring in the heart following intraperito-

neal injection.

Apoptosis is a major cause for cardiac infarction following

ischemia–reperfusion [40,41]. miRNA-1 is preferentially ex-

pressed in cardiac muscle [42] and has been shown to regulate

apoptosis. The inhibition of miRNA-21 has been shown to

suppress cell growth by increasing apoptosis and decreasing

cell proliferation [43]. In contrast, knockdown of miR-21 in

cultured glioblastoma cells triggers activation of caspases

and leads to increased apoptotic cell death [7]. miRNA-24

has recently been shown to be involved in the inhibition of

skeletal muscle differentiation by TGF-b which provides clues

for mechanisms underlying the physiological roles of the

growth factor during myogenesis [44]. The attenuation of myo-

cardial infarction with miRNA in this study may be related to

reduced expression of apoptotic genes, Bid and Bcl-10 which

may account for the observed protection since increased Bid

and Bcl-10 can bind to Bcl-2 to promote apoptosis. On the

other hand, Bag-3 may compete with Bid and Bcl-10 to bind

to Bcl-2 to reduce apoptosis [45]. miRNA induction may also

reduce infarct size through additional cellular processes other

than apoptosis. For example, the increased levels of Prx2

observed in the current study may protect heart against oxida-

tive stress since Prx2 is an extremely efficient scavenger of

hydrogen peroxide [46].

In this study, Bnip-3 was increased in the heart following

miRNA treatment. Although it is well recognized to be an

apoptotic gene, some studies suggest that BNIP-3 is not suffi-

cient for cell death but rather plays a critical role in hypoxia-

induced autophagy [47]. Moreover, it has been suggested that

rather than promoting death, BNIP-3 may actually allow sur-

vival either by preventing ATP depletion or by eliminating

damaged mitochondria [47]. Such a function of BNIP-3 may
be subverted under conditions associated with acidosis that

arise following extended periods of hypoxia and anaerobic gly-

colysis. Bnip-3 is also shown to be expressed in healthy adult

heart without evidence of cell death [48]. This finding is in line

with the study by Tracy and Macleod, who found that Bnip-3

allowed cells to survive by preventing ATP depletion or by

eliminating damaged mitochondria [47]. Overexpression of

Bnip-3 in HL-1 cardiac myocytes subjected to simulated ische-

mia/reperfusion, caused up-regulation of autophagic activity

which constituted a protective response against Bnip-3-medi-

ated death signaling [49].

In conclusion, for the first time, we have provided evidence

for the potential role of endogenously synthesized miRNAs

in cardioprotection following ischemia/reperfusion injury.

These miRNA have many advantages over other exogenous

agents. For example, they are natural cellular products and

therefore, non-toxic to cells. They can be induced in vivo under

natural conditions, such as hyperthermia. Due to their short

length, miRNAs can also easy to move around and cross

sub-cellular structures. Therefore, identifying the role of

endogenously synthesized miRNAs in protective pathophysio-

logical stimuli including ischemic, heat-shock and by pharma-

cological preconditioning means may open up novel strategies

to protect the heart in patients with coronary artery disease.
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