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Abstract

The problem of finding the exact analytical closed-form solution of some families of transcendental equations is studied, in
some detail, by the Special Trans Function Theory (STFT). The mathematical genesis of the analytical closed-form solution is
presented, and the structure of the theoretical derivation, proofs and numerical results confirm the validity and base principle of
the STFT. Undoubtedly, the proposed analytical approach implies the qualitative improvement of the conventional analytical and
numerical methods.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The subject of the theoretical analysis presented here is a broad family of transcendental equations of the form:

Ψ (ζ ) = U(ζ )e−Ψ (ζ ), U(ζ ) ∈ R+ (1)

where we shall restrict ourselves to the one-dimensional case, when U(ζ ) are functions of the arbitrary variable
ζ in real domain. We remark that the STFT can easily be extended on the higher dimensionality of formulae (1);
namely, we can define a higher-dimensional equation (1) treating the new variables in like manner: Ψ (ζ1, ζ2,...,ζn ) =
U(ζ1, ζ2,...,ζn ) exp(−Ψ (ζ1, ζ2,...,ζn )).

Note that the need for families of the transcendental equations’ (1) analytical analysis arises in different disciplines.
However, the general theoretical approach by the STFT [1–9], presented here, means that the mathematical analysis
of Eq. (1) is invariant of any real problems in the applied physics or engineering domains. We have interest, of course,
that the STFT used here is novel and rigorous in the mathematical sense and yields an exact analytical closed-form
solution to the classical problem on the solvability of some families of transcendental equations (1). It goes without
saying, since the essential idea of this presentation is the STFT as a general mathematical method to find the exact
analytical closed-form solutions to a broad family of transcendental equations (1). In other words, we can restrict
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ourselves to a theoretical research of the STFT in the mathematical domain. It is a unique manner that the STFT
becomes, in its broadest sense, mathematically usable.

Let us note that an equation proposed by Lambert [10] and studied by Euler is solved by W(x) Lambert’s W-
Function [10,11], but restricted to the U(ζ ) < exp(−1).

2. The Special Trans Function Theory for some families of transcendental equations (1)

In this section we attempt to find the exact analytical closed-form solution of transcendental equation (1), for an
arbitrary real value of U(ζ ).

Theorem 1. Eq. (1) has the analytical closed-form solution

Ψ (ζ ) = trans+(U(ζ )) (2)

where trans+(U(ζ )) is a new special function defined as

trans+(U(ζ )) = limx→∞
[

ln

(
Φ(x + 1, U(ζ ))

Φ(x, U(ζ ))

)]
(3)

and φ(x, U(ζ )) is defined as

Φ(x, U(ζ )) =
[x]∑

n=0

(U(ζ ))n (x − n)n

n! (4)

where [x] denotes the greatest integer less than or equal to x.

Proof. The transcendental equation (1) can be identified with a partial differential equation (EQID) of type

∂Φ(x, U(ζ ))

∂x
= U(ζ )Φ(x − 1, U(ζ )). (5)

We will solve partial differential equation (5) in the set of originals of the Laplace transform. Thus, after taking the
Laplace Transform, Eq. (5) takes the following form:

s F(s, U(ζ )) − U(ζ )F(s, U(ζ ))e−s = Φ(0) (6)

where F(s, U(ζ )) = L {Φ(x, U(ζ ))}. Therefore

F(s, U(ζ )) = Φ(0)

s − U(ζ )e−s
= Φ(0)

s
(

1 − U(ζ ) e−s

s

) . (7)

By expanding we get

F(s, U(ζ )) = Φ(0)

s

∞∑
n=0

(U(ζ ))n e−ns

sn
. (8)

The series (8) converges for |U(ζ ) e−s

s | � 1. Now, we can invert term by term to obtain the original

Φ(x, U(ζ )) =
∞∑

n=0

(U(ζ ))n (x − n)n

n! H (x − n) (9)

where H (x − n) is Heaviside’s unit function. The latter function series is identical to Eq. (4), for x > n. Finally,
applying the Laplace Transform, the analytical solution to the partial differential equation (5) can be written in the
closed form representation

Φ(x, U(ζ )) =
[x]∑

n=0

(U(ζ ))n (x − n)n

n! . (10)
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2.1. On the nature of the analytical solution (10)

The functional series (10) is the unique analytical closed-form solution to Eq. (5) according to Lerch’s theorem.
Consequently, we have the following statement:

Lemma 2. For any x > 1 the functional series (10) satisfies Eq. (5).

Proof. When we substitute Eq. (10) into (5), we obtain:

∂Φ(x, U(ζ ))

∂x
− U(ζ )Φ(x − 1, U(ζ )) = ∂

∂x

(
[x]∑

n=0

(U(ζ ))n (x − n)n

n!

)
− U(ζ )

[x−1]∑
n=0

(U(ζ ))n (x − 1 − n)n

n!

=
[x]∑

n=1

(U(ζ ))n (x − n)n−1

(n − 1)! −
[x−1]∑
n=0

(U(ζ ))n+1 (x − (n + 1))n

n!

=
[x−1]∑
n=0

(U(ζ ))n+1 (x − (n + 1))n

n!

−
[x−1]∑
n=0

(U(ζ ))n+1 (x − (n + 1))n

n! = 0 (11)

for any x �∈ N . For x ∈ N and x �= 1Φ(x, U(ζ )) is differentiable and the proof follows as well. �

Remark 1. It can be easily shown that function (10) is not differentiable at x = 1, due to the term of first order.
Namely, from Eq. (9) we can write ϕn(x) = (x − n)n H (x − n) and

ϕn(x) =
{

0 for x < n
(x − n)n for x > n

}
. (12)

Now, from Eq. (12) we have

ϕ′
n(x) =

{
0 for x < n
n(x − n)n−1 for x ≥ n

}
. (13)

Thus, ϕn(x) for n �= 1 is differentiable for all x > 0. ϕ′1(x) for n = 1 is differentiable for all x > 0 and x �= 1.

2.2. On the particular solution to the differential equation (5)

For Eq. (5), by using the method of separation of variables we can write

Φ(x, U(ζ )) = Θ(U(ζ ))eω(U (ζ ))x (14)

and from Eqs. (5) and (14) we get

ω(U(ζ )) = U(ζ )e−ω(U (ζ )). (15)

From Eqs. (1) and (15) it is not difficult to see that ω(U(ζ )) = Ψ (ζ ) = Ψ (ζ ; U(ζ )). Namely, the particular
solution of the form

Φp(x, U(ζ )) = Θ(U(ζ ))eω(U (ζ ))x = Θ(U(ζ )) exp(Ψ (ζ ; U(ζ ))x) = Θ(U(ζ )) exp(Ψ (ζ )x) (16)

satisfies the differential equation (5) under the condition that Ψ (ζ ) satisfies Eq. (1).

Lemma 3. The function (16) is an asymptotic function to Eq. (5) and, consequently, limx→∞
(

Φ(x,U (ζ ))
Φp(x,U (ζ ))

)
= 1.

Proof is given in [2] for Y = BeY where B ∈ R+; Y ∈ R+. Under assumptions B = −U(ζ ); Y = −Ψ (ζ ) we
have from Y = B exp(Y ) → −Ψ (ζ ) = −U(ζ ) exp(−Ψ (ζ )) or Ψ (ζ ) = U(ζ ) exp(−Ψ (ζ )). Analogically, we have
our proof finished. On the other hand, intuitively it is clear that the particular exponential solution is unique.



496 S.M. Perovich et al. / Applied Mathematics Letters 20 (2007) 493–498

3. The unique solution principle

It is easily verified that from Eqs. (10) and (16), we can establish the following asymptotic expression:

lim
x→∞

(
Φ (x, U(ζ ))

Φp (x, U(ζ ))

)
= 1 (17)

based on the functional theory. According to the unique solution principle and functional theory, we have

lim
x→∞

(
Φ(x + 1, U(ζ ))

Φ(x, U(ζ ))

)
= Φp(x + 1, U(ζ ))

Φp(x, U(ζ ))
= Θ(U(ζ ))eω(U (ζ ))(x+1)

Θ(U(ζ ))eω(U (ζ ))x
= eω(U (ζ )) = eΨ (ζ ) (18)

and Ψ (ζ ) = trans+(U(ζ )) = limx→∞
[
ln
(

Φ(x+1,U (ζ ))
Φ(x,U (ζ ))

)]
= limx→∞

(
U(ζ )

Φ(x,U (ζ ))
Φ(x+1,U (ζ ))

)
, since Ψ (ζ ) =

U(ζ )e−Ψ (ζ ). �

More explicitly we have

Ψ (ζ ) = trans+(U(ζ )) = lim
x→∞

⎛
⎜⎜⎜⎝U(ζ )

⎛
⎜⎜⎜⎝

[x]∑
n=0

(U (ζ ))n(x−n)n

n!
[x+1]∑
n=0

(U (ζ ))n(x+1−n)n

n!

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ . (19)

The latter formulae is the definition of a new special function, trans+(U(ζ )).
Note that an essential part of the Special Trans Function Theory is the existence of equality (17). From the previous

section it is clear that applying the unique solution principle [1–9] we have (17). Now, we have completed our proof.

4. Numerical results analysis

For practical analysis and numerical calculation the formula (17) takes the form

〈Φ(x, U(ζ ))〉[P+] = 〈
Φp(x, U(ζ ))

〉
[P+] (20)

where 〈Φ(x, U(ζ ))〉[P+] denotes the numerical value of the function Φ(x, U(ζ )) given with
[
P+
]

accurate

digits.
[
P+
]

is defined as
[
P+
] = [ln (abs(G))] where the Error Function G is defined as: G(ζ ) =

(Ψ (ζ ) − U(ζ ) exp(−Ψ (ζ ))).
Now, from Eqs. (17) and (20) it is possible to establish the equality〈

Φ(x + 1, U(ζ ))

Φ(x, U(ζ ))

〉
[P+]

=
〈
Φp(x + 1, U(ζ ))

Φp(x, U(ζ ))

〉
[P+]

= 〈exp(Ψ (ζ ))〉[P+] (21)

and

〈Ψ (ζ )〉[P+] = ln

〈(
Φ(x + 1, U(ζ ))

Φ(x, U(ζ ))

)〉
[P+]

. (22)

More explicitly, for fixed variable x , the Ψ (ζ ) take the forms:

〈Ψ (ζ )〉[P+] =
〈

ln

⎛
⎜⎜⎜⎝

[x+1]∑
n=0

(U (ζ ))n(x+1−n)n

n!
[x]∑

n=0

(U (ζ ))n(x−n)n

n!

⎞
⎟⎟⎟⎠
〉

[P+]

=
〈

U(ζ )

⎛
⎜⎜⎜⎝

[x]∑
n=0

(U (ζ ))n (x−n)n

n!
[x+1]∑
n=0

(U (ζ ))n (x+1−n)n

n!

⎞
⎟⎟⎟⎠
〉

[P+]

. (23)

From a theoretical point of view solutions (23) for 〈Ψ (ζ )〉[P+] can be found with an arbitrary order of accuracy by
taking an appropriate value of x ([2,9]). The numerical results obtained by using formulae (23) are given in Table 1.
It is not difficult to see that analytical solution (23) gives impressive results which suggest that STFT works. Namely,
when we consider the number of accurate digits P+ we have to deal with a sumlimit [x]. It may be convenient to
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Table 1
The numerical comparison analysis between STFT and classical approach

U(ζ ) [x]
M

Ψ(ζ ) (Eq. (23)),
([

P+
])

, W (U(ζ )) — Lambert,
([

P+
]
W

)
10−3 3 0.0009990014973385,

([
P+
] = 17

)
, 0.00099900149

([
P+
]
W = 12

)
10−3 4 0.00099900149733853088, (21), 0.00099900149733, (15)
10−3 5 0.00099900149733853088995, (24), 0.0009990014973385, (17)
10−3 6 0.000999001497338530889957827, (28), 0.0009990014973385308, (20)
10−3 7 0.00099900149733853088995782787,(30),0.00099900149733853088, (21)
0.1 10 0.091276527160862264,

([
P+
] = 19

)
, 0.09127652,

([
P+
]
W = 09

)
0.1 12 0.0912765271608622642998, (23), 0.091276527, (10)
0.1 14 0.09127652716086226429989572, (27), 0.0912765271, (11)
0.1 16 0.091276527160862264299895721423, (31), 0.09127652716, (12)
0.1 18 0.09127652716086226429989572142318, (33), 0.0912765271608 (14)
103 60 5.249602,

([
P+
] = 7

)
, –,

([
P+
]
W = 0

)
103 80 5.24960285240, (12), –, (0)
103 100 5.249602852401, (13), –, (0)
103 120 5.2496028524015962, (17), –, (0)
103 140 5.2496028524015962271, (20), –, (0)
103 150 5.249602852401596227126, (22), –, (0)
109 600 17.841725967421,

([
P+
] = 14

)
, –,

([
P+
]
W = 0

)
109 800 17.841725967421469, (17), –, (0)
109 900 17.84172596742146918, (19), –, (0)
109 103 17.841725967421469182540600,

([
P+
] = 26

)
, –,

([
P+
]
W = 0

)

consider the P+ as a function of [x]. The latter functional dependence P+ = P+([x]) sometimes behaves like the
ordinary linear function. We remark that, of course, the linear functional form of P+ = P+([x]) is very usable in
the problems in the applied physics or engineering domains. Let us consider this point in more detail. The number of
accurate digits in the numerical structure of Ψ (ζ ) depends upon the [x]. This implies that we have arbitrary degree of
accuracy. Note that this may be a disadvantage in some cases (large [x] for small P+), for instance. An important study
concerning the number of accurate digits in the numerical structure of transcendental numbers has been formulated in
[1,2,9].

In an exact way the number of accurate digits in the practical applicable Ψ (ζ ) is in accordance with physical (or
engineering) requirements of exactness. Accordingly, the final form of solution (23) continues to stay in the domain of
an analytical form, regardless of the number of accurate digits in the numerical structure of Ψ (ζ ) which are obtained
by computer calculation.

Note, the subject of the analysis presented in this section is also the numerical efficiency comparison between the
famous Lambert W (U(ζ )) function and the special trans+(U(ζ )) function (Perovich) (Table 1). It is not difficult to
see that trans+(U(ζ )) has superior accuracy and computational efficiency for all values of U(ζ ). We have used infinite
precision arithmetic and validated the accuracy and computational complexity of the two formulas with Mathematica
ver. 5.2. The reference value of the solution has been computed by the numerical equation solver FindRoot and by the
built-in function ProductLog.

The Lambert W (U(ζ )) and trans+(U(ζ )) functions have been timed by the Mathematica function Timing to
compare their execution time. The Timing command includes only CPU time spent in the Mathematica kernel for
computing an expression. All computations were carried out on a 2 GHz Pentium 4 platform with 512 MB RAM,
under Windows XP Pro SP1 operating system, with Mathematica program, version 5.2 by Wolfram Research, Inc. In
this case we have also that trans+(U(ζ )) has superior time computational efficiency for all values of U(ζ ). It becomes
clear, from the presented numerical values in Table 1, that the proposed formula for trans+(U(ζ )) gives superior
results. Note, the Lambert W series for U(ζ ) > 1

exp(1)
becomes nonconvergent and cannot be used for practical

numerical computation. Consequently, for U(ζ ) > 1
exp(1)

the formula (23) becomes a unique existing analytical
expression for calculation of Ψ (ζ ). Thus, it is a novel theoretical result.

Finally, we shall illustrate the STFT application by some examples from the applied physics and engineering
domains. For convenience we restrict ourselves to the one dimensional transcendental equation given below:
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Example 1. The transcendental equation: Y (ζ ) = B(ζ )eY (ζ ), for U(ζ ) < 1
exp(1)

and for Y (ζ ) < 1, has the

analytical solution: Y (ζ ) = trans−(B(ζ )), where trans−(B(ζ )) = limx→∞
[
ln
(

Φ−(x+1,B(ζ ))
Φ−(x,B(ζ ))

)]
and Φ−(x, B(ζ )) =∑[x]

n=0
(−1)n(B(ζ ))n(x−n)n

n! .

Example 2. The transcendental equation: Y (ζ ) = B(ζ )eY (ζ ), U(ζ ) < 1
exp(1)

; analytical solution, for Y (ζ ) > 1:

Y (ζ ) = trans>(B(ζ )) where the trans>(B(ζ )) takes the form: trans>(B(ζ )) = 1+ limx→∞
[
ln
(

V (x+1,B(ζ ))
V (x,B(ζ ))

)]
where

V (x, B(ζ )) = ∑[x−1]
n=0

∑n
k=0

∑k
m=0

∑n−k
p=0

(−1)2n−k(B(ζ ))p(x−1−k)m+p

(k−m)!m!(n−k−p)!p!(m+p)! .

Example 3. The transcendental equation e−2Y (ζ ) − α(ζ )Y (ζ )e−Y (ζ ) − β(ζ ), for 0 < β < 1; α > 0, has the

analytical solution Y (ζ ) = transV D(α(ζ ), β(ζ )) = limx→∞
[
ln
(

ϕV D(x+1,α(ζ ),β(ζ ))
ϕV D(x,α(ζ ),β(ζ ))

)]
, where ϕV D(x, α(ζ ), β(ζ )) =

∑[
x−1

2

]
n=0

∑n
k=0

∑k
m=0

∑n−k
p=0

(−1)k+m+p(β(ζ ))pn!(x−m−k−1)m+1+p

(k−m)!m!(n−k−p)!p!(m+1+p)!(α(ζ ))m+p , etc.

We remark that the latter analytical results in Examples 2 and 3 are new, first presented in this paper.

5. Conclusions

From the previous sections it is obvious that the STFT is a consistent, general approach to solving transcendental
equations and that it is independent of the type of transcendental equation. This means that in the same manner we
can obtain arbitrary Special Trans Functions for very different transcendental equations (for instance, Examples 1–3).

The new formula (23) being derived in this paper, using the STFT, is valid (see Table 1) in the numerical sense.
Namely, the obtained analytical solutions apart from the theoretical value have practical application. The form of
the EQID can be routinely applied, according to the intuitive assumptions. The theoretical accuracy of the STFT is
unlimited, and extreme precision is attainable with this approach [2,9].

Note that one of the advantages of the Special Trans Function Theory, as a mathematical method, is its applicability
for arbitrary nonlinear forms. On the other hand in the STFT we have the possibility to obtain different gradients.
It is not difficult to see that the latter statement implies the rigorous analytical analysis for any problem. Thus,
the introduction of new analytical sensitivity parameters directly follows in the form ∂Ψ

∂ B , ∂Ψ
∂ζ

. For example:
∂Ψ
∂ζ

= ∂U
∂ζ

1
U Ψ − ∂Ψ

∂ζ
Ψ or ∂Ψ

∂ζ
(1 + Ψ ) = ∂U

∂ζ
Ψ
U and, consequently ∂Ψ (ζ )

∂ζ
= Ψ (ζ )

U (ζ )(1+Ψ (ζ ))
∂U (ζ )

∂ζ
or ∂Ψ (ζ )

∂ζ
=

trans+(U (ζ ))
U (ζ )(1+trans+(U (ζ )))

∂U (ζ )
∂ζ

. The latter expression is a significant and novel contribution of the STFT.
According to the authors’ knowledge, this is the first direct application of the STFT to the mathematical genesis

of the analytical closed form solution to some families of transcendental equations (1) independently of any physical
process or phenomena.
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