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Abstract 

This study evaluates the capability of soil water content predicted from remote sensing to indicate the soil/canopy water content at 
short time and space scale, through comparisons with daily soil moisture data determined in situ, using dielectric devices. Daily 
aqua moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and the diurnal 
(daytime and night time) land surface temperature difference (DLST) are employed to retrieving daily volumetric soil moisture 
content ( ) at Sparta experimental station, during the period June-August, of the years 2010, 2011, 2012 and 2014. Using the 
concept of apparent thermal inertia (ATI) in the remotely sensed topsoil moisture saturation index, daily  is obtained from DLST 
and the volumetric saturated and residual soil moisture content and is compared with the experimental values of volumetric soil 
moisture content (SM) measured at various depths (10, 20, 30, 40, 60, 80 and 100 cm). Simple relationships are also calibrated 
between SM and ATI or DLST or NDVI during the years 2010, 2011 and 2014 and are tested for predicting , during the year 
2012. Especially the three first models predict  satisfactorily as compared with the measured SM and hence they can offer a 
considerable guidance in irrigated agriculture and other related fields. 
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1. Introduction 

Soil moisture is an important parameter in hydrological modeling that influences the energy transfer between the 
land surface and the atmosphere by controlling the partition of available energy, further affecting the climate. Soil 
moisture (SM) determination is of paramount importance for a rational application of irrigated agriculture, especially 
in arid or semi-arid regions, where water scarcity and low quality waters may seriously affect crop development and 
productivity. Despite of their reliability, conventional point measurements are complex, labor-demanding, time-
consuming and hence expensive. The recent development and wide-spread application of the so called dielectric 
sensors which exploit the amazing feature of water’s dielectric constant to be exceptionally high (~80), while all other 
soil’s constituents expose dielectric constant values not larger than 5, made the whole process of SM determination 
much easier. However, even this methodology cannot be used in large areas, since the spatial and temporal variations 
of soil properties, terrain, and vegetation cover, make the selection of representative field sites difficult. In contrast 
with the field methods, remote sensing is an effective tool for estimating soil moisture and drought monitoring at 
various scales because of large coverage, and multispectral and multitemporal observations from satellite sensors.  

Estimating soil moisture from remotely sensed data has covered a wide spectrum ranging from visible to microwave 
bands. Despite the benefits of microwave methods (mainly capability to be used at night and even under cloudy skies), 
optical and thermal methods are also fundamental in remote sensing of soil moisture, especially because they can 
provide high spatial resolution maps. At optical and thermal infrared domains, land-surface temperature, vegetation 
index, and albedo are good indicators of soil moisture dynamics. Thermal inertia is a physical variable describing the 
impedance to variations of temperature and is defined as TI= Kc, where K is soil thermal conductivity [W m-1 
K 1],  is soil bulk density [kg m 3], and c is heat capacity [J kg 1 K 1] [1]. When thermal inertia values increase, 
the variation of temperature is small, for a given transfer of heat, while when thermal inertia values are low, the 
variation of temperature is high for the same transfer of heat. In addition, the specific heat capacity of water being 
equal to 4.18 kJ kg 1 K 1, is much higher than dry soil (e.g. 0.8 kJ kg 1 K 1) and as a consequence, high soil 
moisture values lead to high thermal inertial values of soil which result in lower diurnal temperature fluctuation. Due 
to the difficulty of measuring , K and c, thermal Inertia has been approached from the estimations of Apparent 
Thermal Inertia (ATI), by using remote sensing data. Various methods have been referred for estimating SM either 
based upon ATI [2-3] or DLST or NDVI [4-6]. 

This study evaluates the capability of volumetric soil water content predicted from remote sensing data to indicate 
the soil/canopy water content at short time and space scale through comparisons with measured (by dielectric devices) 
soil moisture data. Thus, daily aqua moderate resolution imaging spectroradiometer (MODIS) normalized difference 
vegetation index (NDVI) and the diurnal (daytime and night time) land surface temperature difference (DLST) are 
used to estimating daily volumetric soil moisture content ( ) in an olive orchard at Sparta, during the period June-
August, of the years 2010, 2011, 2012 and 2014. Daily  is estimated from the soil moisture saturation index (SMSI) 
and is compared with the experimental values of volumetric soil moisture content (SM) measured at various depths 
(10, 20, 30, 40, 60, 80 and 100 cm). Simple relationships between SM and ATI or DLST or NDVI are also calibrated, 
during the years 2010, 2011 and 2014 and they are tested for predicting , during the year 2012. 

2. Data and methods 

2.1. Data 

In this study, soil volumetric water content measurements (SM) taken from an olive orchard at the rural area of 
Sparta (Lat. 37  04  N, long. 22  05 E and altitude 0.212Km) during the period June – August, of the years 2010, 
2011, 2012 and 2014 were used. Soil moisture monitoring tubes had been properly installed in order to measure SM 
at 10, 20, 30, 40, 60, 80 and 100 cm depths (SM10, SM20, SM30, SM40, SM60, SM80 and SM10, respectively). ML2 Theta 
Probe was used, which is an impedance dielectric sensor with an operating frequency of 100 MHz. 

Remotely sensed data obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS), during summer 
of the years 2010, 2011, 2012 and 2014 were also used in this study. The MYD11A1 MODIS Aqua land product 
(version 5), was used, which offers daily daytime (LSTday) and nighttime (LSTnight) Land Surface Temperature (LST) 
data stored on a 1-Km spatial resolution and gridded in the sinusoidal projection. The MODIS product (MYD09GA) 
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data, with band1 (red wavelength) and band 2 (near-infrared wavelength), were used to calculate daily NDVI at 500m 
resolution in the selected station of Sparta, during summer periods of the  years 2010, 2011, 2012 and 2014.  

2.2. Methods 

This study focuses on the estimation of daily soil moisture content from various remote sensing data and the 
evaluation of the resulting estimates by their comparisons with SM experimental data averaged, as daily means for 
each depth. In all analyses, the 2010-, 2011- and 2014-data are used for the calibration procedure, while 2012-data are 
kept for the validation procedure. In the analysis, soil moisture content is estimated either from the soil moisture 
saturation index (SMSI), expressed as a function of maximum and minimum apparent thermal inertia (based upon the 
diurnal land surface temperature difference), or from ATI, DLST or NDVI by using calibrated predicting equations. 

Apparent Thermal Inertia  
ATI [7] is estimated according to the following equation:  

                   (1) 

Where: ATI is apparent thermal inertia [K-1], 0 is the surface albedo, DLST, is the diurnal land surface temperature 
difference [K] estimated as: DLST = LSTd – LSTn (LSTd is daytime land surface temperature [K], LSTn is night time 
land surface temperature [K]) and C is solar correction factor estimated as: 

C = sin  sin  (1-tan2  tan2 ) + cos  cos  arcos (-tan  tan )              (2) 

Where:  is latitude,  is the solar declination. 
Estimation of soil moisture content based on apparent thermal inertia and soil moisture saturation index  
Soil moisture saturation index (SMSI) is determined as: 

                   (3) 

Where:  is volumetric soil moisture content [m3m-3], res is volumetric residual soil moisture content [m3m-3], sat 
is volumetric saturated soil moisture content [m3m-3]. 

Based on the rationale that the maximum and minimum value of apparent thermal inertia, derived from remote 
sensing, correspond to the residual and saturated soil moisture content ( res and sat, respectively), the soil moisture 
saturation index (SMSI0) is determined as:  

(4) 

Considering that SMSI0 equals to SMSI and combining the Equation 3 and the Equation 4, the soil moisture content 
(SMSI) is estimated as a linear function of SMSI0: 

         (5) 

In this study, ATImax and ATImin are estimated from all the data of the calibration years (2010, 2011 and 2014) 
and the saturated ( sat) or the residual ( res) soil moisture content is determined under laboratory conditions, as equal 
to 0.415 or 0.119, respectively. 

Calibration of predicting expressions for soil moisture content based on diurnal surface temperature difference or 
normalized difference vegetation index or apparent thermal inertia  

Soil temperature is depended on the soil moisture and vegetation cover and inversely, a lot of studies have indicated 
that soil moisture is depended on soil temperature and vegetation status. Therefore, NDVI and Land Surface 
Temperature (LST) could provide information about the condition of soil moisture content. Especially, soil moisture 
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and NDVI have been reported as well correlated, during growing periods [8]. Thus, in this study, daily experimental 
values of SM for each depth are linearly regressed with the corresponding DLST or NDVI or ATI. The results from 
the linear regressions [determination coefficient (R2) and slope (a)], are taken into account to form predicting 
expressions for soil moisture content, as a linear function of ATI or DLST or NDVI (for each depth). The predicting 
expressions are obtained from the data during the period June – August of the calibration years 2010, 2011, and 2014. 

Validation of soil moisture content predictions  
The calibrated predicting equations of soil moisture as a function of ATI or DLST or NDVI are used for estimating 

soil moisture ( DLST, NDVI and ATI, respectively) for each depth, during the year 2012 (validation year). In addition 
SMSI (based on ATImin and ATImax calculated from the data of the calibration period) is estimated during the year 

2012. The estimated soil moisture values ( SMSI, DLST, NDVI and ATI) are compared with the corresponding values of 
SM measured at various depths. The comparisons are evaluated by the results of linear regressions [determination 
coefficient (R2) and slope (a)] and "difference measures" [root mean square error (RMSE), mean bias error (MBE) 
and index of agreement (IA)]. 

3. Results 

Figure 1, shows the time evolution of the predicted volumetric soil moisture content SMSI and the volumetric soil 
moisture content measured at depths of either 10 cm (SM10) or 100 cm (SM100) or its average value from all depths 
(SMAver), during the period June – August of the calibration years. It is evident that the best agreement exists between 
SMSI and the surface volumetric soil moisture.  

Similarly, the time evolution of the diurnal surface temperature difference (DLST) or the normalized difference 
vegetation index (NDVI) or the apparent thermal inertia (ATI) and the experimental values of SM10 and SMAver are 
apparent in Figure 2, during the period June – August of the calibration years. In general, the time evolution of SM10 
or SMAver presents a rather similar pattern with the time evolution of DLST, NDVI and ATI. Thus, the corresponding 
predicting expressions of soil moisture content for each depth, are obtained by the linear regressions between SM10 
(or SM20 or SM30 or SM40 or SM60 or SM80 or SMAver) and DLST (or NDVI or ATI). All slopes are found 
statistically significant (at 99.9 % confidence level) and the determination coefficients (R2) are quite high in all 
regressions although, the values of NDVI seem to show a time lag, when they are compared to the corresponding 
SM10 or SM Aver (Figure 2). For example, the linear regressions between SM10 and DLST (or NDVI or ATI) resulted 
in slopes equal to 0.817 (or 0.291 or 258.681, respectively) and R2 equal to 0.881 (or 0.897 or 0.912, respectively). 
The linear regressions between SMAver and DLST (or NDVI or ATI) have shown slopes equal to 0.956 (or 0.342 or 
299.991, respectively) and R2 equal to 0.937 (or 0.939 or 0.950, respectively). 

All predicted (either by SMSI or by the previously calibrated predicting equations based on ATI, or DLST or 
NDVI) soil moisture contents ( SMSI, ATI, DLST, NDVI, respectively) are compared with the values of SM, measured 
at various depths, during the validation year. Table 1 shows the results of their linear regressions [determination 
coefficient (R2), slope (a)] and their "difference measures" [root mean square error (RMSE), mean bias error (MBE) 
and index of agreement (IA)]. The comparisons between SMSI or DLST or ATI or NDVI and measured SM in various 
depths, show very high values of R2 (0.91 to 0.98), reasonable (16%) up to quite high (35%) RMSE and MBE smaller 
than 10% in most depths, or smaller than 10% at 10 and 20 cm depths, or larger than 10% at 10 cm depth, or larger 
than 10% at 10 and 20 cm depths, respectively. IA is different for each depth, with the higher value estimated at 10 
cm depth (0.41 or 0.34 or 0.45 or 0.31), respectively. Figure 3 shows the time evolution of either SM10, and the 
predicted SMSI and ATI (a), DLST and NDVI (b) or SMAver and the predicted SMSI and ATI (c), DLST and NDVI (d), 
during the year 2012. It is evident that SMSI and ATI have a more similar evolution line with SM10 as compared with 

DLST and NDVI. SMSI and ATI also approach quite satisfactorily the evolution line of SMAver in contrast with DLST and 
NDVI. Generally, it is evident that SMSI is in a better agreement with SM as compared to DLST, NDVI and ATI and all 

predictions of  are in a better agreement with SM10.  
 



313 Eftychia Taktikou et al.  /  Procedia Engineering   162  ( 2016 )  309 – 316 

 

Fig. 1. Time evolution of predicted (by SMSI) volumetric soil moisture content ( SMSI) and values of volumetric soil moisture content measured at 
depths of either 10 cm (SM10) or 100 cm (SM100) or its average value from all depths (SMAver), during the calibration years.  

 

Fig. 2. Time evolution of diurnal surface temperature difference (DLST) or normalized difference vegetation index (NDVI) or apparent thermal 
inertia (ATI) and values of soil moisture content measured at depths of 10 cm (SM10), or its average value from all depths (SMAver), during the 

calibration years. 
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Table 1. The results of the linear regressions [determination coefficient (R2), slope (a)] and the "difference measures" [root 
mean square error (RMSE), mean bias error (MBE) and index of agreement (IA)] between predicted (by SMSI or ATI, or 
DLST or NDVI) soil moisture contents ( SMSI, ATI, DLST, NDVI, respectively) and the values of volumetric soil moisture 
content (SM) measured at various depths, during the validation year.  

Depth (cm) R2 Slope  RMSE MBE IA 

  SMSI - SM  

10 0.922 1.043 ±0.036 31.189 8.418 0.405 

20 0.946 1.087 ±0.031 27.713 10.188 0.286 

30 0.951 1.009 ±0.020 25.118 1.298 0.172 

40 0.952 1.106 ±0.020 29.198 10.814 0.095 

60 0.956 0.945 ±0.018 20.951 -5.481 0.115 

80 0.956 1.158 ±0.020 29.438 15.859 0.080 

100 0.955 0.991 ±0.019 21.559 -0.785 0.168 

Aver. 0.956 1.057 ±0.020 23.786 5.926 0.181 

  ATI - SM 

10 0.940 0.813 ±0.025 28.323 -15.350 0.445 

20 0.964 0.898 ±0.021 20.212 -8.936 0.382 

30 0.971 0.988 ±0.021 17.083 -0.767 0.213 

40 0.972 1.027 ±0.021 17.425 3.019 0.138 

60 0.976 0.950 ±0.018 15.638 -5.000 0.149 

80 0.976 1.028 ±0.019 16.304 2.817 0.144 

100 0.975 0.961 ±0.019 15.894 -3.770 0.226 

Aver. 0.975 0.957 ±0.019 16.153 -4.084 0.277 

  DLST - SM 

10 0.938 0.958  ±0.025 25.456 0.169 0.341 

20 0.968 1.073 ±0.021 21.137 9.009 0.339 

30 0.981 1.181 ±0.021 24.459 18.445 0.253 

40 0.982 1.229 ±0.021 28.242 23.028 0.175 

60 0.983 1.141 ±0.018 20.637 14.062 0.120 

80 0.983 1.228 ±0.019 27.996 22.787 0.099 

100 0.982 1.150 ±0.019 21.576 15.114 0.205 

Aver. 0.980 1.143 ±0.019 21.637 14.560 0.238 

  NDVI - SM 

10 0.907 0.750 ±0.029 35.403 -21.116 0.305 

20 0.945 0.846 ±0.025 25.857 -14.023 0.255 

30 0.962 0.934 ±0.022 19.806 -6.446 0.242 

40 0.962 0.970 ±0.023 19.526 -2.863 0.195 

60 0.963 0.899 ±0.021 20.252 -10.124 0.112 

80 0.964 0.970 ±0.023 19.124 -3.032 0.150 

100 0.964 0.908 ±0.021 19.756 -9.251 0.198 

Aver. 0.959 0.901 ±0.023 21.220 -9.621 0.161 
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(a) 

(b) 

(c) 

(d) 

Fig. 3. Time evolution of predicted (by SMSI or ATI, or DLST or NDVI), soil moisture contents ( SMSI, ATI, DLST, NDVI, respectively) and the 
experimental values of volumetric soil moisture content measured at depths of 10 cm (SM10), or its average value from all depths (SMAver), during 

the validation year 2012. 
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4. Conclusions 

The study focuses on the estimation of daily soil moisture content from various remote sensing data, during the 
warm period as it is recommended [6]. Furthermore, the olive orchard at Sparta has been selected for applying the 
apparent thermal inertia concept, as rather sparsely vegetated region [9-12]. 

The evaluation of all resulting predictions, indicate that there is an appreciable proximity of the experimental values 
of soil moisture averaged, as daily means for the depth of 10 cm. Especially, SMSI seems to predict quite accurately 
SM10 (MBE<10%, IA=0.41, RMSE ~31% and R2=0.92) as compared to DLST, NDVI and ATI. Moreover, ATI verify 
also more satisfactorily the experimental values of SM10 than DLST and NDVI do. NDVI evolution, during the 
calibration years, does not show similar variations with the average experimental value of soil moisture (SMAver), but 
DLST or ATI do, either with SM10 or SMAver.  
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