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Abstract The field of endoplasmic reticulum (ER) stress in
mammalian cells has expanded rapidly during the past decade,
contributing to understanding of the molecular pathways that al-
low cells to adapt to perturbations in ER homeostasis. One ma-
jor mechanism is mediated by molecular ER chaperones which
are critical not only for quality control of proteins processed in
the ER, but also for regulation of ER signaling in response to
ER stress. Here, we summarized the properties and functions
of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/
ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and
co-chaperones SIL1 and P58IPK and their role in development
and diseases. Many of the new insights are derived from recently
constructed mouse models where the genes encoding the chaper-
ones are genetically altered, providing invaluable tools for exam-
ining the physiological involvement of the ER chaperones in vivo.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The endoplasmic reticulum (ER) is an essential cellular com-

partment for protein synthesis and maturation. It also func-

tions as a Ca2+ storage organelle and resource of calcium

signals. The perturbation of ER functions, such as disruption

of Ca2+ homeostasis, inhibition of protein glycosylation or

disulfide bond formation, hypoxia and virus or bacteria infec-

tion, can result in accumulation of unfolded or misfolded pro-

teins and the failure of the ER to cope with the excessive

protein load. This leads to ER stress, which is defined as an

imbalance between the cellular demand for ER function and

ER capacity. To reduce the excessive protein loading, the cells

trigger the unfolded protein response (UPR), which signals

transient attenuation of protein translation, degradation of

malfolded proteins and the induction of molecular chaperones
Abbreviations: ER, endoplasmic reticulum; ERAD, ER-associated
degradation; HHcy, hyperhomocysteinemia; PDI, protein disulfide
isomerase; PrPsc, scrapie-associated PrP; STEC, Shiga toxigenic
Escherichia coli; SubAB, AB5 subtilase cytotoxin; UPR, unfolded
protein response
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and folding enzymes to augment the ER capacity of protein

folding and degradation. However, if the ER stress cannot

be relieved, apoptotic pathways are activated in the damaged

cells. The ER contains a number of molecular chaperones

physiologically involved in the post-translational modification,

disulfide bond formation, folding, assembly and quality con-

trol of newly synthesized proteins to preserve cellular homeo-

stasis. Upon ER stress, upregulation of ER chaperones is

pivotal for cell survival by facilitating the correct folding and

assembly of ER proteins and preventing their aggregation.

Furthermore, specific chaperones are also involved in stress

signaling regulation and protein degradation process to atten-

uate apoptotic stimuli. While the link between molecular chap-

erones and human diseases awaits direct proof in most cases,

recent construction and characterization of novel mouse mod-

els where the gene encoding for the ER chaperone protein is

deleted or genetically altered provide new insights on the phys-

iological contribution of these proteins in vivo. This review

highlights recent progress in understanding the role of ER

chaperones in response to ER stress and their functional roles

in mammalian development and human diseases.
2. Chaperoning function of ER proteins

The ER chaperones can be categorized into three groups: (a)

chaperones of heat shock protein family including GRP78,

GRP94 and the co-chaperones; (b) chaperone lectins like caln-

exin, calreticulin and EDEM; and (c) substrate-specific chaper-

ones such as Hsp47. Additionally, there are at least two groups

of folding catalysts, namely thiol oxidoreductases of the pro-

tein disulfide isomerase (PDI) family such as PDI and

GRP58/ERp57 and peptidyl prolyl isomerases (PPIs). There

are two known chaperone systems in the ER, calnexin/calreti-

culin and GRP78/GRP94 [1]. The properties and function of

ER chaperones, co-chaperones and folding enzymes covered

in this review are summarized in Tables 1 and 2.
2.1. Calnexin/calreticulin chaperone system

Calnexin is a 90 kDa type I ER membrane protein and

calreticulin is a 60 kDa soluble ER lumen protein with a C-ter-

minal KDEL signal [2,3]. When the newly synthesized poly-

peptides enter the ER, they are often modified by N-linked

glycans (Glc3Man9GlcNAc2) and the glucoses are rapidly re-

moved by glucosidases I and II [4]. The nascent protein with

monoglucosylated N-linked glycans (Glc1Man9GlcNAc2) is

recognized by the calnexin/calreticulin system for subsequent
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82297105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table 1
Summary of function and disease relevance of ER chaperones, co-chaperones and folding enzymes

Protein Localization Function Knockout mouse model Diseases Reference

GRP78/BiP ER lumen

ER transmembrane

Cell surface

Nucleus

Chaperone,

Ca2+-binding,

ER stress sensor

UPR regulator

Anti-apoptosis

Embryonic lethality at
E3.5 due to failure
of embryo
peri-implantation

Cancer

Alzheimer’s disease

Parkinson’s disease

Prion diseases

Atherosclerosis

[34,57,65,71,75–78,107]

SIL1 ER lumen Co-chaperone,

nucleotide exchange

factor for GRP78

Woozy mouse associated
with cerebellar Purkinje
cell degeneration
and ataxia

Marinesco-Sjögren
syndrome

[58–60]

GRP94/gp96 ER lumen

Cell surface

transmembrane

Chaperone,

Ca2+-binding,

Anti-apoptosis

Tumor immunity

Embryonic lethality Cancer

Prion diseases

Autoimmune

disease

[65,71,86,87,89]

GRP170/ORP150 ER lumen Chaperone,

potential nucleotide

exchange factor for GRP78

Embryonic lethality Alzheimer’s disease [57,61,129]

GRP58/ERp57

ER lumen

Nucleus

Cytosol

Thio-oxidoreductase
to catalyze disulfide bond
formation of glycoprotein

Embryonic lethality
(traditional knockout);
Grp58�/� B cells are
defective in antigen
presentation (conditional
knockout in B cells)

Prion diseases

Alzheimer’s disease

[35,62,92,130,131]

PDI

ER lumen

Cell surface

Thio-oxidoreductase to
catalyze disulfide bond
formation

ND Alzheimer’s disease

Parkinson’s disease

[55,92,132]
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folding and assembly steps. This process can be co-transla-

tional and release of the completely folded glycoprotein from

this cycle is usually coupled with transportation from the ER

to the Golgi complex. GRP58/ERp57, a member of the PDI

family, is also an important component involved in the caln-

exin/calreticulin system. It contains two thioredoxin motifs

and acts as a thiol oxidoreductase to catalyze the disulfide

bond formations of the loaded glycoproteins [5]. If the glyco-

protein cannot be correctly folded, another ER protein UGGT

(UDP-glucose glycoprotein-glucosyltransferase) recognizes the

unfolded or misfolded glycoprotein and catalyzes the transfer

of a glucose unit from UDP-glucose to a specific mannose res-

idue within the N-glycan chain of the glycoprotein [6]. Reglu-

cosylation generates the monoglucosylated N-linked glycan

that provides a new binding site of calnexin/calreticulin for

re-entry of the glycoprotein into the cycle, until the correct

folding is achieved [7]. Studies with hydrophobic peptides

and glycoproteins have shown that UGGT recognizes sur-

face-exposed hydrophobic regions [8,9]. While it was reported

that UGGT can sense a local subtle structural alteration gen-

erated by a single point mutation and monoglucosylate glycans

distant from misfolded determinants [10], another study using

RNaseA/B as the substrate found that UGGT only selectively

modifies the N-glycans close to or within the unfolded sites

[11].

2.2. GRP78/GRP94 chaperone system

GRP78, also known as BiP, is the ER homologue of HSP70

proteins with a conserved ATPase domain and a peptide-bind-

ing domain [12,13]. As a chaperone, GRP78 recognizes and

binds to the proteins with hydrophobic residues in the un-

folded regions [14]. Therefore, some calnexin/calreticulin sub-
strates can bind to GRP78 if the N-glycosylation is blocked.

GRP78 is in a large multi-protein complex with a set of ER

molecular chaperones, GRP94, PDI, ERp72, GRP170/

ORP150, UGGT, CaBP1 (calcium binding protein), cyclophi-

lin B and SDF2-L1, which forms an ER chaperoning network

processing the unfolded protein substrates [15]. In this com-

plex, GRP94, an ER homologue of HSP90 protein, often func-

tions as a dimer providing a platform for the assembly or

oligomerization of loaded protein cargo [16].
3. Regulation of stress signaling by ER chaperones

Cells developed an evolutionarily conserved integrated intra-

cellular signaling cascade, referred to as the UPR, to reduce

the unfolded protein load and increase folding capacity. For

survival, the UPR signals pathways attenuating protein

synthesis, upregulating the transcription of chaperone genes

that increase ER capacity of folding and degradation, and

retro-translocating misfolded proteins to the cytosol for degra-

dation. There are three major UPR pathways with the ER-

resident transmembrane proteins PERK, ATF6 and IRE1 as

proximal signal sensors. Molecular chaperones play regulatory

roles in UPR signaling pathway. The best characterized is the

ER chaperone GRP78 which directly interacts with all three

ER stress sensors, PERK, ATF6 and IRE1, and maintains

them in inactive forms in non-stressed cells [17]. When accu-

mulation of misfolded proteins occurs, GRP78 is titrated

away. Release from GRP78 allows the activation and

transduction of the unfolded protein signals across the ER

membrane to the cytosol and the nucleus. Further character-

ization of post-translational modification of the ATF6 reveals



Table 2
Summary of function and disease relevance of ER chaperones, co-chaperones and folding enzymes

Protein Localization Function Knockout mouse model Diseases Reference

Calnexin ER transmembrane

Cell surface

Chaperone,

glycoprotein folding

Postnatal death
and motor disorders

Alzheimer’s disease [46,57,93]

Calreticulin ER lumen

Cytosol

Cell surface

Chaperone,

glycoprotein folding,

Ca2+-binding

Embryonic lethality at
E14.5 due to defective
embryonic cardiac
development

Cardiac hypertrophy

Alzheimer’s disease

Autoimmune diseases

[36,91,131,133,134]

EDEM ER lumen Chaperone, recognition
and targeting of unfolded
glycoprotein for degradation

ND ND [30]

ERp72 ER lumen Thio-oxidoreductase to
catalyze disulfide
bond formation

ND ND [135]

Herp ER transmembrane Ubiquitin-like protein
involved in ERAD

ND Atherosclerosis

Alzheimer’s disease

[109,136,137]

P58IPK Cytosol ER membrane Co-chaperone, negative
regulator of eIF2a kinase
PERK and PKR,
cotranslocational degradation

Development of diabetes
associated with increased
b-cell death

Diabetes (mouse) [22,23,25,118,119]

UGGT ER lumen Glucosyltransferase,
recognition of misfolded
glycoprotein and reglucosylation
of N-glycan

Embryonic lethality
at E13

ND [37]
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that the glycosylation and disulphide bond status of the lumi-

nal domain of ATF6 can be utilized as novel sensing mecha-

nisms for the activation of the UPR [18,19]. These studies

show that ER stress-induced underglycosylation and reduction

favor the transportation of ATF6 from ER to Golgi and the

cleavage by S1P and S2P to generate the active nuclear form

of ATF6.

For IRE1 signaling, different mechanisms have been re-

ported for its activation. A recent study shows that dimeriza-

tion of the cLD region (the core region of luminal domain)

of the yeast IRE1 retains the full function of the IRE1 luminal

domain but is insufficient for the activation, rather the cLD di-

mer presents an MHC-like groove that is proposed to interact

with unfolded proteins and initiate the IRE1 activation [20].

On the other hand, the monomer of the human IRE1a N-ter-

minal luminal domain (NLD) is able to form a dimer that

exhibits an MHC-like groove at the interface [21]. Dimeriza-

tion of the human NLD is able to activate both the kinase

and RNase activities of IRE1a and the MHC-like groove is

too narrow to bind any peptide, implicating that unfolded pro-

tein binding is not required for the activation of IRE1a. There-

fore, the study of human IREa supports the conventional view

that GRP78 is the primary mechanism for regulating IRE1a
activation, whereas the yeast study implies that peptide inter-

action is the key triggering event. Further studies are required

to resolve these apparent differences.

Another ER stress inducible chaperone, P58IPK, is proposed

to be a negative regulator of PERK activation to inhibit eIF2a
phosphorylation and attenuate the UPR [22]. P58IPK belongs

to the HSP40 family and contains the tetratricopeptide repeats

(TPR) motifs that have been shown to mediate protein-protein

interaction [23]. Therefore, it is considered as a co-chaperone.

Originally, P58IPK was identified in the cytosol to repress the
kinase activity of PKR, the interferon-induced eIF2a kinase,

through the direct association with PKR [24]. Instead of the

cytosolic localization, P58IPK was recently reported to be a

peripheral membrane protein of the rough ER, and in addition

to modifying PERK signaling, P58IPK contributes to ER stress

induced protein degradation through complex formation with

the ER translocon and cytosolic HSP70 chaperone network

[25]. However, more recently, it was determined that P58IPK

contains a functional ER targeting signal consisting of 26

hydrophobic amino acids at the N-terminus (David Ron, per-

sonal communication), implicating that P58IPK may enter the

ER. Thus, the precise orientation of the protein complexes

and how P58IPK facilitates extraction of the stalled proteins

from the ER requires further resolution.
4. ER chaperones facilitate ER-associated protein degradation

The ER employs a mechanism termed ER-associated degra-

dation (ERAD) to clear the aggregated misfolded or unassem-

bled proteins. During ERAD, the target proteins selected by

ER quality control system are retrotranslocated to the cytosol

and degraded by the ubiquitin–proteasome system. ER chaper-

ones play key roles in ERAD substrate selection and solubili-

zation [26]. The selection process relies on factors that

primarily recognize substructures within the misfolded pro-

teins such as hydrophobic patches, unpaired cysteines and par-

tially de-mannosylated N-glycans. For example, in the

mammalian calnexin/calreticulin system, the glycoproteins

undergoing futile folding attempts are eventually subject to ter-

minal mannose trimming (from Man9GlcNAc2 to Man8Glc-

NAc2, or extensive trimming to produce Man6GlcNAc2 or

Man5GlcNAc2) [27] by ER a 1, 2-mannosidases, leading to



3644 M. Ni, A.S. Lee / FEBS Letters 581 (2007) 3641–3651
their recognition by EDEM, a class of mannosidase-like pro-

teins, and EDEM then targets misfolded mannose trimmed

glycoproteins to degradation [28]. Three EDEM homologues,

EDEM1, EDEM2 and EDEM3, have been identified and they

are transcriptionally upregulated upon ER stress by the acti-

vated IRE1/Xbp-1 branch [29]. EDEM is required for ERAD

of glycoproteins and overexpression of EDEM1 accelerates the

release of unfolded glycoproteins from calnexin/calreticulin cy-

cle for the onset of degradation [30]. How EDEM delivers sub-

strates to the ER translocon remains to be determined,

however, the association of EDEM with putative components

of the translocon pore (derlins) has recently been reported [31].

In contrast to EDEM, GRP78 with its co-chaperones selects

the ERAD substrates by recognizing the hydrophobic regions

of the polypeptides that are usually exposed on the surface of

misfolded or unassembled proteins. Simultaneously, they also

retain the terminally misfolded proteins in soluble conforma-

tions preventing their aggregation in the ER lumen. Appar-

ently all known soluble ERAD substrates require GRP78

and co-chaperones for their degradation [26,32]. After release

from GRP78 in an ATP-dependent manner, the targeted mis-

folded proteins are sorted to the ERAD pathway. PDI is also

known as a chaperone that plays a role in ERAD, in addition

to its enzymatic activities. PDI has been shown to specifically

interact with disulfide-free, misfolded secretory proteins in

yeast and target them to the Sec61 translocon for degradation

[33].
5. ER chaperone function is obligatory for early mammalian

development

Gene knockout technology allows definitive tests for the

requirement of specific ER chaperone function in vivo. Tradi-

tional knockout approach creating homozygous deletion of

ER chaperones such as GRP78 [34], GRP94 (Mao and Lee,

in preparation), GRP58/ERp57 [35], calreticulin [36] and

UGGT [37] results in embryonic lethality. The phenotypes of

mouse knockout models of the ER chaperones, co-chaperones

and folding enzymes covered in this review are summarized in

Tables 1 and 2. These studies provide direct evidence that the

function of each of these ER chaperones cannot be compen-

sated during mouse development. Thus, heterozygous mutants

and/or tissue-specific knockout mouse models are required to

elucidate the critical contribution of these chaperones in mam-

malian development.

For GRP78, it has recently been shown that complete deple-

tion of GRP78 leads to lethality in 3.5-day-old embryos (E3.5)

due to the failure of embryo peri-implantation [34]. The

Grp78�/� embryos cannot hatch from the zona pellucida

in vitro, fail to grow in culture, and exhibit proliferation de-

fects and a massive increase of apoptosis in the inner cell mass,

which are precursors of embryonic stem cells. These findings

show that GRP78 is essential for embryonic cell growth and

pluripotent cell survival. In another study, transgenic mouse

lines bearing a lacZ reporter gene driven by 3 kb of the rat

GRP78 promoter or a mutant promoter with ER stress-re-

sponse element (ERSE) deletion were used to evaluate the

transcriptional regulation of GRP78 during mouse embryonic

development. GRP78 is transcriptionally upregulated in both

the trophectoderm and inner cell mass of E3.5 embryos and

this induction is largely dependent on the ERSE. Since ERSE
is an essential cis-element of the Grp78 promoter for induction

by ER stress, this suggests that physiological ER stress may ex-

ist at the peri-implantation stage of early development due to

the increased activity of cell proliferation and protein secre-

tion. On the other hand, Grp78+/� mice are viable and compa-

rable to wild-type although GRP78 level in the heterozgyotes

is about 50% of the wild-type siblings. The GRP94 and PDI

levels are mildly elevated in the Grp78+/� mice, whereas the

levels of the other two ER chaperones, calnexin and calreticu-

lin, are not affected. Thus, during normal mouse development,

50% of wild-type GRP78 level is apparently sufficient to main-

tain ER homeostasis. This is consistent with the view that com-

pared to normal tissues and organs, GRP78 is more critically

needed in cells undergoing physiological or pathological stress.

Embryonic lethality was also observed in the GRP58/ERp57

knockout mice whereas the conditional knockout mice with

GRP58/ERp57 deficiency in B cells are viable [35]. The devel-

opment and proliferation of GRP58/ERp57 deficient B cells

are normal, but the MHC class I antigen presentation is im-

paired. During biosynthesis, MHC class I heavy chain is pro-

cessed in the calnexin/calreticulin system where GRP58/ERp57

participates in oxidative folding by catalyzing disulfide bond

formation and isomerization [38]. GRP58/ERp57 is also de-

tected in the peptide-loading complex consisting of TAP1/

TAP2, the MHC class I-specific chaperone tapasin, calreticu-

lin, GRP58/ERp57 and MHC I heterodimers [39], implicating

that GRP58/ERp57 plays a role in loading of peptides onto

MHC class I molecules. In the GRP58/ERp57-deficient B cells,

the amount of cell surface MHC class I-peptide complexes and

the peptide loading complex-associated MHC class I are dra-

matically decreased compared with the wild-type B cells and

the dissociation of MHC class I from the complex is much fas-

ter. These observations indicate that GRP58/ERp57 recruits

MHC class I to the peptide-loading complex and maintains

the peptide-MHC I complex in a steady state. In addition,

GRP58/ERp57 deficiency in B cells also affects the recruitment

of calreticulin into the loading complex [35]. Thus, MHC class

I antigen presentation ability is diminished by the deficiency of

GRP58/ERp57 in B cells due to the impaired peptide-loading

machinery.

Calreticulin deficiency is lethal in mouse embryos at E14.5,

resulting from a lesion in cardiac development [36]. The ven-

tricular wall made of cardiomyocytes became thinner in the

heart of calreticulin�/� mouse embryos. Calreticulin is highly

expressed in cardiomyocytes at the early stage of heart devel-

opment and downregulated after birth in the healthy mature

heart. Interestingly, GRP78 and GRP94 are also upregulated

during embryonic cardiac development indicating that some

ER chaperones may be essential for cardiogenesis [40–43]. In

calreticulin-null fibroblast, the Ca2+ storage capacity of the

ER is reduced [44], whereas overexpression of calreticulin in-

creases the ER Ca2+ level [45]. Since Ca2+ enhances the cli-

ent-binding and chaperoning ability of ER chaperones,

changes in the ER Ca2+ storage capacity or impairment of

Ca2+ binding to these chaperones affect the quality of ER pro-

tein folding and assembly.

Calnexin is another major component of the calnexin/calret-

iculin chaperone system. Interestingly, calnexin deficient mice

are viable, but 50% of the calnexin�/� mice died within 2 days

of birth and the surviving mice are smaller than the littermates

and exhibit obvious motor disorders [46]. The calnexin�/� mice

are further characterized by a dramatic loss of large to medium
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myelinated nerve fibers, thereby decreasing the size of the sci-

atic nerve, implying that calnexin plays a tissue-specific role in

mammalian physiology. Furthermore, deletions of calnexin,

calreticulin and GRP58/ERp57 have very specific conse-

quences on glycoprotein maturation. For example, defective

maturation of MHC class I in cells lacking calreticulin [47],

of influenza virus hemagglutinin in cells lacking calnexin [48]

or ERp57 [49] and of a series of heavily glycosylated proteins

sharing common structural domains in cells lacking ERp57

[50] have been reported.
6. ER chaperones ameliorate protein misfolding in

neurodegenerative diseases

Neurodegenerative diseases such as Parkinson’s disease and

Alzheimer’s disease are pathologically characterized by the

intracellular or extracellular accumulation of misfolded pro-

teins or mutated gene products [51]. Thus, occurrences of

ER stress and UPR activation have been observed in the af-

fected neuronal cells [52]. Mounting evidence suggests that

ER chaperones are highly induced to ameliorate the accumula-

tion of misfolded proteins and protect neuronal cells against

neurotoxicity [53,54]. Impairment of the functions of the in-

volved chaperones leads to the failure of attenuating ER stress

and eventual apoptosis of neuronal cells. This is supported by

the development of neurological disorders in knockout mouse

models of ER chaperones and co-chaperones as summarized in

Tables 1 and 2.

S-nitrosylated PDI was found in the brain samples of Parkin-

son’s or Alzheimer’s patients and exposure of the cultured neu-

rons to NMDA that induced Ca2+ influx and nitric oxide

production also resulted in S-nitrosylation of PDI [55]. PDI

catalyzes thio-disulfide exchange facilitating the disulfide bond

formation and rearrangement reaction. In response to ER

stress, PDI is usually upregulated and protects neuronal cells

against ischemic injury [56]. S-nitrosylation of PDI inhibits its

enzymatic activity and leads to the accumulation of polyubiq-

uitinated proteins and activation of UPR. On the other hand,

overexpression of wild-type PDI attenuates UPR and protects

cells against apoptosis induced by ER stress inducers such as

tunicamycin which inhibits N-linked protein glycosylation

and thapsigargin which is an inhibitor of ER Ca2+-ATPase [55].

Overexpression of GRP78, calnexin and GRP170/ORP150

suppressed the production of b-amyloid peptides (Ab), a major

component of extracellular senile plaques in Alzheimer’s dis-

ease [57]. Further, co-immunoprecipitation identified the asso-

ciation of amyloid precursor protein (APP) with GRP78,

suggesting that GRP78 overexpression inhibits APP matura-

tion through retention of APP in the ER and thus reduces

the Ab production by proteolysis of APP. The protective role

of GRP78 in neurodegeneration is supported by the studies of

woozy mutant mice and Marinesco-Sjögren syndrome (MS)

patients. Human MS syndrome is a rare disease associated

with cerebellar ataxia, progressive myopathy and cataracts.

Recently, mutations of SIL1, an adenine nucleotide exchange

factor of GRP78, have been identified to cause the MS syn-

drome [58,59]. Further, in vivo study with the SIL1 mutant

woozy mouse model revealed that loss of functional SIL1 re-

sults in cerebellar Purkinje cell degeneration and ataxia [60].

SIL1 stimulates the release of ADP from GRP78, activating

the ATPase cycle to promote the binding and folding of the
substrate proteins. It was observed that ubiquitinated proteins

aggregate in the ER and cytosol and the UPR pathway is acti-

vated to upregulate GRP78, GRP170/ORP150 and CHOP in

response to the ER stress induced in cerebellar Purkinje cells.

It is noted that the cerebellum is particularly sensitive to loss

of SIL1 function, and within the cerebellum only some lobules

have degenerated Purkinje cells. One possible explanation for

this observation is that other co-chaperone(s) can compensate

for SIL1 function in the unaffected cerebellar lobules.

GRP170/ORP150 has recently been implicated to substitute

for SIL1 as an alternative nucleotide exchange factor for

GRP78 in an in vitro experimental system [61]. Thus, in differ-

ent tissues or in different regions of specific tissues, the distri-

bution and activity of various co-chaperones could vary,

giving rise to distinct phenotypes.

GRP58/ERp57 has been implicated in prion diseases, be-

cause it is consistently upregulated in the prion replicating

brain areas of the scrapie prion-infected mice and its overex-

pression protects neuronal cells against PrPsc toxicity and ER

stress-induced apoptosis [62,63]. Prion diseases, also known

as transmissible spongiform encephalopathies (TSEs) are fatal

neurodegenerative disorders characterized by accumulation of

the misfolded form of the cellular prion protein (PrP), denoted

PrPsc (scrapie-associated PrP), and consequent neuronal dys-

function and death [64]. The conformational changes of PrPsc

lead to the generation of the protease-resistant and insoluble

form of the prion protein, which is believed to be neurotoxic.

ER stress resulting from PrPsc aggregation induces the apopto-

sis of neuron cells [65]. The upregulation of ER stress chaper-

ones, such as GRP78, GRP94 and GRP58/ERp57, was also

observed in PrPsc-infected neuroblastoma cells [65] and the cor-

tex samples of TSEs patients [64]. Furthermore, GRP58/ERp57

was found to interact with PrPsc and this interaction was en-

hanced when cells were infected with scrapie prion or treated

with proteasome inhibitor, suggesting that GRP58/ERp57

selectively binds to PrPsc [62]. Since GRP58/ERp57 is a thiol

oxidoreductase to catalyze disulfide bond formation, it is possi-

ble that the interaction of GRP58/ERp57 enhances correct

folding of PrP and thus reduces the PrPsc neurotoxicity. Fur-

thermore, a recent study reveals that ER stress facilitates the

generation of a misfolded PrP isoform that is more prone to

be efficiently converted into PrPsc and that ER damaged cells

might be more susceptible to prion replication, contributing

to rapid progression of prion disease [66].
7. ER chaperones promote cancer progression and tumor

immunity

Due to hypoxic conditions and glucose deprivation caused

by poor vascularization, the microenvironment of tumors rep-

resents physiological ER stress and the UPR is activated for

the survival of tumor cells [67,68]. ER chaperones serve as a

novel class of pro-survival components protecting the host

against death induced by ER stress when expressed at high

levels. In cell culture systems, it has been established that

GRP78 [69,70], GRP94 [71], calreticulin [72] and the homo-

cysteine-induced endoplasmic reticulum protein, Herp [73]

protect cancer cells against ER stress-induced apoptosis.

Among them, GRP78 is best-characterized with respect to its

role in cancer progression, drug resistance and possibly metas-

tasis [74, Table 1].
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Fibrosarcoma cells where GRP78 expression was suppressed

by antisense were either unable to form tumors or quickly re-

gressed [69], implying that GRP78 is required for tumor

growth. Recent investigations using mouse knockout models

reaffirmed the important role of GRP78 in tumor development

and progression (Dong and Lee, in preparation). GRP78

expression is highly upregulated in varieties of cancer cell lines

and human cancer specimens, including breast cancer, lung

cancer, liver cancer and prostate cancer, correlating with

malignancy, metastasis and drug resistance [75]. In a variety

of human cancers, GRP78 upregulation protects tumor cells

from chemotherapeutic agents and knockdown of GRP78 with

siRNA or antisense sensitizes these cells to those agents

[75,76]. GRP78 protects cancer cells through multiple mecha-

nisms. Under glucose starvation and severe hypoxic conditions

in solid tumors, GRP78 is induced by activated UPR signaling

to ameliorate misfolded protein aggregation in the ER.

Through its ability to bind Ca2+, GRP78 serves as a buffering

agent in the ER, preventing Ca2+ efflux from the ER to the

cytosol and alleviating the ER stress-induced apoptotic stim-

uli. Furthermore, the cytoprotective role of GRP78 also attri-

butes to its inhibition of the activation of pro-apoptotic

components, such as BIK and BAX, as well as suppressing

the cleavage of procaspase-7 and procaspase-12 through com-

plex formation [77–79]. Since a subfraction of GRP78 exists as

an ER transmembrane protein with the amino portion in the

cytosol, it can potentially directly interact with pro-apoptotic

components such as BIK, BAX, caspase-12 and caspase-7

which are known to be localized to the ER [75,78,79]. It is also

possible that GRP78 in the lumen of the ER complexes with

ER-transmembrane proteins that interact with the cytosolic

pro-apoptotic components. Since BIK, BAX and caspase-7

are activated by a variety of chemotherapeutic regimens, inhi-

bition of their activation by GRP78 may confer general che-

mo-resistance to cancer cells [75]. Additionally, BIK is

required for estrogen-starvation induced apoptosis in estrogen

receptor positive human breast cancer cells and its apoptotic

activity is blocked by GRP78 in human breast cancer cells

[79,80]. BIK is a BH3-only protein of the BCL-2 family and

plays a pro-apoptotic role through regulating the oligomeriza-

tion of BAX and BAK in the mitochondrial outer membrane

and release of mitochondrial cytochrome c. BIK is known to

inhibit Bcl-2 activity by direct association. Therefore, inhibi-

tion of BIK by GRP78 in human breast cancer could lead to

resistance to chemotherapy as well as anti-estrogen therapy.

In retrospective studies, GRP78 level in patient tumor speci-

mens has been shown to associate with poor survival, resis-

tance to adriamcyin therapy in breast cancer patients [81,82]

and recurrence in prostate cancer patients [83,84]. Thus,

GRP78 is a potential novel biomarker for tumor behavior

and development of resistance to therapy in cancer [74].

GRP94, the ER homologue of HSP90 also referred to

as gp96, shares common transcriptional regulatory elements

with the GRP78 promoter and is coordinately regulated with

GRP78 [85]. Induction of GRP94 is commonly associated with

upregulation of GRP78 in the tumor samples and cell lines.

Overexpression of GRP94 is correlated with cellular transfor-

mation, tumorigenicity and decreased sensitivity to X-rays in

cancer cell lines, whereas decrease of GRP94 level by antisense

results in the enhanced sensitivity of tumor cells to etoposide

treatment [71]. Interestingly, etoposide-induced cell death trig-

gers proteolytic cleavage of GRP94 by calpain, which also
cleaves Bcl-xL during apoptosis, therefore converting a pro-

survival protein into a pro-apoptotic molecule [86]. In addi-

tion, the role of GRP94 in cancer has been widely recognized

due to its ability to induce a tumor-specific protective immu-

nity in various experimental tumor models (Table 1). GRP94

is found to associate with diverse peptides including tumor-

specific antigens in the ER and the complexes are captured

by antigen-presenting cells, which in turn present the peptides

to MHC class I complex leading to the cell-mediated immune

response [87]. Based on this mechanism, GRP94 vaccines have

been extensively developed in cancer therapy. The isolated

GRP94-peptide complexes from specific cancer tissues or mod-

ified cancer cell lines are currently used as vaccines to immu-

nize animal tumor models or patients in clinical trials. The

studies observed that the immunization elicits the specific im-

mune response and tumor regression and the efficiency is im-

proved by low dose of cyclophosphamide, an inhibitor of the

induction of suppressive regulatory T cells [88]. Cell surface

GRP94 has also been implicated in systemic autoimmune dis-

eases [89].

Cell surface localization of GRP78, PDI, calnexin and cal-

reticulin have been reported [90–93]. In prostate cancer cells,

GRP78 serves as a receptor for activated macroglobulin and

is postulated to promote proliferation, survival and cell motil-

ity [94,95]. Cell surface expression of GRP78 in tumors but not

in normal organs has prompted new directions in targeting

cytotoxic agents into cancer cells [71,74,90].
8. ER chaperones alleviate atherosclerosis stress

Atherosclerosis is a chronic and progressive disease physio-

logically characterized by the hardening and narrowing of

the arteries due to the formation of atheromatous plaques on

the inside walls of arteries. It is well-established that athero-

sclerosis is a principle cause of cardiovascular disease, such

as atherothrombotic disease, myocardial infarction, stroke,

etc. [96,97]. Numerous clinical and epidemiology studies have

demonstrated that hyperhomocysteinemia (HHcy) is an inde-

pendent risk factor for atherosclerosis and thrombotic disease

[98,99]. Deficiencies in homocysteine metabolism, such as

nutritional deficiencies in B vitamin cofactors or mutations

in cystathionine b-synthase (CBS) gene or 5,10-methylenetetra-

hydrofolate reductase (MTHFR), can lead to hyperhomocy-

steinemia or even a severe form of HHcy, homocystinuria

[100]. Studies on the potential cellular mechanism by which

homocysteine promotes atherosclerosis revealed that HHcy in-

duces activation of proinflammatory factors [101–103], oxida-

tive stress [104] and ER stress associated with activation of the

UPR [105,106]. As summarized in Tables 1 and 2, increased

expression of ER stress response genes including GRP78,

GRP94, Herp and RTP (reducing agents and tunicamycin-

responsive protein) has been observed as a consequence of

high levels of intracellular homocysteine [107–109]. Homocys-

teine-induced ER stress leads to overexpression of pro-apopto-

tic factors including GADD153/CHOP and TDAG51 (T cell

death-associated gene 51) and activation of caspase-3

[108,110–112], which contributes to HHcy-associated vascular

endothelial cell injury that may promote the development of

atherothrombotic diseases. In addition, homocysteine-induced

ER stress also induces the expression of the sterol regulatory

element-binding proteins (SREBPs) in hepatocytes, vascular
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endothelial and smooth muscle cells [113]. SREBPs are ER-

resident transcription factors responsible for the activation of

genes involved in the cholesterol and triglyceride biosynthesis

pathways. Increased expression of SREBPs is also associated

with intracellular accumulation of cholesterol. Stable overex-

pression of GRP78 is able to inhibit the activation of SREBPs

and the genes under their regulation [113], which implies that

GRP78 may be a potential factor to inhibit atherosclerosis.

Further, GRP78 was discovered to suppress thrombin genera-

tion by inhibiting tissue factor (TF) procoagulant activity

[114], whereas homocysteine induces TF procoagulant acti-

vity. TF is a transmembrane glycoprotein and plays a role in

initiation of the extrinsic coagulation cascade and increased

expression of TF has been detected in atherosclerotic pla-

ques [115]. Thus, increased level of ER chaperone GRP78

can potentially suppress the development or progression of

hyperhomocysteinemia and atherosclerosis through: (i) allevi-

ating the homocysteine-induced ER stress; (ii) preventing

apoptosis of vascular endothelial cells; (iii) inhibiting the

activation of genes responsible for cholesterol/triglyceride bio-

synthesis; and (iv) suppressing the procoagulant potential of

cells.
9. Link of diabetes to UPR pathways and ER chaperone function

Diabetes is a prevalent metabolic disease characterized by

perturbed glucose metabolism. Usually, this disease is initiated

by failure of pancreatic b-cells associated with autoimmunity

(type 1) or insulin resistance in peripheral tissues (type 2). De-

fects in specific UPR pathways have been linked to diabetes in

mouse models and humans. One example is the human Wol-

cott-Rallison syndrome, a rare autosomal-recessive disorder

associated with pancreatic b-cell death and infancy-onset dia-

betes [116]. PERK mutations resulting in truncated or dysfunc-

tional PERK protein are responsible for this disorder. Similar

defect was also observed in Perk�/� mice and increased b-cell

apoptosis has been detected in the mouse islets [117]. The acti-

vation of PERK upon ER stress involves dissociation from

GRP78, oligomerization of PERK and autophosphorylation

of serine/threonine kinase domain. The activated PERK fur-

ther phosphorylates eIF2a (a subunit of translational initia-

tion factor), which results in transient inhibition of global

translation, thereby preventing further protein accumulation

in the ER and suppressing ER stress-induced cell death [17].

Therefore, PERK is a crucial pathway in pancreatic b-cells

to attenuate the stress signaling for survival.

The link of molecular chaperones to diabetes is just emerg-

ing. A recent study suggests that deficiency of P58IPK, an

inhibitor of PERK activation, causes type 1 diabetes and

late-stage type 2 diabetes in mice associated with hyperglyce-

mia and hypoinsulinemia concomitant with increasing apopto-

sis of pancreatic islet b-cells [118]. Deficiency of P58IPK has no

effect on the insulin secretion by viable pancreatic b-cells and

insulin sensitivity of peripheral tissues. However, the adult

P58IPK�/� mice with hyperglycemia showed increased b-cell

death and upregulation of pro-apoptotic genes, suggesting that

loss of functional pancreatic b-cells leads to hypoinsulinemia

and subsequent high blood glucose level. Although P58IPK is

a known inhibitor of both PERK and the cytosolic eIF2a ki-

nase PKR, its depletion only activates PERK, but not PKR

[119]. The diabetic phenotypes of P58IPK�/� mice showed that
sustained activation of PERK could lead to prolonged ER

stress and induce apoptosis of pancreatic b-cells (Table 2).

As a downstream effector of PERK, the heterozygous loss-

of-function mutation of eIF2a in mice fed on high fat diet re-

sults in development of diabetes and obesity [120]. This muta-

tion substitutes alanine at Ser51, the phosphorylation site of

eIF2a by PERK or PKR for translational inhibition. This dia-

betes mouse model is characterized by glucose intolerance,

abnormal ER distension and inadequate insulin secretion in

b-cells. Further, in eIF2a mutant mice fed with high fat diet,

increased amount of proinsulin was associated with GRP78

and production of mature insulin was decreased, suggesting

that the stable association with GRP78 inhibits the processing

of proinsulin into mature insulin. Thus, the S/A mutation of

eIF2a abolishes the ability of b-cells to adapt to ER stress

through translational attenuation in the high-fat diet fed mice.

The increased expression of proinsulin exceeds the folding

capacity of the ER and GRP78 retains the proinsulin mole-

cules in the ER for further folding process or degradation

through ERAD, which contributes to the reduced insulin level

in islets and diabetic symptoms.
10. ER chaperones and bacterial pathogenesis

Bacterial toxins are major determinants of bacterial viru-

lence and even lethality and the main causes of human diseases

in bacteria-infected populations. Generally, there are two types

of bacterial toxins, lipopolysaccharides, which are associated

with the cell walls of gram-negative bacteria, and proteins,

which are typically soluble proteins acting as enzymes intracel-

lularly or extracellularly. Bacterial protein toxins usually con-

tain two components: A subunit possesses enzymatic activity

and B subunit provides binding to the specific cell surface

receptor. In general, toxins bound to the cell surface receptor

are endocytosed, and transported retrogradely to the Golgi

and the ER as a holotoxin. When released from the AB native

toxin, the enzymatic A subunit becomes active. Evidence indi-

cated that PDI mediates the disassembly of cholera toxin (CT)

holotoxin [121]. CT has a typical AB5 arrangement of protein

toxins, which contains five B subunits and a single A subunit

that is cleaved into A1 catalytic chain and A2 chain upon

secretion. When CT holotoxin is taken up by intestinal

cells and translocated into the ER, the reduced form of ER

chaperone PDI binds to the A1 chain, reduces the disulfide

bridge between the A1 and A2 chains [122], and releases the

A1 chain from the holotoxin when the C-terminal disulfide

bond of PDI is oxidized by endoplasmic reticulum oxidoreduc-

tin 1 (Ero1) [123]. Eventually, the A1 chain is transferred

across the ER membrane to the cytosol where it refolds into

an active enzyme that ADP-ribosylates a trimeric G protein

and in turn activates adenylyl cyclase to elevate cAMP level

for activation of chloride channels at the cellular plasma

membrane, which leads to diarrhea. Thus, the unfolding pro-

cess by PDI facilitates the retrotranslocation of the A1 chain

of CT. However, other PDI family members modify toxin ret-

rotranslocation differently. A recent study revealed that

ERp72, a PDI-like protein retains the A1 chain of CT in the

ER and may potentially reduce the cytosolic activated A1

chain [124].

Another interesting discovery is that a bacterial toxin,

named AB5 subtilase cytotoxin (SubAB), causes cell lethality
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through specific cleavage of GRP78 at a single amino acid,

thus inactivating GRP78 function [125]. SubAB has been de-

tected in a virulent strain of Shiga toxigenic Escherichia coli

(STEC) and several other STEC serotypes. The STEC strains

are known to produce Shiga toxins that have been found to

cause the recent US outbreak of E. coli from fresh spinach

and cause haemolytic uraemic syndrome in humans [126].

The A subunit of Shiga toxin is exported from the ER lumen

to the cytosol, where it enzymatically cleaves the 28S rRNA

resulting in inhibition of protein synthesis and death of host

cells [127]. In contrast, the A subunit of SubAB remains in

the ER lumen instead of being retrotranslocated to the cytosol

and cleaves GRP78 at the region linking the ATPase domain

and the peptide-binding domain, thus destroying the cytopro-

tective GRP78 and leading to cell death. Therefore, STEC

strains bearing SubAB are expected to pose serious threat to

human health. On the other hand, SubAB may be a potential

tool in medical application regarding to its function of specif-

ically eliminating GRP78, since induction of GRP78 expres-

sion is correlated with tumor growth and drug resistance in a

variety of human cancers [128].
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