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1. Introduction and preliminaries

Let (X, d) be a metric space. Amapping T : X — X is a contraction if there exists a constant k € (0, 1) such that
d(Tx, Ty) < kd(x, y)

holds for any x, y € X. If X is complete, then every contraction has a unique fixed point and that point can be obtained as a
limit of repeated iteration of the mapping at any point of X (the Banach contraction principle). Obviously, every contraction
is a continuous function. A mapping T : X — X is a ¢-weak contraction if for each x,y € X, there exists a function
¢ : [0, 00) — [0, co) such that ¢ is positive on (0, 00), ¢(0) = 0, and

d(Tx, Ty) < d(x,y) — ¢(d(x,y)).

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in 1997. They defined such mappings
for single-valued maps on Hilbert spaces and proved the existence of fixed points. Rhoades [2] showed that most results
of [1] are true for any Banach space. Also Rhoades proved the following generalization of the Banach contraction principle.

Theorem 1. Let (X, d) be a nonempty complete metric space and let T : X — X be a ¢-weak contraction on X. If ¢ is a
continuous and nondecreasing function with ¢(t) > 0 forallt > 0 and ¢(0) = 0, then T has a unique fixed point.

Every contraction is a ¢-weak contraction if we take ¢(t) = kt, where 0 < k < 1.
Dutta and Choudhury [3] proved the following generalization of Theorem 1.
Theorem 2. Let (X, d) be a nonempty complete metric space and let T : X — X be a self-mapping satisfying the inequality
Y (d(Tx, Ty)) < ¥ (d(x,y)) — ¢(d(x,¥)),

where i, ¢ : [0, c0) — [0, 0c0) are both continuous and monotone nondecreasing functions with { (t) = ¢(t) = 0 if and only
if t = 0. Then T has a unique fixed point.

Recently, Dori¢ [4] generalized Theorem 2.
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Theorem 3. Let (X, d) be a nonempty complete metric space and let T : X — X be a self-mapping satisfying the inequality
Y (d(Tx, Ty)) < ¥ (M(x,y)) — ¢(M(x,¥)),

forany x,y € X, where M is given by
M(x,y) = max{d(x, y), d(x, Tx), d(y, Ty), (d(x, Ty) + d(Tx, y))/2},

and

(a) ¥ : [0, 00) — [0, 00) is a continuous monotone nondecreasing function with ¥ (t) = 0 ifand only if t = 0,
(b) ¢ : [0, 00) — [0, 00) is a lower semi-continuous function with ¢(t) = 0 ifand only if t = 0.

Then T has a unique fixed point.

For other related results we refer the reader to [5,6]. The aim of this work is to show that some of the control conditions
of Theorem 3 are not necessary.

2. Main results

Theorem 4. Let (X, d) be a nonempty complete metric space and T : X — X be a mapping satisfying forallx,y € X
v(d(Tx, Ty)) < y(M(x,y)) — ¢(M(x,y)), (1)
where

(a) ¥ : [0, 00) — [0, 00) is a monotone nondecreasing function with ¥ (t) = O ifand only if t = 0,
(b) ¢ : [0, 00) — [0, 00) is a function with ¢(t) = Oifand only if t = 0, and liminf,_, o, ¢(a,) > 0if lim,_.o a, = a > 0,
(c) ¢(a) > ¥(a) — ¥ (a—) for any a > 0, where  (a—) is the left limit of i at a.

Then T has a unique fixed point.
Proof. We note that there exists the left limit of i at a by the monotonicity of yr. Let X, € X and the sequence {x,} be

defined by x, = Tx,_1, n = 1, 2, .... If there exists n such that x, = x,,; then the conclusion holds. Then we can assume
that x, # x,,1 for any n > 0. Substituting x = x,_; and y = X, in (1) we obtain

1»[/(d(xn, Xn+1)) = W(M(Xn—l ) Xn)) - ¢(M(Xn_1, Xn))v (2)
which implies ¥ (d(x;,, Xn+1)) < ¥ (M (x,—1, X5)). Using the monotone property of the ir-function, we get

d(xn,xn+1) = M(xnflvxn)- (3)

Now from the triangle inequality for d we have
M(Xn_1, Xn) = max{d(xn_1 ) Xn), d(xn—l, Xn)7 d(xm Xn+1)a (d(xn—l ) Xn+1) + d(Xm Xn))/z}
= max{d(xn_l, xn), d(xn, xn+l)7 d(xn—l; Xn+1)/2}
< max{d(xn—1, Xn), d(Xn, Xn11), (dxn—1, Xn) + d(Xn, Xn11))/2}
max{d(xn,1 ) Xn)a d(xn, xl‘l+])}'

A

If d(x,, Xnr1) > d(Xy—1, Xp), then M (xp,_1, x,) = d(Xp, Xa11) > 0. By (2) it furthermore implies that
W(d(xn» Xn+l)) < 1;ﬁ(d(xm Xn+1)) - ¢(d(xn, Xn+1))7
which is a contradiction. So, we have
d(Xn, Xnt1) < M(xn—1, X2) < d(Xp—1, Xn). (4)
Therefore, the sequence {d(x,+1, X,)} is monotone nonincreasing and bounded. Thus, there exists r > 0 such that
lim d(xp, Xp1) = lim M(X,—1,x,) =T (5)
n—oo n—-oo
We suppose that r > 0. If there exists n such that d(x,_1, x,) = r, then by (4) we have d(x,, X, 1) = M(X,_1, X,) = r and

by (2) we get Y (r) < ¥ (r) — ¢(r). This is a contradiction. If d(x,_1, X;,) > r foralln > 1, then by (2) and (5) lettingn — oo
we obtain

Y(r+) < Y (r+) — iminf ¢ (M (a1, %))
which is also a contradiction. Hence

lim d(x, Xu41) = O. (6)

n—oo

Next we prove that {x,} is a Cauchy sequence. Otherwise there exists € > 0 for which we can find subsequences {Xn)}
and {X,q)} of {x,} such that n(k) is the smallest index for which n(k) > m(k) > k and d(Xm), Xay)) > €. This implies that
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d(Xm@ky)> Xny—1) < € forall k > 1. Using the triangle inequality we have
€ < dXm@, Xnn) < dXmw)> Xn@y—1) + dXngy—1, Xn) < € + dXngy—1, Xn(ky) -
Letting k — oo and using (6) we obtain
klggo dXm(k)» X)) = €. (7)
Again,
AdXm@» Xn@—1) < dXm@y> Xnky) + dXngky> Xngky—1)
and
AdXm@» Xn@)) < dXmeky> Xn—1) + dXngiy> Xny—1)-
Then we have
|d(Xmky s Xnty—1) — dXmaoy> Xn(ioy) | < dXnciy s Xngy—1)-
Letting k — oo and using (6) and (7) it follows that
kll)ngo dXm@)» Xn(—1) = €. (8)

Similarly, we can prove that

lim d(Xm@—1, Xago) = im dXnay—1, Xago—1) = 1im dXmy+1, Xa@) = 1im d&ngy» Xa@+1) = €. 9)
k—o00 k—o00 k—o00 k— 00

Then we get
lim M(Xm(k)—l’ xn(k)—l) = €. (10)
k—00

If there exists a subsequence {k(p)} of {k} such that € < d(Xm(p)), Xnk(py)) for any p, then substituting X = Xpke)-1,¥ =
Xn(k(py)—1 1N (1) we get

Y (dXmky)» Xnk@)))) < ¥ M Xmkpy)—1> Xnkp)—1)) — @M Kmpy)—15 Xnkp))—1))
for any p. By (7) and (10), letting p — oo we obtain

Y(e+) < YP(et+) — lipnj)(i)glfd)(M(Xm(k(p))q, Xn(k(p))—1))

which is a contradiction. We repeat the procedure if there exists a subsequence {k(p)} of {k} such that € < d(Xm(p)),
Xn(kpy+1) for any p or € < d(Xmkp))+1, Xnk(py)) for any p. Therefore we can suppose now that d(Xm), Xnk) = €,
dXim@ky> Xno+1) < € and d(Xm(+1, Xnky) < € for any k > ky. Then M (X, Xnx)) = € for k > ks = max{ks, k,}, where k; is
such that d(xy, Xk+1) < € for all k > k. Substituting x = Xm@, Y = Xn@ in (1) we have

Y ([dXingo+1> Xno+1)) < ¥ (€) — ¢(e)
for any k > ks. Obviously, d(Xm)+1. Xn(o+1) < €; otherwise we have ¢(¢) = 0. Letting k — oo we obtain
Y(e—) < ¥(e) —¢(e),

which contradicts (c) by the hypothesis. Hence {x,} is a Cauchy sequence. By the completeness of X there exists z € X such
thatx, — zasn — oo.
Next we show that z is a fixed point of T. Substituting x = x,, y = z in (1) we have

Y (d(Xnt1, T2)) < ¥ (M(Xn, 2)) — ¢(M(Xn, 2)), (11)
where

M (xpn, z) = max{d(xy, 2), d(Xn, Xnt1), d(z, T2), (d(Xnt1, 2) + d(xy, T2))/2}.
Suppose that z # Tz. Then there exists ny such that for any n > n; we have

d(Xns1, Xn) < d(z,T2)/2,d(Xy, 2) < d(z,T2)/2,d(Xpy1,2) < d(z,Tz)/2.
Accordingly,

d(z, Tz) < M(z,x,) < max{d(z,1z)/2,d(z, 1z), d(z, Tz) /2, (d(xpt1, 2) + d(xy, 2) + d(z, T2)) /2}
max{d(z, Tz)/2, d(z, Tz), d(z, Tz) /2, (d(z, Tz) /2 + d(z, Tz) /2 4+ d(z, Tz)) /2}
= d(z, Tz),
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that is, M(z, x,) = d(z, Tz). By (11) we obtain

Y(d(z, T2)—) < ¥(d(z, Tz)) — ¢(d(z, T2)),

which contradicts (c) by the hypothesis. Hence z = Tz.
If there exists another point y € X such that y = Ty, then substituting x = z in (1) we get

Y(d(z,y) <Y M(z,y) — dM(z,y)) = ¢¥(d(z,y) — ¢(d(z,y))
which is a contradiction. O

If ¢ is a lower semi-continuous function then for lim,_, o, a, = a > 0 we have liminf,_, , ¢(a;) > ¢(a) > 0. Also, if ¢
is a left-continuous function then v (a) — ¥ (a—) = 0 and (c¢) obviously holds. Therefore our control conditions are weaker
than those of Theorem 3.
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