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a b s t r a c t

The aim of this paper is to extend a very recent result proved by Dorić (2009) [4], as well
as other theorems given by Rhoades (2001) [2] and Dutta and Choudhury (2008) [3].
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1. Introduction and preliminaries

Let (X, d) be a metric space. A mapping T : X → X is a contraction if there exists a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y)

holds for any x, y ∈ X . If X is complete, then every contraction has a unique fixed point and that point can be obtained as a
limit of repeated iteration of the mapping at any point of X (the Banach contraction principle). Obviously, every contraction
is a continuous function. A mapping T : X → X is a φ-weak contraction if for each x, y ∈ X , there exists a function
φ : [0,∞) → [0,∞) such that φ is positive on (0,∞), φ(0) = 0, and

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)).

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in 1997. They defined such mappings
for single-valued maps on Hilbert spaces and proved the existence of fixed points. Rhoades [2] showed that most results
of [1] are true for any Banach space. Also Rhoades proved the following generalization of the Banach contraction principle.

Theorem 1. Let (X, d) be a nonempty complete metric space and let T : X → X be a φ-weak contraction on X. If φ is a
continuous and nondecreasing function with φ(t) > 0 for all t > 0 and φ(0) = 0, then T has a unique fixed point.

Every contraction is a φ-weak contraction if we take φ(t) = kt , where 0 < k < 1.
Dutta and Choudhury [3] proved the following generalization of Theorem 1.

Theorem 2. Let (X, d) be a nonempty complete metric space and let T : X → X be a self-mapping satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)),

where ψ, φ : [0,∞) → [0,∞) are both continuous and monotone nondecreasing functions with ψ(t) = φ(t) = 0 if and only
if t = 0. Then T has a unique fixed point.

Recently, Dorić [4] generalized Theorem 2.
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Theorem 3. Let (X, d) be a nonempty complete metric space and let T : X → X be a self-mapping satisfying the inequality

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)),

for any x, y ∈ X, where M is given by

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), (d(x, Ty)+ d(Tx, y))/2},

and
(a) ψ : [0,∞) → [0,∞) is a continuous monotone nondecreasing function with ψ(t) = 0 if and only if t = 0,
(b) φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) = 0 if and only if t = 0.
Then T has a unique fixed point.

For other related results we refer the reader to [5,6]. The aim of this work is to show that some of the control conditions
of Theorem 3 are not necessary.

2. Main results

Theorem 4. Let (X, d) be a nonempty complete metric space and T : X → X be a mapping satisfying for all x, y ∈ X

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)), (1)

where
(a) ψ : [0,∞) → [0,∞) is a monotone nondecreasing function with ψ(t) = 0 if and only if t = 0,
(b) φ : [0,∞) → [0,∞) is a function with φ(t) = 0 if and only if t = 0, and lim infn→∞ φ(an) > 0 if limn→∞ an = a > 0,
(c) φ(a) > ψ(a)− ψ(a−) for any a > 0, where ψ(a−) is the left limit of ψ at a.
Then T has a unique fixed point.

Proof. We note that there exists the left limit of ψ at a by the monotonicity of ψ . Let x0 ∈ X and the sequence {xn} be
defined by xn = Txn−1, n = 1, 2, . . .. If there exists n such that xn = xn+1 then the conclusion holds. Then we can assume
that xn ≠ xn+1 for any n ≥ 0. Substituting x = xn−1 and y = xn in (1) we obtain

ψ(d(xn, xn+1)) ≤ ψ(M(xn−1, xn))− φ(M(xn−1, xn)), (2)

which implies ψ(d(xn, xn+1)) ≤ ψ(M(xn−1, xn)). Using the monotone property of the ψ-function, we get

d(xn, xn+1) ≤ M(xn−1, xn). (3)

Now from the triangle inequality for d we have

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), (d(xn−1, xn+1)+ d(xn, xn))/2}
= max{d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1)/2}
≤ max{d(xn−1, xn), d(xn, xn+1), (d(xn−1, xn)+ d(xn, xn+1))/2}
= max{d(xn−1, xn), d(xn, xn+1)}.

If d(xn, xn+1) > d(xn−1, xn), then M(xn−1, xn) = d(xn, xn+1) > 0. By (2) it furthermore implies that

ψ(d(xn, xn+1)) ≤ ψ(d(xn, xn+1))− φ(d(xn, xn+1)),

which is a contradiction. So, we have

d(xn, xn+1) ≤ M(xn−1, xn) ≤ d(xn−1, xn). (4)

Therefore, the sequence {d(xn+1, xn)} is monotone nonincreasing and bounded. Thus, there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = lim
n→∞

M(xn−1, xn) = r. (5)

We suppose that r > 0. If there exists n such that d(xn−1, xn) = r , then by (4) we have d(xn, xn+1) = M(xn−1, xn) = r and
by (2) we getψ(r) ≤ ψ(r)−φ(r). This is a contradiction. If d(xn−1, xn) > r for all n ≥ 1, then by (2) and (5) letting n → ∞

we obtain

ψ(r+) ≤ ψ(r+)− lim inf
n→∞

φ(M(xn−1, xn))

which is also a contradiction. Hence

lim
n→∞

d(xn, xn+1) = 0. (6)

Next we prove that {xn} is a Cauchy sequence. Otherwise there exists ϵ > 0 for which we can find subsequences {xm(k)}
and {xn(k)} of {xn} such that n(k) is the smallest index for which n(k) > m(k) > k and d(xm(k), xn(k)) ≥ ϵ. This implies that
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d(xm(k), xn(k)−1) < ϵ for all k ≥ 1. Using the triangle inequality we have

ϵ ≤ d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1)+ d(xn(k)−1, xn(k)) < ϵ + d(xn(k)−1, xn(k)).

Letting k → ∞ and using (6) we obtain

lim
k→∞

d(xm(k), xn(k)) = ϵ. (7)

Again,

d(xm(k), xn(k)−1) ≤ d(xm(k), xn(k))+ d(xn(k), xn(k)−1)

and

d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1)+ d(xn(k), xn(k)−1).

Then we have

|d(xm(k), xn(k)−1)− d(xm(k), xn(k))| ≤ d(xn(k), xn(k)−1).

Letting k → ∞ and using (6) and (7) it follows that

lim
k→∞

d(xm(k), xn(k)−1) = ϵ. (8)

Similarly, we can prove that

lim
k→∞

d(xm(k)−1, xn(k)) = lim
k→∞

d(xm(k)−1, xn(k)−1) = lim
k→∞

d(xm(k)+1, xn(k)) = lim
k→∞

d(xm(k), xn(k)+1) = ϵ. (9)

Then we get

lim
k→∞

M(xm(k)−1, xn(k)−1) = ϵ. (10)

If there exists a subsequence {k(p)} of {k} such that ϵ < d(xm(k(p)), xn(k(p))) for any p, then substituting x = xm(k(p))−1, y =

xn(k(p))−1 in (1) we get

ψ(d(xm(k(p)), xn(k(p)))) ≤ ψ(M(xm(k(p))−1, xn(k(p))−1))− φ(M(xm(k(p))−1, xn(k(p))−1)),

for any p. By (7) and (10), letting p → ∞ we obtain

ψ(ϵ+) ≤ ψ(ϵ+)− lim inf
p→∞

φ(M(xm(k(p))−1, xn(k(p))−1)),

which is a contradiction. We repeat the procedure if there exists a subsequence {k(p)} of {k} such that ϵ < d(xm(k(p)),
xn(k(p))+1) for any p or ϵ < d(xm(k(p))+1, xn(k(p))) for any p. Therefore we can suppose now that d(xm(k), xn(k)) = ϵ,
d(xm(k), xn(k)+1) ≤ ϵ and d(xm(k)+1, xn(k)) ≤ ϵ for any k ≥ k1. ThenM(xm(k), xn(k)) = ϵ for k ≥ k3 = max{k1, k2}, where k2 is
such that d(xk, xk+1) < ϵ for all k ≥ k2. Substituting x = xm(k), y = xn(k) in (1) we have

ψ(d(xm(k)+1, xn(k)+1)) ≤ ψ(ϵ)− φ(ϵ)

for any k ≥ k3. Obviously, d(xm(k)+1, xn(k)+1) < ϵ; otherwise we have φ(ϵ) = 0. Letting k → ∞ we obtain

ψ(ϵ−) ≤ ψ(ϵ)− φ(ϵ),

which contradicts (c) by the hypothesis. Hence {xn} is a Cauchy sequence. By the completeness of X there exists z ∈ X such
that xn → z as n → ∞.

Next we show that z is a fixed point of T . Substituting x = xn, y = z in (1) we have

ψ(d(xn+1, Tz)) ≤ ψ(M(xn, z))− φ(M(xn, z)), (11)

where

M(xn, z) = max{d(xn, z), d(xn, xn+1), d(z, Tz), (d(xn+1, z)+ d(xn, Tz))/2}.

Suppose that z ≠ Tz. Then there exists n1 such that for any n ≥ n1 we have

d(xn+1, xn) < d(z, Tz)/2, d(xn, z) < d(z, Tz)/2, d(xn+1, z) < d(z, Tz)/2.

Accordingly,

d(z, Tz) ≤ M(z, xn) ≤ max{d(z, Tz)/2, d(z, Tz), d(z, Tz)/2, (d(xn+1, z)+ d(xn, z)+ d(z, Tz))/2}
≤ max{d(z, Tz)/2, d(z, Tz), d(z, Tz)/2, (d(z, Tz)/2 + d(z, Tz)/2 + d(z, Tz))/2}
= d(z, Tz),
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that is,M(z, xn) = d(z, Tz). By (11) we obtain

ψ(d(z, Tz)−) ≤ ψ(d(z, Tz))− φ(d(z, Tz)),

which contradicts (c) by the hypothesis. Hence z = Tz.
If there exists another point y ∈ X such that y = Ty, then substituting x = z in (1) we get

ψ(d(z, y)) ≤ ψ(M(z, y))− φ(M(z, y)) = ψ(d(z, y))− φ(d(z, y))

which is a contradiction. �

If φ is a lower semi-continuous function then for limn→∞ an = a > 0 we have lim infn→∞ φ(an) ≥ φ(a) > 0. Also, if ψ
is a left-continuous function then ψ(a)− ψ(a−) = 0 and (c) obviously holds. Therefore our control conditions are weaker
than those of Theorem 3.
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