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a b s t r a c t

In this paper, we give new characterization of the classical Morrey space. Complementary
global Morrey-type spaces are introduced. It is proved that for particular values of parame-
ters these spaces give new pre-dual space of the classical Morrey space. We also show that
our new pre-dual space of the Morrey space coincides with known pre-dual spaces.
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1. Introduction

The well-known Morrey spaces Mp,λ introduced by Morrey in 1938 [1] in relation to the study of partial differential
equations, were widely investigated during last decades, including the study of classical operators of Harmonic Analysis—
maximal, singular and potential operators—in generalizations of these spaces (the so-called Morrey-type spaces). In the
theory of partial differential equations, alongwith theweighted Lebesgue spaces,Morrey-type spaces also play an important
role. These spaces appeared to be quite useful in the study of the local behavior of the solutions to partial differential
equations, a priori estimates and other topics in the theory of PDE.

In [2] local Morrey-type spaces LMpθ,ω and global Morrey-type spaces GMpθ,ω were defined and some properties of these
spaces were studied. Authors investigated the boundedness of the Hardy–Littlewood maximal operator in these spaces.
Later on there was intensive study of boundedness of other classical operators such as the fractional maximal operator, the
Riesz potential and the Calderón–Zygmund singular integral operator (see, for instance [3], for references).

Later in [4] ‘‘so-called’’ complementary local Morrey-type spaces
{
LMpθ,ω were introduced and the boundedness of the

fractional maximal operator from complementary local Morrey-type space
{
LMpθ,ω into local Morrey-type space LMpθ,ω was

investigated. As in the definition of the space
{
LMpθ,ω was used the complement of ball instead of ball, it was named the

complementary local Morrey-type space and no relation between LMpθ,ω and
{
LMpθ,ω was studied.

In [5] it is proved that the space
{
LMp′θ ′,ω is dual space of the space LMpθ,ω , where 1 ≤ p, θ < ∞, p′ and θ ′ are conj-

ugate exponents of p and θ , respectively, andω(t) = ωθ−1(t)


∞

t ωθ (s)ds
−1 (see Theorem 3.6 below).

Our goal in this paper is to introduce global complementary Morrey-type space and show that this new space is pre-dual
of the classical Morrey space.
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The paper is organized as follows. We start with notations and give some preliminaries in Section 2. In Section 3 we
recall some results on associate spaces of local Morrey-type spaces and complementary local Morrey-type spaces. New
characterization of the Morrey space was given in Section 4. In Section 5 we investigate some properties of an intersection
and a union of complementary local Morrey-type spaces. New characterization of the pre-dual space of the Morrey space
was given in Section 6. Finally, in Section 7we recall known pre-dual spaces of theMorrey space and compare new onewith
known spaces.

2. Notations and preliminaries

Now we make some conventions. Throughout the paper, we always denote by c and C a positive constant which is
independent of main parameters, but it may vary from line to line. By A . B we mean that A ≤ cB with some positive
constant c independent of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.
A constant, with subscript such as c1, does not change in different occurrences. For a measurable set E, χE denotes the
characteristic function of E.

Given a function w defined on (0,∞), we say that w satisfies the doubling condition if there exists a constant D > 0
such that for any t > 0, we havew(2t) ≤ Dw(t). Whenw satisfies this condition, we denotew ∈ △2, for short.

Unless a special remark is made, the differential element dx is omitted when the integrals under consideration are the
Lebesgue integrals.

Let Y be a Banach space and X its subspace. The closure of X in Y we will denote by [X]Y .
Let X and Y be two Banach spaces. The symbol X ↩→ Y means that X ⊂ Y and the natural embedding of X in Y is conti-

nuous. We say that X coincides with Y (and write X = Y ) if X and Y are equivalent in the algebraic and topological sense
(their norms are equivalent).

Definition 2.1. Banach spaces Xα , α ∈ A, form a Banach family if there exists a Banach spaceW such that

Xα ↩→ W , α ∈ A.

If (Xα)α∈A is a Banach family, the concepts of its sumΣ(Xα)α∈A and intersection △(Xα)α∈A will be introduced as follows.

Definition 2.2 ([6], Definition 2.1.35). The sum of a family (Xα)α∈A is a Banach space X such that

(a) Xα ↩→ X , α ∈ A;
(b) if for certain Banach space Y we have

Xα ↩→ Y , α ∈ A, then X ↩→ Y .

Changing the direction of embeddings, we obtain from here the definition of the intersection of the family (Xα)α∈A.
Note that the sum and intersection of a Banach family exist ([6], Proposition 2.1.36).
For a fixed p with p ∈ (0,+∞], p′ denotes the conjugate exponent of p, namely,

p′
:=



p
1 − p

if 0 < p < 1,

+∞ if p = 1,
p

p − 1
if 1 < p < +∞,

1 if p = +∞,

and 1/(+∞) = 0, 0/0 = 0, 0 · (±∞) = 0.
If E is a nonempty measurable subset on Rn and f is a measurable function on E, then we put

∥f ∥Lp(E) :=


E
|f (y)|pdy

 1
p

, 0 < p < +∞,

∥f ∥L∞(E) := sup{α : |{y ∈ E : |f (y)| ≥ α}| > 0}.

If I is a nonempty measurable subset on (0,+∞) and g is a measurable function on I , then we define ∥g∥Lp(I) and ∥g∥L∞(I),
correspondingly.

For x ∈ Rn and r > 0, let B(x, r) be the open ball centered at x of radius r and
{
B(x, r) := Rn

\ B(x, r).
Morrey spaces Mp,λ were introduced by Morrey in 1938 [1] and defined as follows: for 0 ≤ λ ≤ n, 1 ≤ p ≤ ∞, f ∈ Mp,λ

if f ∈ Llocp (R
n) and

∥f ∥Mp,λ ≡ ∥f ∥Mp,λ(Rn) = sup
x∈Rn, r>0

r
λ−n
p ∥f ∥Lp(B(x,r)) < ∞.
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Note that Mp,0 = L∞(Rn) and Mp,n = Lp(Rn). If λ < 0 or λ > n, then Mp,λ = Θ, where Θ is the set of all functions
equivalent to 0 on Rn.

In [7] Adams introduced a variant of Morrey-type spaces as follows: for 0 ≤ λ ≤ n, 1 ≤ p, θ ≤ ∞, f ∈ Mpθ,λ if
f ∈ Llocp (R

n) and

∥f ∥Mpθ,λ ≡ ∥f ∥Mpθ,λ(Rn) = sup
x∈Rn

∥r−
λ
p ∥f ∥Lp(B(x,r)) ∥Lθ (0,∞) < ∞.

(If θ = ∞, then Mpθ,λ = Mp,λ.)
Let us recall definitions of local Morrey-type spaces and complementary local Morrey-type spaces.

Definition 2.3 ([2]). Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞). We denote by LMpθ,ω

the local Morrey-type space, the space of all functions f ∈ Llocp (R
n)with finite quasinorm

∥f ∥LMpθ,ω ≡ ∥f ∥LMpθ,ω(Rn) =

w(r)∥f ∥Lp(B(0,r))


Lθ (0,∞)

.

Definition 2.4 ([4]). Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞). We denote by
{
LMpθ,ω

the complementary local Morrey-type space, the space of all functions f ∈ Lp(
{
B(0, t)) for all t > 0 with finite quasinorm

∥f ∥ {LMpθ,ω
≡ ∥f ∥ {LMpθ,ω(Rn)

=

w(r)∥f ∥
Lp(

{B(0,r))


Lθ (0,∞)

.

Definition 2.5. Let 0 < θ ≤ ∞. We denote byΩθ the set of all non-negative measurable functions ω on (0,∞) such that

0 < ∥ω∥Lθ (t,∞) < ∞, t > 0,

and by
{
Ωθ the set of all non-negative measurable functions ω on (0,∞) such that

0 < ∥ω∥Lθ (0,t) < ∞, t > 0.

It is convenient to define local Morrey-type spaces and complementary local Morrey-type spaces at any fixed point x ∈ Rn.

Definition 2.6. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞). For any fixed x ∈ Rn we
denote by LM{x}

pθ,ω , the local Morrey-type space: the space of all functions f ∈ Llocp (R
n)with finite quasinorm

∥f ∥LM{x}
pθ,ω

:=

w(r)∥f ∥Lp(B(x,r))


Lθ (0,∞)

= ∥f (x + ·)∥LMpθ,ω .

Definition 2.7. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞). For any fixed x ∈ Rn we
denote by

{
LM{x}

pθ,w the complementary local Morrey-type space, the space of all functions f ∈ Lp(
{
B(x, t)) for all t > 0 with

finite quasinorm

∥f ∥ {LM{x}
pθ,w

:=

w(r)∥f ∥
Lp(

{B(x,r))


Lθ (0,∞)

= ∥f (x + ·)∥ {LMpθ,ω
.

Note that LMpθ,ω = LM{0}
pθ,ω and

{
LMpθ,ω =

{
LM{0}

pθ,w .
In [2] global Morrey-type spaces GMpθ,w were defined.

Definition 2.8 ([2]). Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞). We denote by GMpθ,w ,
the global Morrey-type space, the space of all functions f ∈ Llocp (R

n)with finite quasinorms

∥f ∥GMpθ,w = ∥f ∥GMpθ,w(Rn) := sup
x∈Rn

∥f (x + ·)∥LMpθ,ω = sup
x∈Rn

∥f ∥LM{x}
pθ,ω

.

Note that the space GMpθ,w is the intersection space of the Banach family (LM{x}
pθ,ω)x∈Rn , that is, GMpθ,w = △(LM{x}

pθ,ω).
Note that

∥f ∥LMp∞,1
= ∥f ∥GMp∞,1

= ∥f ∥Lp .

Furthermore, GMp∞,r−λ/p ≡ Mp,λ, 0 < λ < n. The interpolation properties of the spaces GMp∞,w were studied by Spanne
in [8]. The spaces GMpθ,r−λ were used by Lu [9] for studying the embedding theorems for vector fields of Hörmander type.
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As mentioned in [4], the intersection △(
{
LM{x}

pθ,w) of the Banach family (
{
LM{x}

pθ,w)x∈Rn , defined by the finiteness of the
quasi-norm

∥f ∥
△(

{LM{x}
pθ,w)

= sup
x∈Rn

ω(r)∥f ∥
Lp(

{B(x,r))


Lθ (0,∞)

= sup
x∈Rn

∥f ∥ {LM{x}
pθ,w

is of no particular interest because this expression is equal to the product ∥f ∥Lp(Rn) × ∥ω∥Lθ (0,∞). It means that

△(
{
LM{x}

pθ,w) =


Lp(Rn), if ∥w∥Lθ (0,∞) < ∞

Θ, if ∥w∥Lθ (0,∞) = ∞.

It is natural to define global complementary Morrey-type space as a sum of a Banach family in the following way.

Definition 2.9. Let 0 < q, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞). We denote by
{
GMqθ,w :=

Σx∈Rn(
{
LM{x}

qθ,w), the complementary global Morrey space, the set of all functions f such that f =


k fk in the sense of dist-

ributions, where fk ∈
{
LM{xk}

qθ,w , xk ∈ Rn, and


k ∥fk∥ {LM
{xk}

qθ,w
< ∞.

We define a quasi-norm in
{
GMqθ,w

∥f ∥ {GMqθ,w
:= inf

f=

k

fk


k

∥fk∥ {LM
{xk}

qθ,w
,

where the infimum is taken over all representation of f of the form


k fk, fk ∈
{
LM{xk}

qθ,w ,


k ∥fk∥ {LM
{xk}

qθ,w
< ∞ and xk ∈ Rn.

Remark 2.10. Note that in view of Lemma 7.1 this definition is correct (see [6, p. 110] and [10]).

3. Associate and dual spaces of local Morrey-type and complementary local Morrey-type spaces

Let (R, µ) be a totally σ -finite non-atomic measure space. Let M(R, µ) be the set of all µ-measurable a.e. finite real
functions on R.

Definition 3.1. Let X be a set of functions fromM(R, µ), endowedwith a positively homogeneous functional ∥·∥X , defined
for every f ∈ M(R, µ) and such that f ∈ X if and only if ∥f ∥X < ∞. We define the associate space X ′ of X as the set of all
functions f ∈ M(R, µ) such that ∥f ∥X ′ < ∞, where

∥f ∥X ′ = sup


R

|fg|dµ : ∥g∥X ≤ 1

.

In what follows we assume R = Rn and dµ = dx.
In [5] the associate spaces of local Morrey-type and complementary local Morrey-type spaces were calculated. Our

method of construction of the pre-dual space of theMorrey spacemainly based on these results. For the sake of completeness
we recall some statements from [5].

Theorem 3.2 ([5], Theorem 4.5). Assume 1 ≤ p < ∞, 0 < θ ≤ ∞. Let ω ∈
{
Ωθ . Set X =

{
LMpθ,ω .

(i) Let 0 < θ ≤ 1. Then

∥f ∥X ′ ≈ sup
t∈(0,∞)

∥f ∥Lp′ (B(0,t))∥ω∥
−1
Lθ (0,t)

,

with the positive constants in equivalency independent of f .
(ii) Let 1 < θ ≤ ∞. Then

∥f ∥X ′ ≈


(0,∞)

∥f ∥θ
′

Lp′ (B(0,t))
d

−∥ω∥

−θ ′

Lθ (0,t+)

 1
θ ′

+

∥f ∥Lp′ (R
n)

∥ω∥Lθ (0,∞)

,

with the positive constants in equivalency independent of f .

Theorem 3.3 ([5], Theorem 4.6). Assume 1 ≤ p < ∞, 0 < θ ≤ ∞. Let ω ∈ Ωθ . Set X = LMpθ,ω .

(i) Let 0 < θ ≤ 1. Then

∥f ∥X ′ ≈ sup
t∈(0,∞)

∥f ∥
Lp′ (

{B(0,t))
∥ω∥

−1
Lθ (t,∞),

with the positive constants in equivalency independent of f .
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(ii) Let 1 < θ ≤ ∞. Then

∥f ∥X ′ ≈


(0,∞)

∥f ∥θ
′

Lp′ (
{B(0,t))

d∥ω∥
−θ ′

Lθ (t−,∞)

 1
θ ′

+

∥f ∥Lp′ (R
n)

∥ω∥Lθ (0,∞)

,

with the positive constants in equivalency independent of f .

In fact more general results, which are important for our applications, are true.

Theorem 3.4. Assume 1 ≤ p < ∞, 0 < θ ≤ ∞. Let ω ∈
{
Ωθ . For any fixed x ∈ Rn set X =

{
LM{x}

pθ,ω .
(i) Let 0 < θ ≤ 1. Then

∥f ∥X ′ ≈ sup
t∈(0,∞)

∥f ∥Lp′ (B(x,t))∥ω∥
−1
Lθ (0,t)

,

with the positive constants in equivalency independent of f and x.
(ii) Let 1 < θ ≤ ∞. Then

∥f ∥X ′ ≈


(0,∞)

∥f ∥θ
′

Lp′ (B(x,t))
d

−∥ω∥

−θ ′

Lθ (0,t+)

 1
θ ′

+

∥f ∥Lp′ (R
n)

∥ω∥Lθ (0,∞)

,

with the positive constants in equivalency independent of f and x.

Proof. Let x be any fixed point in Rn. Then

∥f ∥X ′ = ∥f ∥ {LM{x}
pθ,ω

′

= sup


Rn
|f (y)g(y)|dy : ∥g∥ {LM{x}

pθ,ω
≤ 1


= sup


Rn

|f (x + y)g(x + y)|dy : ∥g(x + ·)∥ {LMpθ,ω
≤ 1


= sup


Rn

|f (x + y)g(y)|dy : ∥g∥ {LMpθ,ω
≤ 1


= ∥f (x + ·)∥ {LMpθ,ω

′ .

It remains to apply Theorem 3.2. �

Theorem 3.5. Assume 1 ≤ p < ∞, 0 < θ ≤ ∞. Let ω ∈ Ωθ . For any fixed x ∈ Rn set X = LM{x}
pθ,ω .

(i) Let 0 < θ ≤ 1. Then

∥f ∥X ′ ≈ sup
t∈(0,∞)

∥f ∥
Lp′ (

{B(x,t))
∥ω∥

−1
Lθ (t,∞),

with the positive constants in equivalency independent of f and x.
(ii) Let 1 < θ ≤ ∞. Then

∥f ∥X ′ ≈


(0,∞)

∥f ∥θ
′

Lp′ (
{B(x,t))

d∥ω∥
−θ ′

Lθ (t−,∞)

 1
θ ′

+

∥f ∥Lp′ (R
n)

∥ω∥Lθ (0,∞)

,

with the positive constants in equivalency independent of f and x.

The proof of Theorem 3.5 is similar to that of Theorem 3.4 (we only need to apply Theorem 3.3 instead of Theorem 3.2) and
we omit it.

It was shown in [5] that for some values of parameters the dual spaces coincide with the associated spaces. Namely, the
following theorems were proved.

Theorem 3.6 ([5], Theorem 5.1). Assume 1 ≤ p < ∞, 1 ≤ θ < ∞. Let ω ∈ Ωθ and ∥ω∥Lθ (0,∞) = ∞. Then
LMpθ,ω

∗
=

{
LMp′θ ′,ω, (3.1)

whereω(t) = ωθ−1(t)


∞

t ωθ (s)ds
−1

, under the following pairing:

⟨f , g⟩ =


Rn

fg.

Moreover ∥f ∥ {LMp′θ ′,ω = supg


Rn fg

, where the supremum is taken over all functions g ∈ LMpθ,ω with ∥g∥LMpθ,ω ≤ 1.
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Theorem 3.7 ([5], Theorem 5.2). Assume 1 ≤ p < ∞, 1 ≤ θ < ∞. Let ω ∈
{
Ωθ and ∥ω∥Lθ (0,∞) = ∞. Then

{
LMpθ,ω

∗

= LMp′θ ′,ω, (3.2)

where ω(t) = ωθ−1(t)
 t

0 ω
θ (s)ds

−1
, under the following pairing:

⟨f , g⟩ =


Rn

fg.

Moreover ∥f ∥LMp′θ ′,ω
= supg


Rn fg

 , where the supremum is taken over all functions g ∈
{
LMpθ,ω : ∥g∥ {LMpθ,ω

≤ 1.

In fact more general results hold true.

Theorem 3.8. Assume 1 ≤ p < ∞, 1 ≤ θ < ∞. Let ω ∈ Ωθ such that ∥ω∥Lθ (0,∞) = ∞. Then for any x ∈ Rn
LM{x}

pθ,ω

∗

=
{
LM{x}

p′θ ′,ω, (3.3)

whereω(t) = ωθ−1(t)


∞

t ωθ (s)ds
−1

, under the following pairing:

⟨f , g⟩ =


Rn

fg.

Moreover ∥f ∥ {LM{x}
p′θ ′,ω = supg


Rn fg

 , where the supremum is taken over all functions g ∈ LM{x}
pθ,ω with ∥g∥LM{x}

pθ,ω
≤ 1.

Theorem 3.9. Assume 1 ≤ p < ∞, 1 ≤ θ < ∞. Let ω ∈
{
Ωθ such that ∥ω∥Lθ (0,∞) = ∞. Then for any x ∈ Rn

{
LM{x}

pθ,ω

∗

= LM{x}
p′θ ′,ω

, (3.4)

where ω(t) = ωθ−1(t)
 t

0 ω
θ (s)ds

−1
, under the following pairing:

⟨f , g⟩ =


Rn

fg.

Moreover ∥f ∥LM{x}
p′θ ′,ω

= supg


Rn fg

 , where the supremum is taken over all functions g ∈
{
LM{x}

pθ,ω : ∥g∥ {LM{x}
pθ,ω

≤ 1.

Proofs of Theorems 3.8 and 3.9 are analogous to proofs of Theorems 3.6 and 3.7, respectively and we omit them.

4. New characterization of Morrey space

In this section, we give new characterization of classical Morrey space.
Note that

g → inf
x∈Rn


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr

is the positively homogeneous functional on


x∈Rn
{
LM{x}

p′1, n−λp −1
.

Denote by

Mp,λ :=


f ∈ M(Rn, dx) : ∥f ∥ Mp,λ

< ∞


(4.1)

the associate space of the set of functions


x∈Rn
{
LM{x}

p′1, n−λp −1
, where

∥f ∥ Mp,λ
:= sup


Rn

|fg| : inf
x∈Rn


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr ≤ 1


. (4.2)

To study properties of the space Mp,λ, the following results are useful.
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Lemma 4.1. Let 1 ≤ p < ∞ and 0 < λ < n. Then the inequality
Rn

|fg| ≤ C∥f ∥Mp,λ inf
x∈Rn


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr, (4.3)

holds with positive constant C independent of functions f and g.

Proof. Let x be any fixed point in Rn. For θ = ∞ andw(t) = t
λ−n
n Theorem 3.5 (part (ii)) implies the following inequality

Rn
|fg| ≤ C sup

t>0
t
λ−n
p ∥f ∥Lp(B(x,t))


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr, (4.4)

with constant C independent of f , g and x. Therefore
Rn

|fg| ≤ C sup
x∈Rn, t>0

t
λ−n
p ∥f ∥Lp(B(x,t))


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr

= C∥f ∥Mp,λ


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr. (4.5)

In view of arbitrariness of xwe arrive at (4.3). �

Lemma 4.2. Let 1 ≤ p < ∞ and 0 < λ < n. Then

inf
x∈Rn


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr = 0 (4.6)

if and only if g = 0 on Rn.

Proof. Obviously,

inf
x∈Rn


∞

0
r

n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr = 0,

when g = 0 a.e. on Rn.
Now assume that infx∈Rn


∞

0 r
n−λ
p −1

∥g∥
Lp′ (

{B(x,r))
dr = 0. For any fixed R > 0 consider the function f = χB(0,R). Obviously,

f ∈ Mp,λ, since ∥χB(0,R)∥Mp,λ ≈ Rλ/p. Then by the inequality (4.3), we have

B(0,R) |f | = 0, therefore, f = 0 a.e. on B(0, R).

From arbitrariness of R, we get that f = 0 a.e. on Rn. �

Lemma 4.3. Let 1 ≤ p < ∞ and 0 < λ < n. Then
x∈Rn

{
LM{x}

p′1, n−λp −1
⊂ Lloc1 (R

n).

Proof. Let g be any function from


x∈Rn
{
LM{x}

p′1, n−λp −1
. Then there exists x ∈ Rn such that g ∈

{
LM{x}

p′1, n−λp −1
. Let R be any

fixed positive number. Since the function f = χB(x,R) ∈ Mp,λ and ∥f ∥Mp,λ ≈ Rλ/p, by the inequality (4.5) we get
B(x,R)

|g(y)|dy ≤ CR
λ
p ∥g∥ {LM{x}

p′1, n−λp −1

< ∞.

In view of arbitrariness of Rwe get that g ∈ Lloc1 (R
n). �

Lemma 4.4. Assume 1 ≤ p < ∞ and 0 < λ < n. Moreover, let f ∈ Llocp′ (Rn). Then for any fixed x ∈ Rn and R > 0

fχB(x,R) ∈
{
LM{x}

p′1, n−λp −1
.

Proof. Indeed, for any fixed x ∈ Rn and R : 0 < R < ∞, we get

∥fχB(x,R)∥ {LM{x}
p′1, n−λp −1

=


∞

0
r

n−λ
p −1

∥fχB(x,R)∥Lp′ (
{B(x,r))

dr

=


∞

0
r

n−λ
p −1


{B(x,r)∩B(x,R)

|f |p
′

 1
p′

dr
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=

 R

0
r

n−λ
p −1


{B(x,r)∩B(x,R)

|f |p
′

 1
p′

dr

≤


B(x,R)

|f |p
′

 1
p′
 R

0
r

n−λ
p −1dr

= c1R
n−λ
p


B(x,R)

|f |p
′

 1
p′

< ∞. �

Our main result in this section reads as follows.

Theorem 4.5. Assume 1 ≤ p < ∞ and 0 < λ < n. Then

∥f ∥Mp,λ ≈ ∥f ∥ Mp,λ
. (4.7)

Proof. By Lemma 4.1, it is easy to see that

∥f ∥ Mp,λ
. ∥f ∥Mp,λ .

Let us prove the opposite estimate, that is, ∥f ∥Mp,λ . ∥f ∥ Mp,λ
. If ∥f ∥ Mp,λ

= ∞, then there is nothing to prove. Assume that
∥f ∥ Mp,λ

< ∞.
Observe that for g ∈ Llocp′ (Rn) the inequality

B(x,R)
|fg| ≤ CR

n−λ
p


B(x,R)

|g|p
′

 1
p′

∥f ∥ Mp,λ
(4.8)

holdswith constant C > 0 independent of f , g, x and R. Indeed, let x be any fixed point inRn and R > 0.When

B(x,R) |g|

p′

= 0

there is nothing to prove, since in this case g = 0 a.e. on B(x, R). Assume that

B(x,R) |g|

p′

> 0. Denote

h(y) =
g(y)χB(x,R)(y)

c1R
n−λ
p


B(x,R) |g|
p′

 1
p′
. (4.9)

By Lemma 4.4

h ∈
{
LM{x}

p′1, n−λp −1
,

and moreover, ∥h∥ {LM{x}
p′1, n−λp −1

≤ 1. Consequently,

inf
x∈Rn


∞

0
r

n−λ
p −1

∥h∥
Lp′ (

{B(x,r))
dr ≤ 1.

Therefore
Rn

|hf | ≤ ∥f ∥ Mp,λ
, (4.10)

and from (4.9), we get (4.8).
The inequality (4.8) implies that f ∈ Lloc1 (R

n). By the Theorem of Resonance (see [11, Lemma 27, p. 283]) we get that
f ∈ Llocp (R

n).
The function g := |f |p−1χB(x,R) ∈ Llocp′ (Rn), and if we put g into the inequality (4.8), we obtain

B(x,R)
|f |p ≤ cR

n−λ
p


B(x,R)

|f |p
 1

p′

∥f ∥ Mp,λ
.

Therefore,

R
λ−n
p


B(x,R)

|f |p
 1

p

≤ c∥f ∥ Mp,λ
.

Since a constant c is independent of x and R, we get

∥f ∥Mp,λ ≤ c∥f ∥ Mp,λ
. �
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5. An intersection and a union of complementary local Morrey-type spaces

In this section,we investigate someproperties of an intersection and a union of complementary localMorrey-type spaces.
The following lemma is true.

Theorem 5.1. Let 0 < p, θ ≤ ∞ andw ∈
{
Ωθ


△2. Then for any x1, x2 ∈ Rn, x1 ≠ x2

{
LM{x1}

pθ,w(R
n)


{
LM{x2}

pθ,w(R
n) =

{
LMpθ,w(Rn)


Lp(Rn). (5.1)

Proof. In order to prove that

{
LM{x1}

pθ,w(R
n)


{
LM{x2}

pθ,w(R
n) ⊂

{
LMpθ,w(Rn)


Lp(Rn) (5.2)

observe that for x1 ≠ x2
{
LM{x1}

pθ,w(R
n)


{
LM{x2}

pθ,w(R
n) ⊂ Lp(Rn). (5.3)

Indeed, let f ∈
{
LM{x1}

pθ,w(R
n)
 {

LM{x2}
pθ,w(R

n). Since for any R > 0 and x ∈ Rn

∥f ∥ {LM{x}
pθ,ω

=


∞

0
w(r)θ∥f ∥θ

Lp(
{B(x,r))

dr
 1
θ

≥

 R

0
w(r)θ∥f ∥θ

Lp(
{B(x,r))

dr
 1
θ

&

 R

0
w(r)θdr

 1
θ

∥f ∥
Lp(

{B(x,R))
(5.4)

andw ∈
{
Ωθ , then f ∈ Lp(

{
B(xi, R)), i = 1, 2. Denote R0 = |x1 − x2|/2. Then

∥f ∥Lp(Rn) ≤ ∥f ∥
Lp(

{B(x1,R0))
+ ∥f ∥

Lp(
{B(x2,R0))

< ∞.

It proves (5.3). It remains to show that

{
LM{x1}

pθ,w(R
n)


{
LM{x2}

pθ,w(R
n) ⊂

{
LMpθ,w(Rn). (5.5)

Let f ∈
{
LM{x}

pθ,w(R
n), where x is a fixed point in Rn. For any r > 2|x| we have

{
B(0, r) ⊂

{
B(x, r/2). Indeed, for y ∈ B(x, r/2)

we get |y| ≤ |y − x| + |x| ≤ r/2 + r/2 = r , that is, B(x, r/2) ⊂ B(0, r). Usingw ∈ △2,

∥f ∥ {LMpθ,ω
=


∞

0
w(r)θ∥f ∥θ

Lp(
{B(0,r))

dr
 1
θ

=

 2|x|

0
+


∞

2|x|


w(r)θ∥f ∥θ

Lp(
{B(0,r))

dr
 1
θ

.

 2|x|

0
w(r)θdr

 1
θ

∥f ∥Lp(Rn) +


∞

2|x|
w(r)θ∥f ∥θ

Lp(
{B(x,r/2))

dr
 1
θ

.

 2|x|

0
w(r)θdr

 1
θ

∥f ∥Lp(Rn) +


∞

0
w(r)θ∥f ∥θ

Lp(
{B(x,r))

dr
 1
θ

≈
 2|x|

0
w(r)θdr

 1
θ

∥f ∥Lp(Rn) + ∥f ∥ {LM{x}
pθ,ω
. (5.6)

Let f ∈
{
LM{x1}

pθ,w(R
n)
 {

LM{x2}
pθ,w(R

n). By (5.3) f ∈ Lp(Rn). Then by (5.6), we get that f ∈
{
LMpθ,ω , sincew ∈

{
Ωθ .

On the other hand, using the same argument as in the proof of estimate (5.6), one can prove that

∥f ∥ {LM{x}
pθ,ω

.

 2|x|

0
w(r)θdr

 1
θ

∥f ∥Lp(Rn) + ∥f ∥ {LMpθ,ω
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holds for any x ∈ Rn. This gives
{
LMpθ,w(Rn)


Lp(Rn) ⊂

{
LM{x}

pθ,w(R
n), x ∈ Rn. �

Corollary 5.2. Let 0 < p, θ ≤ ∞ andw ∈
{
Ωθ


△2. Then

x∈Rn

{
LM{x}

pθ,w(R
n) =

{
LMpθ,w(Rn)


Lp(Rn). (5.7)

Theorem 5.3. Let 0 < p, θ ≤ ∞ andw ∈
{
Ωθ


△2. Then for any x ∈ Rn

{
LMpθ,w(Rn)


Lp(Rn)


{LM{x}

pθ,w(R
n)

=
{
LM{x}

pθ,w(R
n), (5.8)

that is, the set
{
LMpθ,w(Rn)


Lp(Rn) is dense in

{
LM{x}

pθ,w(R
n).

Proof. Let x be any fixed point Rn. For f ∈
{
LM{x}

pθ,w(R
n) and any k ∈ N, denote fk = fχB(x,k)\B(x, 1k )

. It is evident that fk → f ,
k → ∞ a.e in Rn. By Lebesgue’s Dominated Convergence Theorem, we get that

∥f − fk∥ {LM{x}
pθ,w(R

n)
→ 0, k → ∞.

On the other hand, it is evident that fk ∈ Lp(Rn), k ∈ N. Since fk ∈
{
LM{x}

pθ,w(R
n), by (5.6), we get that fk ∈

{
LMpθ,w(Rn).

Finally, we arrive at fk ∈
{
LMpθ,w(Rn)


Lp(Rn). �

Theorem 5.4. Let 0 < p, θ ≤ ∞ andw ∈
{
Ωθ


△2. Then for any x1, x2 ∈ Rn such that x1 ≠ x2

{
LM{x1}

pθ,w(R
n)


{
LM{x2}

pθ,w(R
n)


{LM
{xi}
pθ,w(R

n)
=

{
LM{xi}

pθ,w(R
n), i = 1, 2. (5.9)

Proof. The statement immediately follows from Theorems 5.1 and 5.3. �

6. New characterization of the pre-dual space of the Morrey space

In this section, we prove that the space
{
GMp′1, n−λp −1 is the pre-dual space of the Morrey space GMp∞, λ−n

p
.

Theorem 6.1. Let 1 ≤ p < ∞ and 0 < λ < n. Then
{
GMp′1, n−λp −1

∗

= GMp∞, λ−n
p
.

Proof. Let f ∈ GMp∞, λ−n
p

and g ∈
{
GMp′1, n−λp −1. For any representation of g =


k gk such that gk ∈

{
LM{xk}

p′1, n−λp −1
and

k ∥gk∥ {LM
{xk}

p′1, n−λp −1

< ∞, where xk ∈ Rn, we have


Rn

f (x)g(x)dx
 =

Rn f (x)

k
gk(x)dx

 ≤

k


Rn |f (x)gk(x)|dx.

Applying (4.4), we get
Rn

f (x)g(x)dx
 . ∥f ∥GM

p∞, λ−n
p


k

∥gk∥ {LM
{xk}

p′1, n−λp −1

. (6.1)

Since (6.1) holds for any representation of g , then
Rn

f (x)g(x)dx
 . ∥f ∥GM

p∞, λ−n
p

∥g∥ {GM
p′1, n−λp −1

. (6.2)

It proves that GMp∞, λ−n
p

⊂


{
GMp′1, n−λp −1

∗

.
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Let us show that


{
GMp′1, n−λp −1

∗

⊂ GMp∞, λ−n
p

. It follows from the definition of the space
{
GMp′1, n−λp −1 that for any fixed

x ∈ Rn

{
LM{x}

p′1, n−λp −1
⊂

{
GMp′1, n−λp −1,

and

∥f ∥ {GM
p′1, n−λp −1

≤ ∥f ∥ {LM{x}
p′1, n−λp −1

.

If L ∈


{
GMp′1, n−λp −1

∗

, then for any x ∈ Rn

|L(f )| ≤ C∥f ∥ {GM
p′1, n−λp −1

≤ C∥f ∥ {LM{x}
p′1, n−λp −1

(6.3)

for every f ∈
{
LM{x}

p′1, n−λp −1
. Thus L ∈


{
LM{x}

p′1, n−λp −1

∗

. By Theorem 3.7,


{
LM{x}

p′1, n−λp −1

∗

= LM{x}
p∞, λ−n

p
,

and there exists unique gx ∈ LM{x}
p∞, λ−n

p
such that

L(f ) =


Rn

f (z)gx(z)dz (6.4)

for any f ∈
{
LM{x}

p′1, n−λp −1
. It is easy to see that if x1, x2 ∈ Rn, x1 ≠ x2, then gx1 = gx2 .

Indeed, by (6.4) we get that
Rn
(gx1 − gx2)f = 0 (6.5)

for any f ∈
{
LM{x1}

p′1, n−λp −1
(Rn)

 {
LM{x2}

p′1, n−λp −1
(Rn). By Theorem 5.4, we have

{
LM{x1}

p′1, n−λp −1
(Rn)


{
LM{x2}

p′1, n−λp −1
(Rn)


{LM

{xi}

p′1, n−λp −1
(Rn)

=
{
LM{xi}

p′1, n−λp −1
(Rn), i = 1, 2.

In view of the fact that
{
LM{xi}

p′1, n−λp −1
(Rn), i = 1, 2 are Banach spaces and the intersection

{
LM{x1}

p′1, n−λp −1
(Rn)


{
LM{x2}

p′1, n−λp −1
(Rn)

is the subspace of both of them, we get that gx1 = gx2 . By (6.3)
Rn

f (z)g(z)dz
 ≤ C∥f ∥ {LM{x}

p′1, n−λp −1

.

Thus

∥g∥LM{x}
p∞, λ−n

p

≤ C .

Since constant C does not depend on x, we get that

∥g∥GM
p∞, λ−n

p
< ∞.

Summarizing, we have already proved that there exists unique g ∈ GMp∞, λ−n
p

L(f ) =


Rn

fg (6.6)
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for every f ∈


x∈Rn
{
LM{x}

p′1, n−λp −1
. Let us prove that (6.6) holds for any f ∈

{
GMp′1, n−λp −1. Let f be any function from

GMp′1, n−λp −1 and f =


k fk be any representation of f with fk ∈
{
LM{xk}

p′1, n−λp −1
and


k ∥fk∥ {LM

{xk}

p′1, n−λp −1

< ∞, where xk ∈ Rn.

For finite representation there is nothing to prove. Assume that the representation is infinite, that is, f =


∞

k=1 fk. SinceL (f )− L


m

k=1

fk

 =

L


∞
k=m+1

fk


≤

∞
k=m+1

|L(fk)| .

∞
k=m+1

∥fk∥ {LM
{xk}

p′1, n−λp −1

→ 0, m → ∞,

and, using (4.4),


Rn
fg −


Rn


m

k=1

fk


g

 =




Rn


f −

m
k=1

fk


g

 =




Rn


∞

k=m+1

fk


g


≤

∞
k=m+1


Rn

|fkg| . ∥g∥GMp∞,λ

∞
k=m+1

∥fk∥ {LM
{xk}

p′1, n−λp −1

→ 0, m → ∞,

we arrive at

L(f ) =


Rn

fg

for any f ∈
{
GMp′1, n−λp −1. �

7. Equivalent pre-dual spaces

For p > 1 there are already three characterizations of the pre-dual space of a Morrey space in the literature. First, in
1986, C.T. Zorko proved the following theorem.

Theorem ([12], Theorem 5). Let p ∈ (1,∞) and λ ∈ (0, n). Then a pre-dual space of Mp,λ is Zp′,λ in the following sense: if
g ∈ Mp,λ, then


Rn fg is an element of (Zp′,λ)

∗. Moreover, for any L ∈ (Zp′,λ)
∗, there exists g ∈ Mp,λ such that

L(f ) =


Rn

fg, f ∈ Zp′,λ.

The space Zp′,λ is defined by the set of all functions f on Rn with the norm

∥f ∥Zp′,λ
= inf


∥{ck}∥ℓ1 : f =


k

ckak


< ∞,

where ak is a (p′, n−λ)-atom and ∥{ck}∥ =


k |ck| < ∞, and the infimum is taken over all possible atomic decompositions
of f . Additionally, we say that a function a on Rn is an (p′, n − λ)-atom provided that a is supported on a ball B ⊂ Rn and
satisfies

∥a∥p′ ≤
1

|B|
n−λ
np
.

Second, in 1998, E.A. Kalita obtained another description of the pre-dual space of a Morrey space as follows.

Theorem ([13], Theorem 1). Let p ∈ (1,∞) and λ ∈ (0, n). Then a pre-dual space of Mp,λ is Kp′,λ in the following sense: if
g ∈ Mp,λ, then


Rn fg is an element of (Kp′,λ)

∗. Moreover, for any L ∈ (Kp′,λ)
∗, there exists g ∈ Mp,λ such that

L(f ) =


Rn

fg, f ∈ Kp′,λ.

The Kp′,λ consists of all functions f on Rn with the quasi-norm

∥f ∥Kp′,λ
= inf

σ


Rn

|f |p
′

ω1−p′

σ

 1
p′

,
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where

ωσ (x) =


Rn+1

+

r−(n−λ)1R1
+
(r − |x − y|)dσ(y, r),

and where the infimum is taken over all σ ∈ M+(Rn+1
+ ) (the class of all nonnegative Radon measures on the upper half

space Rn+1
+ = {(x, r) : x ∈ Rn, r > 0}) with normalization σ(Rn+1

+ ) = 1.
Third, in 2004, D.R. Adams and J. Xiao obtained another description of the pre-dual space of a Morrey space as follows.

Theorem ([14], Theorem 2.3). Let p ∈ (1,∞) and λ ∈ (0, n). Then the pre-dual space of Mp,λ is Hp′,λ under the following
pairing:

⟨f , g⟩ =


Rn

fg.

Moreover,

∥f ∥Mp,λ = sup
g


Rn

fg
 ,

where the supremum is taken over all functions g ∈ Hp′,λ with ∥g∥Hp′,λ
≤ 1.

We say that g is in Hp′,λ if

∥g∥Hp′,λ
= inf

ω


Rn

|g|p
′

ω1−p′

 1
p′

< ∞, (7.1)

where the infimum is over all nonnegative functions ω on Rn satisfying

∥ω∥L1(Λ(∞)
n−λ)

≤ 1.

HereΛ(∞)
d , 0 < d ≤ n, denotes the d-dimensional Hausdorff capacity, that is,

Λ
(∞)
d (E) = inf


rdj ,

where the infimum is taken over all countable coverings of E ⊂ Rn by open balls of radius rj.
The following relationship is obtained in [14].

Theorem ([14], Theorem 3.3). Let p ∈ (1,∞) and λ ∈ (0, n). Then Zp′,λ = Kp′,λ = Hp′,λ with

∥ · ∥Zp′,λ
≈ ∥ · ∥Kp′,λ

≈ ∥ · ∥Hp′,λ
.

Let us compare
{
GMp′1, n−λp −1 with known pre-dual spaces. The following Lemma is true.

Lemma 7.1. Let 1 ≤ p < ∞ and 0 < λ < n. Then
x∈Rn

{
LM{x}

p′1, n−λp −1
⊂ Zp′,λ.

Proof. Let x be any point in Rn and let f be any function from
{
LM{x}

p′1, n−λp −1
. It is possible to decompose f in the following

way:

f =


k

2k n−λ
p ∥f ∥Lp′ (B(x,2

k)\B(x,2k−1))

fχB(x,2k)\B(x,2k−1)

2k n−λ
p ∥f ∥Lp′ (B(x,2

k)\B(x,2k−1))

.

Denote

λk := 2k n−λ
p ∥f ∥Lp′ (B(x,2

k)\B(x,2k−1)) and ak :=
fχB(x,2k)\B(x,2k−1)

2k n−λ
p ∥f ∥Lp′ (B(x,2

k)\B(x,2k−1))

.

Note that ak is (p′, n − λ)-atom. Indeed, it is obvious that supp ak ⊂ B(x, 2k). On the other hand,

∥ak∥Lp′ (R
n) =

1

2k n−λ
p

≈
1

|B(x, 2k)|
n−λ
np
.
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Note that {λk} ∈ ℓ1. Indeed,
k

|λk| =


k

2k n−λ
p ∥f ∥Lp′ (B(x,2

k)\B(x,2k−1))

.

k

 2k−1

2k−2
r

n−λ
p −1dr∥f ∥

Lp′ (
{B(x,2k−1))

.

k

 2k−1

2k−2
r

n−λ
p −1

∥f ∥
Lp′ (

{B(x,r))
dr

.


∞

0
r

n−λ
p −1

∥f ∥
Lp′ (

{B(x,r))
dr = ∥f ∥ {LM{x}

p′1, n−λp −1

.

Recall the following fact: if ψ is a testing function supported in B(x1, r1) and a is an atom, we have a(x)ψ(x)dx
 ≤ r

−
λ
p

1 ∥ψ∥∞

(see, for instance, [12]).
Therefore f =


k λkak in the sense of distributions. Thus f ∈ Zp′,λ and

∥f ∥Zp′,λ
. ∥f ∥ {LM{x}

p′1, n−λp −1

< ∞. �

Finally, we prove that the space
{
GMp′1, n−λp −1 coincides with known pre-dual spaces, namely, the following theorem is true.

Theorem 7.2. Let 1 ≤ p < ∞ and 0 < λ < n. Then
{
GMp′1, n−λp −1 = Zp′,λ.

Proof. At first prove that

Zp′,λ ⊂
{
GMp′1, n−λp −1.

Let f ∈ Zp′,λ. Suppose f =


k ckak, where each ak is (p′, n − λ)-atom supported in some ball B(xk, rk) and


k |λk| < ∞.
Observe that ak ∈

{
LM{xk}

p′1, n−λp −1
. Indeed,

∥a∥ {LM
{xk}

p′1, n−λp −1

=


∞

0
r

n−λ
p −1

∥ak∥Lp′ (
{B(xk,r))

dr

=

 rk

0
r

n−λ
p −1

∥ak∥Lp′ (
{B(xk,r))

dr

. r
n−λ
p

k ∥ak∥Lp′ (R
n) .

r
n−λ
p

k

|B(xk, rk)|
n−λ
np

= c1 < ∞.

Then 
k

∥ckak∥ {LM
{xk}

p′1, n−λp −1

. c1

k

|ck| < ∞,

that is, f ∈
{
GMp′1, n−λp −1.

Conversely, by Lemma 7.1
x∈Rn

{
LM{x}

p′1, n−λp −1
⊂ Zp′,λ.

Assume that f ∈
{
GMp′1, n−λp −1 and let f =


k fk be any representation of f with fk ∈

{
LM{xk}

p′1, n−λp −1
and

k

∥fk∥ {LM
{xk}

p′1, n−λp −1

< ∞,
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where xk ∈ Rn. Then

∥f ∥Zp′,λ
=


k

fk


Zp′,λ

≤


k

∥fk∥Zp′,λ
.

k

∥fk∥ {LM
{xk}

p′1, n−λp −1

< ∞. �
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