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Abstract

A d-dimensionaframeworkis a straight line realization of a grayghin R?. We shall only consider
genericframeworks, in which the co-ordinates of all the verticeg;adre algebraically independent.
Two frameworks forG areequivalentf corresponding edges in the two frameworks have the same
length. A framework is anique realizatiorof G in R4 if every equivalent framework can be obtained
fromitby anisometry ofk?. Bruce Hendrickson proved thatifhas a unique realization R’ thenG
is (d+1)-connected and redundantly rigid. He conjectured that every realizatiqd eéfB-connected
and redundantly rigid graph iR is unique. This conjecture is true fdr= 1 but was disproved
by Robert Connelly forl > 3. We resolve the remaining open case by showing that Hendrickson’s
conjecture is true fod = 2. As a corollary we deduce that every realization of a 6-connected graph as
a two-dimensional generic framework is a unique realization. Our proof is based on a new inductive
characterization of 3-connected graphs whose rigidity matroid is connected.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

We shall consider finite graphs without loops, multiple edges or isolated verticés. A
dimensionalframeworkis a pair(G, p), whereG = (V, E) is a graph ang is a map
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Fig. 1. Two realizations of the same graghin R2: F1 is a unique realizationt, is not since we can obtain a
realization ofG which is equivalent but not congruent i by reflectingps in the line througty1, ps, p3.

from V to R?. We consider the framework to be a straight line realizatio& @i R¢. Two
frameworks(G, p) and (G, q) areequivalentif |p(u) — p(v)| = |lg(u) — ¢g(v)| holds
for all pairsu, v with uv € E, where|.|| denotes the Euclidean norm [f . Frameworks
(G, p), (G, q) arecongruentf || p(u) — p(v)|| = |lq(u) —q(v)| holds for all pairs:, v with
u, v € V. Thisisthe same as saying tliét, ¢) can be obtained frofG, p) by an isometry
of R?. We shall say thatG, p) is aunique realizatiorof G in R? if every framework which
is equivalent ta G, p) is congruent tdG, p), see Figl.

Theunique realization probleris to decide whether a given realization is unique. Saxe
[19] proved that this problem is NP-hard. We obtain a problem of different type, however, if
we exclude ‘degenerate’ cases. A framew@rk p) is said to beyenericif the coordinates
of all the points are algebraically independent over the rationals. Note that the framework
F> of Fig. 1is not generic since the three points ps, p3 all lie on the same line. In what
follows we shall consider the unique realization problem for generic frameworks.

A simple necessary condition for unique realization of generic frameworks is rigidity.
The framework(G, p) is rigid if there exists arz > 0 such that if(G, ¢) is equivalent to
(G, p)and| p(u) —q)| < eforallv € V then(G, ¢q) is congruent tqG, p). Intuitively,
this means that if we think of @ dimensional frameworkG, p) as a collection of bars and
joints where points correspond to joints and each edge to a rigid bar joining its end-points,
then the framework is rigid if it has no non-trivial continuous deformations (sed %6,
Section 3.2). Itis known[24] that rigidity is a generic property, that is, the rigidity(@f, p)
depends only on the gragh, if (G, p) is generic. We say that the graphis rigid in R if
every generic realization @ in R? is rigid. (A combinatorial definition for the rigidity of
G in R? will be given in Section 2 of this paper. We refer the readg28y24]for a detailed
survey of the rigidity of/-dimensional frameworks.)

The necessary condition of rigidity was strengthened by HendricKsgjnas follows.

A graphG is redundantly rigidin R? if deleting any edge o& results in a graph which

is rigid in R¢. By using methods from differential topology, Hendrickson proved that the
redundant rigidity ofG is a stronger necessary condition for the unique realizability of a
generic frameworkG, p).

Hendricksorj13] also pointed out that th@ + 1)-connectivity ofG is another necessary
condition for ad-dimensional generic frameworG, p) to be a unique realization of
G: if G has at least/ + 2 vertices and has a vertex separafoof sized, then we can
obtain a framework which is equivalent but not congruent@ p) by reflecting one
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component of; — S along the hyperplane spannedp§s). Similarly, if (G, p) is a unique
realization ofG andG has at mos# + 1 vertices ther@ is a complete graph. Summarizing
we have

Theorem 1.1(Hendricksor{13]). If a generic frameworKG, p) is a unique realization
of G in R? then eitherG is a complete graph with at mogt+ 1 vertices or the following
conditions hold

(&) G is (d + 1)-connectedand
(b) G is redundantly rigid

Hendricksor[11-13] conjectured that conditions (a) and (b) are sufficient to guarantee
that any generic framewonrG, p) is a unique realization of. This conjecture is easy to
prove ford = 1 sinceG is rigid in R if and only if G is connected¢ is redundantly rigid
in R if and only if G is 2-edge-connected; and, p) is a unique generic realization of
G in Rif and only if G is 2-connected. On the other hand, Conn@lllyhas shown that
Hendrickson’s conjecture is false fé£> 3. We shall settle the remaining case by showing
that the conjecture is true far = 2. As a corollary we deduce that unique realizability is
also a generic property, that is to say the unique realizability of a two-dimensional generic
framework(G, p) depends only on the gragh. Note that it is not known whether unique
realizability is a generic property iR? for d >3. Following Connelly[4], we say that
a graphG is globally rigid in R? if every generic realization o in R? is a unique
realization. Our solution of the conjecture implies tais globally rigid inR? if and only
if G is a complete graph on at most three verticeg;os 3-connected and redundantly
rigid. Globally rigid graphs have several diverse applications, e.g. in distance ge¢rietry
molecular conformatiofil2,14], and localization problems in sensor netwoi&ks

Our proof of the conjecture is based on an inductive construction for all 3-connected
redundantly rigid graphs. We shall show that every graph in this family can be built up from
K4 (which is globally rigid) by an appropriate sequence of operations, where each of the
two operations we use preserves global rigidity.

One operation isdge additionwe add a new edge connecting some pair of non-adjacent
vertices. The other is &xtensionwe subdivide an edgev by a new vertex, and add a new
edgezw for somew # u, v. Clearly, the first operation preserves global rigidity. So does
the second. This fact follows from a deep result of Connelly, first proved in the 1980s (see
[12]), and recently published {5]. Connelly developed a sufficient condition for a generic
framework inR¢ to be a unique realization in terms of the rank of its ‘stress matrix’ (see
also[3]). Based on this condition, he proved thatifis obtained fromkK4 by a sequence
of edge additions and 1-extensions th@iis globally rigid in R?.

In what follows we shall assume that= 2. In this case both conditions in Hendrickson’s
conjecture can be characterized (and efficiently tested) by purely combinatorial methods.
This s straightforward for 3-connectivity. In the case of redundantrigidity, the combinatorial
characterization and algorithm are based on the following result of L§béqr-or a graph
(G, E) and a subseX C V letig(X) (or simplyi(X) when it is obvious to which graph
we are referring) denote the number of edges in the subgraph inducéthlyy. The graph
G is said to beminimally rigidif G is rigid, andG — e is not rigid for alle € E.
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Fig. 2. Three examples @f -circuits.

Theorem 1.2(Laman[16]). A graphG = (V, E) is minimally rigid in R? if and only if
|E| =2|V|—-3and

I(X)<2|X|—3forall X c V with | X|>2. )

Note that a graph is rigid if and only if it has a minimally rigid spanning subgraph.

It can be seen from Theoret2that a redundantly rigid grapfi = (V, E) will have at
least four vertices and at leagva — 2 edges. We call graphs which are redundantly rigid
and have this minimum number of edgéscircuits, see Fig2. Motivated by Hendrickson’s
conjecture, Connelly conjectured (see ¢1f), p. 99} [24, p. 188) in the 1980s that all
3-connectead -circuits can be obtained froikis by 1-extensions. It is easy to see that the
1-extension operation preserves 3-connectivity and that it creatés@rcuit from anM -
circuit. The other direction is more difficult. It is equivalent to saying that every 3-connected
M-circuit on at least five vertices has a vertex of degree three which can be ‘suppressed’
by the inverse operation to 1-extension, so that the resulting graph is a smaller 3-connected
M-circuit.

The inverse operation to 1-extension is caldgditting: it chooses a vertex of degree
three in a graplt;, deletesy (and the edges incident td and adds a new edge connecting
two non-adjacent neighbourseflf G is a 3-connected-circuit with at least five vertices
and at least one of the splittingswofesults in a 3-connected -circuit, then we say that the
vertexv is feasible It can be seen that eadlfi-circuit G has at least four vertices of degree
three. Itis not true, however, that each vertex of degree thr@asrfeasible. The existence
of such a vertex was verified by Berg and the second adifjan their recent solution to
Connelly’s conjecture.

Inthis paper we shall show that every 3-connected redundantly rigid graph can be obtained
from K4 by edge additions and 1-extensions by extending the methdils We show that
every 3-connected redundantly rigid graplon at least five vertices either contains an edge
e such thaiG — e is 3-connected and redundantly rigid, or a ventesf degree three such
that some splitting of in G results in a graph which is 3-connected and redundantly rigid.

The structure of the paper is as follows. In Sectbmwe review elementary results
on rigidity: we define the rigidity matroid of a graph and use it to give combinatorial
definitions for when a graph is rigid, redundantly rigid or &ncircuit. In Section3 we
characterizeM-connected graphs (graphs with a connected rigidity matroid). Sedtion
describes and extends lemmas friithon splitting in M -circuits. In Sectiorb, we use the
concept of an ear decomposition of a matroid to extend the splitting theor&th fodm
M -circuits toM -connected graphs. We use this in Sectida obtain our above-mentioned
recursive construction for 3-connected redundantly rigid graphs. This verifies Hendrickson’s
conjecture. This, and other corollaries on global rigidity are included in Seétion
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2. Rigid graphs and the rigidity matroid

In this section we prove a number of preliminary lemmas and basic results, most of which
are known. Our goal is to make the paper self-contained and to give a unified picture of
these frequently used statements. Our proofs are based on Laman’s theorem and use only
graph theoretical arguments. Some of these results can be fo{t@]17,21,23,24]

LetG = (V, E) be a graph. Lef’ be a non-empty subset éf, U be the set of vertices
incident with F, andH = (U, F) be the subgraph af induced byF. We say thatF' is
independenif

in(X)<2|X| —3forall X € V(H) with |X|>2. 2)

The empty set is also defined to be independent.rigidity matroid M(G) = (E,T) is
defined on the edge set 6fby

7 ={F C E : Fisindependent iiG}.

To see thatM(G) is indeed a matroid, we shall verify that the following three matroid
axioms are satisfied. (For basic matroid definitions not given here the reader may consult
the book[18].)

(M1) ¥ e Z,
(M2) if D C F € ZthenD € Z,
(M3) for everyE’ C E the maximal independent subsetsithave the same cardinality.

Let G = (V, E) be a graph. FoX,Y,Z c V, let G[X] be the induced subgraph

of G on vertex setX and Eg(X) be the set of edges @[ X]. We simply useE (X) if

the graph is clear from the context. Lé&tX,Y) = |[E(X UY) — (E(X) U E(Y))|, and
dX,Y,Z) = |E(XUYUZ)— (E(X)UE(Y)UE(Z))|. We define thelegreeof X by
d(X)=d(X,V —X). Thusd(X, Y) is the number of edges betwekn- Y andY — X and
d(X) is the number of edges with precisely one endverteX .iThe degree of a vertex

is simply denoted by (v). We shall need the following equalities, which are easy to check
by counting the contribution of an edge to each of their two sides.

Lemma 2.1. LetG be a graph andX, Y € V(G). Then
IX)+i)+dX,Y)=i(XUY)+i(XNY). 3

Lemma 2.2. LetG be agraphandX, Y, Z C V(G). Then
IX)+i(Y)+i(Z2)+d(X,Y,Z)=i(XUYUZ)+i(XNY)+i(XNZ)
+i(YNZ)—i(XNYNZ).

We say that the grapH = (V, F) is M-independenif F is independent ioVi(H). We
call asetX C V critical if i (X) = 2|X| — 3 holds.

Lemma 2.3. Let H = (V, F) be M-independent and leX, Y C V be critical sets inH
with| X NY|>2.ThenX NY and X U Y are also critical andd(X, Y) = 0.
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Proof. SinceH is M-independent,?) holds. By @) we have
21X|—342/Y|-3=i(X)+i(Y)=i(XNY)+i(XUY)—d(X,Y)<
2|XNY|—-3+2|XUY|-3—d(X,Y) =2|X|-3+2|Y|—-3—d(X,Y). Thusd(X,Y) =0
and equality holds everywhere. Therefdfe) Y andX U Y are also critical. [J

Lemma 2.4. LetG = (V, E’) be a graph with/E’|>1 and let F € E’ be a maximal
independent subset &f. Then

|F| =min{2<2|xi|—3>}, @

i=1

where the minimum is taken over all collections of subg€is X, ..., X;} of V such that
{EG(X1), Eg(X2), ..., Eg(X;)} partitions E’.

Proof. SinceF is independent, we havyé N Eg(X;)|<2|X;| — 3 forall 1<i<t. Thus
|F| < Z§=1(2|X,-| — 3) for any collection of subsetsX1, Xo, ..., X;} satisfying the hy-
pothesis of the lemma.

To see that equality can be attained,Aebe the subgraph af induced byF. Consider
the maximal critical set1, X», ..., X; in H. By Lemma2.3 we have|X; N X;|<1
for all 1<i < j<t. Since every single edge d@f induces a critical set, it follows that
{Eg(X1), Eg(X2), ..., Eg(X;)}is a partition of F'. Thus

t 13
|Fl =Y |En(X)l =) 2IXi| - 3).
1 1

To complete the proof we show thel (X1), Eg(X2), ..., Eg(X;)} is a partition ofE’.
Choosav € E' — F. SinceF is a maximal independent subsetff F + uv is dependent.
Thus there exists a sé&t C V such that, v € X andig(X) = 2|X| — 3. HenceX is a
critical setinH. This implies thatX C X; and hencev € Eg(X;) forsome Ki<t. O

Itfollows from the definition of independence thet(G) satisfies axioms (M1) and (M2).
Lemma2.4implies thatM (G) also satisfies (M3). It also determines the rank function of
M(G), which we shall denote bxg or simply byr.

Corollary 2.5. LetG = (V, E) be a graph. Then\(G) is a matroid in which the rank
of a non-empty seft’ C E of edges is given by

t
r(E') = min {Z(z|xi| - 3)} :
i=1

where the minimum is taken over all collections of subg€is X, ..., X;} of V such that
{Ec(X1), Eg(X2), ..., Eg(X;)} partitions E’.
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Fig. 3. There are only two possible splittingswoin G. Splittingv onuwv, wv results in the graplssy ™.

We say that a graptq = (V, E) isrigid if r(E) = 2|V| — 3in M(G). The graphG is
a spanning subgraph @f, thenH is minimally rigid if and only if E is a base inM(G).
Theoreml.2 ensures that these definitions agree with the geometric definitions for rigidity
given in Section 1.

A k-separationof a graphH = (V, E) is a pair(H1, Hy) of edge-disjoint subgraphs of
G each with at least + 1 vertices such thal = H, U H, and|V (H1) NV (H2)| = k. The
graphH is said to bet-connectedf it has at leask + 1 vertices and has np-separation
forall 0< j <k — 1. If (Hy, H>) is ak-separation o, then we say thaV (H1) N V (H>)
is ak-separatorof H.

2.1. Minimally rigid graphs
We first investigate the connectivity properties of minimally rigid graphs.

Lemma 2.6. LetG = (V, E) be minimally rigid with|V|>3. Then

() G is2-connected
(b) Forevery@ # X C V we havel(X)>2and ifd(X) = 2 holds then eithefX| = 1 or
IV —X|=1.

Proof. Suppose that for somee V the graphG — v is disconnected and let U B be a
partition of V. — v with d(A, B) = 0. Then @) gives|E| =2|V| -3 =i(A+v) +i(B +
V)<S2(JA|+1) —34+2(|B|+1) —3=2(|A| +|B| +1) — 4 = 2|V| — 4, a contradiction.
This proves (a).

Using (a), we havel(X)>2 for every@d # X C V. Suppos€X|, |V — X|>2. By
(2) we obtain|E| = i(X) +i(V — X) +d(X)<2|X| =34+ 2|V — X| =3+ d(X) =
2lV| —6+d(X) = |E| — 3+ d(X). This impliesd (X) > 3 and proves (b). [

Let v be a vertex in a grapty with d(v) = 3 andN (v) = {u, w, z}. Recall that the
operationsplitting means deleting (and the edges incident i9 and adding a new edge,
sayuw, connecting two non-adjacent verticesMtv). The resulting graph is denoted by
G%" and we say that the splitting is made the pairuv, wv. Note that can be splitin at
most three different ways, see FR).

Let G = (V, E) be minimally rigid and letv be a vertex withd(v) = 3. Splittingv
on the pairuv, wv is said to besuitableif G%" is minimally rigid. Note that in Fig3,
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splitting v on uv, wv is suitable inG, but splittingv on xv, wv is not. We call a vertex
suitableif there is a suitable splitting at We shall show that every vertex of degree three
in a minimally rigid graph is suitable.

Lemma 2.7. LetG = (V, E) be minimally rigid and leX, Y, Z C V be critical sets inG
with| XNY|=|XNZ|=|YNZ =1landXNYNZ=¢.ThenX UY U Z is critical,
andd(X,Y, Z) =0.

Proof. SinceG is minimally rigid and our sets are critical, Lemr@& gives 2X| — 3 +
21Y|-3+42|Z|-34+d(X,Y, Z) = i(X)+i(Y)+i(Z)+d(X, Y, Z)<i(XUYUZ)<2(|XU
YUZ)—3=2(X|+1|Y|+1Z] —3) —3=2|X| —3+2|Y| —3+2|Z| — 3. Hence
d(X,Y,Z) = 0and equality holds everywhere. ThiisJ Y U Z is critical. [

For X C V let N(X) denote the set afeighbourof X (thatis,N(X) :={veV - X :
uv € E for someu € X}).

Lemma 2.8. Letv be a vertex in a minimally rigid graply = (V, E).

(@) If d(v) = 2thenG — v is minimally rigid
(b) If d(v) = 3thenw is suitable

Proof. Part (a) follows easily from2) and from the definition of minimally rigid graphs.

To prove (b) letN (v) = {u, w, z}. It is easy to see that splitting on the pairuv, wv
is not suitable if and only if there exists a critical sétc V with u, w € X andv, z ¢
X. Also observe that no critical s&t € V — v can satisfyd (v, Z) >3, since otherwise
E(G[Z U {v}]) is not independent i, contradicting the fact thaf is minimally rigid.
Thus ifv is not suitable then there exist maximal critical s€ts,, X,,,, X,,; C V —v each
containing precisely two neighbours:( w}, {u, z}, {w, z}, resp.) ofv. By Lemma2.3and
the maximality of these sets we must ha¥e,, N X,,;| = | Xuw N Xuwz| = [ X N Xy, =
1. Thus, by Lemm&.7 the setY := X,, U X,; U X,,; is also critical. SinceV (v) <
Y, we haved(v, Y)>3. This is impossible by our previous observation. Thereioie
suitable. O

The minimally rigid graphK4 — e shows that among the three possible splittings at a
vertex of degree three there may be only one which is suitable.

We now define the reverse operations of vertex deletion and vertex splitting used in
LemmaZ2.8. The operation @xtensionradds a new vertex and two edgesu, vw with
u # w. The operation ZExtensiorsubdivides an edgew by a new vertex and adds a new
edgevz for somez # u, w. (Thus, in Fig.3, G is a 1-extension of4".) An extensioris
either a 0-extension or a 1-extension. The next lemma follows easily pm (

Lemma 2.9. LetG be minimally rigid and leG’ be obtained frond; by an extension. Then
G’ is minimally rigid

Theorem 2.10.LetG = (V, E) be minimally rigid and letG' = (V’, E’) be a minimally
rigid subgraph ofG. ThenG can be obtained fron’ by a sequence of extensions
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Proof. We shall prove thaG’ can be obtained fron by a sequence of vertex splittings
and deletions of vertices (of degree two). The theorem will then follow since these are the
inverse operations of extensions.

The proof is by induction oV — V’|. SinceG’ is rigid andG is minimally rigid, G’
must be an induced subgraph@f Thus the theorem holds trivially whei — V’| = 0.
Now suppose that = V — V' # @. SinceG’ andG are minimally rigid, it is easy to see
that|E — E’| = 2|Y| holds. Therefore, ifY| = 1, then we must havé(v) = 2 for the
unique vertex € Y. HenceG’ can be obtained fror& by deleting a vertex of degree two.
Thus we may assume th@at| > 2.

Claim 2.11. If |[Y|>2then})_ ., d(v) <4|Y| — 3.

veY
Proof. Since|V’|>2andV—V’|>2, we can apply Lemm2.6(b) to deduce thai(Y) > 3.
Sincei(Y) +d(Y) = |E — E’| = 2|Y|, we obtain

> d(w) =2i(Y) +d(Y) =4]Y| - d(Y)<4Y| - 3.

veY

It follows from Claim2.11 (and from the fact that the minimum degreedris at least
two) that there is a vertex € Y with 2<d(v) <3. Now Lemma2.8 implies that either
H =G —vorH = G%" is minimally rigid and is such that’ is a subgraph ot and
[V(H) — V(G| < |V(G) — V(G")|. The theorem now follows by induction. [

By choosingG’ to be an arbitrary edge @ we obtain the following constructive char-
acterization of minimally rigid graphs (called the Henneberg or Henneberg—Laman con-
struction, c¢.f[15,16,21).

Corollary 2.12. G = (V, E) is minimally rigid if and only ifG can be obtained fronk,
by a sequence of extensions

Theorem 2.13.LetGy = (Vi, E1) andG2 = (V, E>») be two minimally rigid graphs with
V1N Vo| >2.ThenG1 U G is rigid. Moreover if G1N G2 is minimally rigid thenG; U G
is minimally rigid as well

Proof. Let F' be a maximal independent sethrl(G1N G>). Let K be the complete graph
with vertex setV (G1 N G2) andF be a base oM (K) containingF’. Let H be a minimally
rigid spanning subgraph @f, + (F — F’) which contains?. Such anH exists, sincesa,
and henceG, + (F — F'), is rigid. (To see thaf” and H exist we use the fact that any
independent set in a matroid can be extended to a base.) Now Thadt@implies that
H can be obtained by a sequence of extensions ffgpm Vo, F). The same sequence
of extensions, applied t6'1, yields a minimally rigid spanning subgraph Gf U G2 by
Lemmaz2.9. This proves tha1 U G2 is rigid.

The second assertion follows from the fact tha&t ifn G is minimally rigid thenF = F’
andH = Go. O
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Corollary 2.14. LetG1 = (V1, E1) and G, = (V, E2) be two rigid graphs withVy N
Vo| >2.ThenG1 U G2 is rigid.

Let G = (V, E) be a graph. Since every edge Gfinduces a rigid subgraph af,
Corollary 2.14implies that the maximal rigid subgraplRs, Ro, ..., R; (called therigid
components of) of G are pairwise edge-disjoint arf( R1), E(R2), ..., E(R;) is a par-
tition of E. Thus a graph is rigid if and only if it has precisely one rigid component.

2.2. M-circuits and redundantly rigid graphs

Given a graplG = (V, E), asubgraptd = (W, C) is said to be am/-circuitin G if C
is a circuit (i.e. a minimal dependent set)(G). In particular,G is anM-circuit if E is
a circuit in M(G). For exampleK4, K3 3 plus an edge, anfl3 4 are allM-circuits. Using
(2) we may deduce:

Lemma 2.15. LetG = (V, E) be a graph. The following statements are equivalent

(&) G is an M-circuit.
(b) |[E| =2|V]| —2andG — e is minimally rigid for alle € E.
(©) |E|=2|V]—2andi(X)<2|X| —3forall X C Vwith2<|X|<|V]| - 1.

We shall need the following elementary propertiesibfcircuits which can be derived
in a similar way to Lemma.6.

Lemma 2.16(Berg and Jordarjl, Lemma 2.4). Let H = (V, E) be anM-circuit.

(a) Foreveryy # X C V we havel(X) >3 and ifd(X) = 3 holds then eithefX| = 1 or
IV —X|=1.

(b) If X c V iscritical with | X|>3thenH[X] is 2-connected

Let H = (V, E) be a 2-connected graph and suppose that H,) is a 2-separation
of G with V(H1) N V(H>) = {a, b}. For 1<i <2, letH/ = H; +ab if ab ¢ E(H;) and
otherwise putd] = H;. We say that;, H» are thecleavage graphsbtained bycleaving
G along{a, b}. Given two graphsdy = (V1, E1) andHy = (Vo, E2) with ViNVo = ¢
and two designated edgesvy € E1 anduavz € Ez, the 2sumof H1 and Hz (along the
edge paimv1, uv2), denoted byH1 @» Ho, is the graph obtained frorl; — ujv1 and
Hj — upvp by identifyingu1 with uz andv with v,. These definitions are illustrated by the
graphsG1, G2 of Fig. 2. If we cleaveG along its unique 2-seperator we obtain two copies
of G1, sayH; andH», andGo = Hi @2 H>.

We shall use the following results on 2-sums and cleaving.

Lemma 2.17(Berg and Jordajl, Lemma 4.1). LetGy = (V1, E1) and G2 = (V>, E?)
be M-circuits and letu1v, € E1 andugvs € E3. Then the2-sumG1 @2 G2 along the edge
pair uqv1, upvz is an M-circuit.

Lemma 2.18(Berg and Jordarl, Lemmas 2.4(c), 4.2] LetG = (V, E) be anM-circuit
and{a, b} be a2-separator ofG. Thenab ¢ E. Furthermore if G’ andG” are the graphs
obtained fromG by cleavingG along{a, b} thenG’ and G” are bothM-circuits.



B. Jackson, T. Jordan / Journal of Combinatorial Theory, Series B 94 (2005) 1-29 11

Recall that a graply is redundantly rigidif G has at least two edges a6d-— e is rigid
forall e € E. M-circuits are examples of (minimally) redundantly rigid graphs. Note also
that a graphG is redundantly rigid if and only i is rigid and each edge @ belongs to
a circuit in M(G) i.e. anM-circuit of G.

It follows from Corollary2.14that any two maximal redundantly rigid subgraphs of a
graphG = (V, E) can have at most one vertex in common, and hence are edge-disjoint.
Defining aredundantly rigid componendf G to be either a maximal redundantly rigid
subgraph of5, or a subgraph induced by an edge which belongs t&rgircuit of G, we
deduce that the redundantly rigid componentg;opartition E. Since each redundantly
rigid component is rigid, this partition is a refinement of the partitiorEogiven by the
rigid components o&.

We shall need two elementary lemmas on redundant rigidity.

Lemma 2.19. If G is redundantly rigid and5’ is obtained fromG by an edge addition or
a l-extensionthenG’ is redundantly rigid

Proof. This follows from the definition of redundant rigidity and the facts that edge addi-
tions, 0-extensions and 1-extensions preserve rigidify.

Lemma 2.20. If G is redundantly rigid andu, v} is a2-separator inG thend (u), d(v) > 4.

Proof. Supposel/(#) < 3. Then we can choose an edgacident tox such thatG — e is not
2-connected. By Lemm2.6(a), G — e is not rigid. This contradicts the redundant rigidity
of G. O

3. Graphs with a connected rigidity matroid

Given a matroidM = (E, ), we define a relation ot by saying that, f € E are
related ife = f or if there is a circuitC in M with e, f € C. It is well-known that this
is an equivalence relation. The equivalence classes are callebtmgonentof M. If
M has at least two elements and only one component.ieis said to beconnectedIf
M has componentg&, E», ..., E; andM; is the matroid restriction oM onto E; then
M= M1 Ma2...» M, whered denotes the direct sum of matroids, §&£8].

We say that a grapti = (V, E) is M-connectedf M(G) is connected. For example,
K3.m is M-connected for al: > 4. TheM-componentsf G are the subgraphs afinduced
by the components o (G).

Lemma 3.1. Suppose that is M-connected. Thet is redundantly rigid
Proof. G is rigid, since otherwis& has at least two rigid components and hence at least
two M-components. Sinca1(G) is connected, every edgeis contained in a circuit of

M(G). ThusG is redundantly rigid. [J

Since theV/-components of; are redundantly rigid by Lemnal, the partition ofE (G)
given by theM-components is a refinement of the partition given by the redundantly rigid
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y

Fig. 4. This graph is rigid so has exactly one rigid component. There are three redundantly rigid components,
consisting of the union of the three copieskof, and the remaining two copies &%. There are fivé/-connected
components: each of the three copiek@f and the remaining two copies &f.

components and hence a further refinement of the partition given by the rigid components,
see Fig4.

Furthermore M (G) can be expressed as the direct sum of the rigidity matroids of the
rigid components of7, the redundantly rigid components 6f, or the M-components of
G.

The main result of this section (Theoré1¥ below) characterize&f-connected graphs.
We say that a grapty is nearly 3-connectedf G can be made 3-connected by adding at
most one new edge.

Theorem 3.2. Suppose that is nearly 3-connected and redundantly rigid. Th&his
M-connected

Proof. For a contradiction suppose thais notAM-connected and &1, H>,...,H, be the
M-components o6. LetX; = V(H;) — U;x V(H;) denote the set of vertices belonging
to no other -component that;, and lett; = V(H;) — X, for 1<i <gq.Letn; = |V (H;)]|,
x; = |Xil, i = |Y;|. Clearly,n; = x; + y; and|V| = >"7_| x; + | U]_, ¥;|. Moreover, we
have}?_, yi >2|U7_, Y;|. Since every edge @ is in someM-circuit, and every-circuit
has at least four vertices, we have that 4 for 1<i <q. Furthermore, sinc& is nearly
3-connectedy; > 2 for all 1<i <g¢, andy; > 3 for all but at most twa\/-components.

Let us choose a bagg in each rigidity matroidM (H;). Using the above inequalities
we have

q q

q
UL Bil=) IBil=) (20, =3)=2) n; -3¢

i=1 i=1 i=1
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q q q
> (22xi+2yi> +> yi—3
i=1 i=1 i=1
>2|V|+3g—2-3¢g=2|V| -2

Since M(G) has rank 2V| — 3, this implies thatJj’:l B; contains a circuit, contradicting
the fact that theB;’s are bases for tha1(H;)’s and M (G) = @l.qle(H,-). O

A graph G is birigid if G — v is rigid for all v € V(G). It was shown by Servatius
[20, Theorem 2.2{using a similar argument to our proof of Theor88) that every birigid
graph isM-connected. TheorerB.2 extends this result, since birigid graphs are clearly
3-connected and redundantly rigid. The wheels (on at least 5 vertices) are 3-connected
redundantly rigid graphs which are not birigid. This shows that the extension is proper.

We need the following results to complete our characterizatioW @fonnected graphs.
The first two lemmas follow from Lemmdas17and2.18 respectively.

Lemma 3.3. Suppose&;1 and G2 are M-connected. TheG'1 &2 G2 is M-connected

Lemma 3.4. Supposé&r; and G are obtained fronG by cleavingG along a2-separator.
If G is M-connected the; and G2 are alsoM-connected

Let G = (V, E) be a 2-connected grapbz> 3 be an integer, and €& 4, X», ..., X,)
be cyclically ordered subsets &fsatisfying (by takingX.+1 = X1):

() 1X;nX;|=1,for|i — j|=1,andX; N X; =@ for|i — j|>2, and
(i) {E(X1), E(X2),..., E(X.)}Iis a partition ofE.

Then we say thatX1, X», ..., X.) is apolygon (of size) in G. (The graph in Fig4is a
polygon of size 3, where the seXg, X», X3 are given by the vertex sets of its redundantly
rigid components.) Itis easy to see that Bindv are distinct vertices witfu} = X;_1N X;
and{v} = X; N X 41, forsome Ki, j <c, then eithefu, v} is a 2-separator it ori = j
andX; = {u, v}.

Lemma 3.5. Suppose that; = (V, E) has a polygon of size Then

(&) G is notM-connected
(b) If ¢ >4thengG is not rigid.

Proof. Let X3, Xo,..., X, be a polygon and leE; = E(X;) for 1<i<c. Note that

E1, E2, ..., E. is a partition ofE. Using the polygon structure we obtain
c c
r(E)< Zr(E,-)§ Z(2|X,-| —3)=2|V|4+2c—3c=2|V|—c. (5)
i=1 i=1

Thus forc >4 we have (E) <2|V| — 4, and hencé&; is not rigid. This proves (b). To prove
(a) suppose that; is M-connected. Theid is rigid andr(E) = 2|V| — 3. By (b) this
yieldsc = 3. Moreover, equality must hold everywhere 8).(Thusr(E) = Y ;_; r(E;).
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It follows that no two edges in different sefs belong to anV/-circuit, seq18, Proposition
4.2.1] This contradicts the fact tha1(G) is a connected matroid.[]

We say that a 2-separatpr, x2} crossesanother 2-separatdy1, y»} in a 2-connected
graphG, if x1 andxy are in different components @ — {y1, y2}. It is easy to see that
if {x1,x2} crosseqyi, y2} then{y, y2} crosseqx1, x2}. Thus, we can say that these 2-
separators arerossing It is also easy to see that crossing 2-separators induce a polygon of
size four inG. Thus LemméB.5a) has the following corollary:

Lemma 3.6. Suppose that is rigid (and henc&-connectell Then there are no crossing
2-separators inG.

Let G = (V, E) be a 2-connected graph with no crossing 2-separatorsclBagage
unitsof G are the graphs obtained by recursively cleawihglong each of its 2-separators.
SinceG has no crossing 2-separators this sequence of operations is uniquely defined and
results in a unique set of graphs each of which have no 2-separators. Thus each cleavage
unit of G is either 3-connected or else a complete graph on three vertices. (The@raph
Fig. 4 has three cleavage units, obtained by cleawihglong the 2-separatofs, w} and
{x, y}.) The stronger hypothesis th@thas no polygons will imply that each cleavage unit
of G is a 3-connected graph. In this case, an equivalent definition for the cleavage units is
to first construct th@augmented graph? from G by adding all edgesv for which {u, v}
is a 2-separator off anduv ¢ E, and then take the cleavage units to be the maximal 3-
connected subgraphs 6f (These definitions are a special case of a general decomposition
theory for 2-connected graphs due to Tug2].)

Theorem 3.7. A graphG is M-connected if and only if it i2-connectedhas no polygon
and each of its cleavage units is redundantly rigid

Proof. If G is M-connected, the is rigid and hence 2-connected by Lem&h&a), G

has no polygons by Lemm&5a), each cleavage unit @ is M-connected by Lemma

3.4, and hence each cleavage unit is redundantly rigid by Lethth#n the other hand, if

G is 2-connected, has no polygons and each cleavage unit is redundantly rigid, then each
cleavage unit ig/-connected by Theore®12, andG is M-connected by Lemma.3. [

The weaker hypothesis th&tis 2-connected, has no polygons, and is redundantly rigid
is not sufficient to imply tha& is M-connected. This can be seen by considering the graph
G obtained from the triangular prisil by replacing each edggv; of H by a complete
graph with vertex setv;, v;, v/, v;.}, wherev;, v;. ¢ V(H). The graphG is redundantly
rigid since it is rigid and every edge belongs to @ncircuit (a complete graph on four
vertices). To see that is not M-connected we first note thaf is minimally rigid and
hence it is not redundantly rigid. We may now deduce thét not M-connected sincél
is a cleavage unit of7, and every cleavage unit of af-connected graph i&/-connected
by Lemma3.4.

We close this section by obtaining two further resultsMstonnectivity which we will
need later.
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Lemma 3.8. Let G = (V, E) be a2-connected graph anfl:, v} be a2-separator ofG
such thatuv € E. ThenG is M-connected if and only i — uv is M-connected

Proof. First suppose that — uv is M-connected. Thew — uv is rigid by Lemma3.1,
and hence there exists a-circuit H in G with uv € E(H). The M-connectivity of

G now follows from the transitivity of the relation oA which defines thé\/-connected
components. To see the other direction supposeGhiatM-connected and leiG1, G2)

be a 2-separation aff with V(G1) N V(G2) = {u, v} and lete, f € E(G — uv). We
shall prove that there is a#-circuit H in G — uv which contains and f. SinceG is
M-connected, there is aW-circuit H' with e, f € E(H'). If uv ¢ E(H') then we are
done by choosindg? = H'. Note that ifE(H’) intersects both sides of the 2-separation (in
particular, ife and f belong to differeniG;’s) then{u, v} is also a 2-separator @i’ and
henceuv ¢ E(H') by Lemma2.18 Thus we may suppose, without loss of generality, that
e, f € E(G1),uv € E(H"),andE(H')NE(G2 —uv) = (. Letg € E(G2) —uv. SinceG

is M-connected, there is avf-circuit H” in G with e, g € E(H"). Let H; and H> be the
subgraphs of; obtained by cleaving?” along{u, v}, wheree € E(Hy) andg € E(H>).
ThenH; is anM-circuit by Lemma2.18 Now H = H' &, H> is the desired/-circuit in

G withe, f € E(H) by Lemma2.17. [

Lemma 3.9. If G is M-connected and;’ is obtained fromG by an edge addition or a
l-extensionthenG’ is M-connected

Proof. First suppose thaf;’ is obtained fromG by adding an edge. SinceG is M-
connected, it is rigid by Lemma&.1 Thus there is ai-circuit H in G’ with e € E(H).
Now the M-connectivity ofG’ follows from transitivity.

Next consider the case wheH is obtained fromG by a 1-extension which subdivides
an edgetw of G by a new vertexw and adds a new edge for somez ¢ {u, w}. Let
f € E(G) be an edge which is incident with Sincef # uw, we also havef € E(G').
We shall prove that for all edgese E(G’) — f there exists ai/-circuit H in G’ with
/- g € E(H). This willimply that G’ is M-connected by transitivity.

If ¢ € E(G) then there is aM-circuit H' in G with f, g € E(H'). If uw ¢ E(H’) then
we are done by choosing = H’. Otherwise we letd be the 1-extension aff’ (on the
edgexw and vertex), which is a subgraph a&’, and is also ai/-circuit by Lemma2.19
Finally, if g ¢ E(G), thatis, ifg € {vu, vw, vz}, then we take atM-circuit H” of G with
uw, f € E(H"”) and letH be the 1-extension off” (on the edge:w and vertex). As
above,H is anM-circuit of G’ with f, g € E(H). O

4. Admissible splittings in M-circuits

LetG = (V, E) beagraphand lét = {v € V : d(v) = 3}. We will refer to vertices in
V3 asnodesof G and to the subgrap@i[ V3] as thenode-subgraplof G. A node of G with
degree at most one (exactly two) in the node-subgrapti &f called aleaf node(series
node respectively). AvheelW,, = (V, E) is a graph om >4 vertices which has a vertex
z which is adjacent to all the other vertices and for whig&h[V — z] is a cycle. Thus the
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node-subgraph of a whe#l, with n >5 is a cycle. It was shown ifi, Lemma 2.1}hat if
G is anM-circuit then eithelG is a wheel o1G[ V3] is a forest. The proof can be extended
to M-connected graphs to give:

Lemma 4.1. Let G be M-connected. IiG is not a wheelthen the nodes off induce a
forestinG.

We also need two results av-circuits from[1]. The proof of the first lemma is similar
to that of Lemma2.3.

Lemma 4.2(Berg and Jardanl, Lemma 2.3). Let H = (V, E) be anM-circuit and let
X,Y C V becritical setswithX NY|>2and| X UY|<|V|—1.ThenXNY andX UY
are both critical andd (X, Y) = 0.

Lemma 4.3(Berg and Jardanl, Lemma 2.5]. LetH = (V, E) be anM-circuit and let
X C V be a critical set. TherV — X contains at least one node &f. Furthermore if
|V — X|>2,thenV — X contains at least two nodes #éf.

We shall say that splitting a noden an M-connected graph sdmissibléf it preserves
M-connectivity, thab is anadmissible nod# it has an admissible splitting, and otherwise
thatv is non-admissibleNote that an admissible splitting in @#f-circuit results in anv/-
connected graph witlE| = 2|V|—2, and hence results in anothiércircuit. The following
result follows easily from Lemma.15

Lemma 4.4(Berg and Jordaril, Lemma 3.1). Let H = (V, E) be anM-circuit and v
be a node irG with N (v) = {u, w, z}. Then splittingv on the pairuv, wv is not admissible
if and only if there is a critical seK C V withu, w € X andv, z ¢ X.

If vis anode in a grapty with N(v) = {u, w, z} and X is a critical set withu, w € X
andv, z ¢ X then we callX av-critical set on{u, w}, or simply av-critical set If X is a
v-critical set onfu, w} for some node with N (v) = {u, w, z}, andd(z) >4, thenX is said
to benode-critical

Our next lemma extend4, Lemma 3.2]

Lemma 4.5. Let H = (V, E) be anM-circuit, |V|>5, and v be a non-admissible leaf

node inH with N (v) = {x, y, z}. Suppose that no two neighbourswére a2-separator

in H.

(@) If z is a node ofH then for any pairX, Y of v-critical sets on{y, z}, and {x, z},
respectivelywe havgX NY|>2andX UY = V(H) — v.

(b) If vis notadjacentto a node then there exist iweritical setsX 1, Xowith | X1NX2| > 2,
X1UXo=V(H) —v.

Proof. (a) If the edgesz andyz are both present it (H) then, since; is a node ofH
and|V|>5, {x, y} is a 2-separator, contradicting an hypothesis of the lemma. Thus we may
assume, without loss of generality, that¢ E. Then for thev-critical setX ony, z we must
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have|X| > 3. By Lemma2.16b) H[X] is 2-connected, and hengdas two neighbours in
X. If z has no neighbours iri thenxz ¢ E(Y), |Y| >3, andz is an isolated vertex i’ [Y].
This would contradict Lemma.16b). Hencez has a neighbour iff. Sincez is a node and
has two neighbours i, this implies thatX N Y| > 2. By Lemmad.2this gives thaiX U Y
is also critical. Since (v, X UY) >3, Lemma2.15impliesthatX UY = V(H) — v. Thus
(a) holds.

(b) Sincev is non-admissible, Lemmé.4 implies that there exist thregcritical sets
X,Y, Zon{y, z}, {x, z} and{x, y}, respectively. Suppose that no two of these sets intersect
each other in at least two vertices. Then we also aveY N Z = . Lemma2.2implies
thatX UY U Z is critical andd (X, Y, Z) = 0. Sinced(v, X UY U Z) = 3, we deduce that
XUYUZ =V —v (otherwisg XUY UZ) +v violates Lemm&.15. Since| V| > 5, at least
one of the three critical sef§, Y, Z (say,X) satisfie§ X| > 3. Butwe have/(X, Y, Z) = 0,
and hencdy, z} is a 2-separator itH, contradicting an hypothesis of the lemma. This
contradiction shows that we can choose two 3&tsX, € {X, Y, Z} with | X1 N X2|>2.
ThenX; U X2 is critical by Lemma4.2 and soX1 U X» = V — v follows, using Lemma
2.15andd(v, X UY) = 3. Thus (b) holds. I

The next lemma extend$, Lemma 3.3]

Lemma 4.6. Let H = (V, E) be anM-circuit which is not a wheeland letv be a node.

LetN (v) = {x, y, z} and letX be av-critical set onx, y withd(z) >4 and|X| > 3. Suppose

that either

(a) there is a non-admissible series nade V — X — v with exactly one neighbouv in
X,andw is a nodeor

(b) there is a non-admissible leaf node V — X — v.

Then eitherthere isa-separation Hy, H») of H withX C V (H1) orthere is anode-critical

setX* with X properly contained inX*.

Proof. Suppose first that (a) occurs and Mtu) = {w, p, q}. By our assumptiowV (1) N
X = {w} andd(w) = 3. Sinceu is a series node, we can assume thgi) = 3 and
d(gq) > 4. Sinceu is non-admissible, there exista aritical setY on{w, p} by Lemma4.4.
Now H is not awheel, and hence the node subgrapiti obntains no cycles by Lemndal
Thuspw ¢ E and hencéY | > 3. This implies, by Lemma.6&(a), thatG[Y] is 2-connected,
and hencé& contains two neighbours af. Since| X| > 3, Lemma2.6(a) implies thatG[X]
is 2-connected, and hence at least one of the neighboursinfY must be inX. Thus
IXNY|>2. LetX* = X UY.We haveX* C V —u — g, and Lemma4.2 implies that
X* is au-critical set on{w, p}. Sinced(q) >4 andp ¢ X, the setX* is a node-critical set
which properly contain.

We next suppose that (b) occurs. We must have) N X|<2, sincelN(#) N X| = 3
would imply thatX + ¢ violates Lemm&.15c). If [N ()N X| = 2 thenX +¢ is also critical
and by choosing™* = X + the lemma follows. Thus we may assume fiéa¢) N X | <1.

Sincer is a non-admissible leaf node, Lemeh&implies that either there is a 2-separator
consisting of two neighbours ofor there exist twe-critical setsY1 andY» with Y1 U Yo =
V —t,|Y1 N Y2 >2, and so that if has a neighbour which is a node then € Y; N Y.
In the former case we are done (SinGgX] is 2-connected by Lemm2.6(a) and hence
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et i) T3

Y Yo Y3 Yy Ys

Fig.5.1fC1 = E(G—y1),C2 = E(G—y2) andC3 = E(G —{y4, y5h, thenCq, C2, C3is an ear decomposition
of the rigidity matroid ofG. We haveCy = {x1y1, x2y1, x3y1} andCs = {y1y2}.

X is contained in one side of the corresponding 2-separation). Suppose that the latter case
holds. Note that; andY» are node-critical sinceis a leaf node angl1|, |Y2| > 3. Since
YiUY>=V —1t,t ¢ X,and|X|>3,we havgX NY1|>2o0r|X NY2| >2. Letus assume,
without loss of generality, thak N Y1| >2 holds. By Lemma.2, X U Y1 is a critical set. If
N()NX C Yq, then the lemma follows by choosij = X U Y1. (The setX* is ¢-critical
and the unique neighbour ofn V — X* has degree four i .)

Thus we may assume thit(r) N X = {s} ands ¢ Y1 holds. This implies thad (s) > 4,
since ifd(s) = 3 then we have € Y1 N Y, as noted above. Sindg UY, =V — ¢, we
haves € Y». Hence if| X N Y2| > 2 then we are done, as above, by choosing tbetical
setX* = X U Yo. Thus, we may suppose thaf N Y| = 1. Sinced(t, X U Y1) = 3, and
X U Yy is critical, Lemma2.15impliesX U Y1 = V —¢. SinceY; U Yo, = V — ¢, we have
(X —s) C Y1. ThusV — Yy = {s, t}. This contradicts Lemma4.3, sinced(s) >4, and
completes the proof of the lemmal]

5. Ear decompositions and admissible splittings imM-connected graphs

Let M = (E, Z) be amatroid and lef1, Co, . .., C; be a non-empty sequence of circuits
of M. LetD; =C1UCU...UC; for 1< j<t. We say thatCy, Ca, ..., C; is apartial
ear decompositioof M if for all 2 <i <¢ the following properties hold:

(E1) CiN Di—1 # 9,

(E2) Ci — Di—1 # 9,

(E3) no circuit C; satisfying (E1) and (E2) ha€] — D;_1 properly contained in
C; —D;_1.

The setC; — D;_1 is called thdobe of circuit C;, and is denoted b¢;. An ear decom-
positionof M is a partial ear decomposition with, = E. As an example, we construct
an ear-decompositio@, C2, C3 of the rigidity matroid of the graph obtained froRs 5
by adding an edge, see Fhy.

We need the following facts about ear decompositions. The proof of (a) and (b) in the
next lemma can be found [B]. The proof of (c) is easy and is omitted.
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Lemma 5.1. Let M be a matroid with rank function. Then

(&) M is connected if and only jiM has an ear decomposition.

(b) If M is connected then any partial ear decompositiotMdfcan be extended to an ear
decomposition af1.

(c) If C1, Co, ..., C,is an ear decomposition 0¥1 then

r(Di) — r(Di_1) = |C;| — 1for 2<i <1. (6)

Lemma 5.2. LetG = (V, E) be anM-connected graph and1, Ho, ..., H, be theM-
circuits of G induced by an ear decompositi@hn, Co, ..., C; of M(G) with r >2. Let
Y = V(H,) — U_V(H;),and letX = V(H,) — Y. Then

(a) EitherY = @ and|C;| = 1,0r Y # ¢ and every edge € C; is incident to .

(b) IC| =2|Y| + 1.

(c) If Y # @ thenX is critical in H;.

(d) G[Y]is connected

(e) If G is 3-connected thepX| > 3.

Proof. Since M-connected graphs are rigid, it follows th&t Uﬁ;}Hi, and H; are all
rigid. Thus (E3) implies that (a) holds. FurthermoréE) = 2|V| — 3 andr(Uﬁ;}Ci) =
2|V — Y| — 3. By Lemma5.1(c) this implies that | = |C;| — 1. This gives (b).

Since H, is an M-circuit, we havelE(H;)| = 2|V (H;)| — 2. Hence, sincéX|>2, (b)
implies thatX is critical in H; and hence (c) holds.

To prove (d) suppose that can be partitioned into two non-empty sétg Y> with
d(Y1, Y2) = 0. SinceX is critical andH; is anM -circuit, we must hav&(Y;)+d (Y, X) <2
|¥jl for j = 1,2. This gives|C,| = Y 2_,i(Y)) + d(Y;, X)<2(IY1| + |Y2]) <2/Y],
contradicting (b). Property (e) follows from the fact that eitlief: ¥ and X is a separator
in G (using (c)), orY = ¥ and|X| = |V (H;)| >4 (sinceH, is anM-circuit). [

Let H = (V, E) be anM-circuit, v be a node o, N (v) = {x, y, z}, and suppose that
xy ¢ E. SinceH — vz is rigid, H — v is rigid by Lemma2.8@). ThusH, > = H — v+ xy
is rigid. Since|V (H; )| = 2|E(H; )| — 2, H; > contains a uniqué/-circuit J. We have
J = H, " ifand only if the splitting ofv onvx, vy is admissible. If noty (J) is the minimal
v-critical set on{x, y} in H.

Lemma 5.3. LetG = (V, E) be anM-connected graph andly, H», ..., H, be theM-
circuits of G induced by an ear decompositi@h, Co, ..., C; of M(G) with t >2. Let
Y = V(H;) —UZ] V(H;) and X = V(H,) — Y. Letv be a node ofG in ¥, and let
x,y € N(v) withx ¢ X andxy ¢ E. Let J be the uniqueM-circuit in (H;),"> and
C=EW).fCNEy(X)#0andE((H,),”) — En,(X) C C then splittingv onvx, vy
is admissible inG.

Proof. Let N(v) = {x,y 2z} It suffices to show thatCy, Co,...,C;_1,C is an ear-
decomposition of\(G,*) since this will imply thatG,” is M-connected. LeD,_1 =
ul’.;}ci. Then Ep,(X) € D,-1 by Lemma5.2a). SinceE((H,),”) — En,(X) C C,
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D,_1UC = E(Gy”). Properties (E1), (E2) and (E3) are clearly satisfied fgni ¢ — 1.
Property (E1) follows fori = ¢’ from the hypothesis thaf N Ey, (X) # ¢ and the fact
that Eg, (X) € D;_1. Property (E2) holds fori*= ¢’ sincexy € C — D;_1. To see that
(E3) holds for i = ¢" we proceed by contradiction. Suppose that there i8faaircuit J’
whereC’ = E(J') satisfiesC’' "D, 1 # % # C' — D;_1 andC' — D,_1 C C — D,_;.
SinceC1, Co, ..., C; satisfies (E3), we must have € C’. LetJ” be obtained frony’ by a
1-extension, which deletes the edge adds a new vertex, and the edgesr, vy, vz. Then

J” is anM-circuit andC” = E(J”) violates (E3) with respect to the ear decomposition
C1, Co, ..., C; of M(G), a contradiction. [

Note that if splittingv alongvx, vy is admissible inH,, then the hypotheses of Lemma
5.3 are trivially satisfied since we have= (H;),"”. Thus an admissible splitting afin
H; is admissible inG. However, it is possible a non-admissible splittingvoin H, still
satisfies the hypotheses of LemB&and hence is admissible @&.

Theorem 5.4.Let G = (V, E) be a3-connectedM-connected graph which is not an
M-circuit. Let H1, Ho, ..., H, be theM-circuits of G induced by an ear decomposition
C1, Ca, ..., C; of M(G). Suppose thar — ¢ is hotM-connected for alk € C, and for all
but at most two edges 6f. ThenV (H;) — Uﬁj V (H;) contains an admissible node 6f

Proof. Suppose the theorem is false anddetbe a counterexample. Sincg is not an
M-circuit, we have >2. LetY = V(H;) — Uij(H,-), X =V(H;) —Y.SinceG —eis
not M-connected for alk € C;, we haveY # ¢ by Lemma5.2(a). LetL = Uﬁ;%V(Hi).
SinceG is 3-connected, we hay&'| >3 by Lemmab.2(e). Note that every edgec C, is
incident toY by Lemmab.2(a).

By Lemmas4.3and5.2(c), Y contains a node. Sin@& is not anM-circuit, G is not a
wheel. Lemmat.1limplies that we can choose a nodef G in Y such that is a leaf in
G[Y N V3] = H,;[Y N V3], whereVs is the set of nodes af. Let N (v) = {x, y, z}.

Claim 5.5. v does not have three neighboursin

Proof. For a contradiction suppos€(v) C X. Then, by Lemmd.2(d), we must have
Y = {v}. By the hypothesis of the theorem there exists a pair of neighbours sdy
x,y € N(v), such that eithexy ¢ E orxy € E andG — xy is hot M-connected. In the
former case splitting on the pairx, vy givesL + xy, which isM-connected by Lemma
3.9. Thusv is an admissible node @f. In the latter cas& — xy is a 1-extension of.. Thus
G — xy is M-connected by Lemma.9, a contradiction. [

Claim 5.6. v does not have two neighboursih

Proof. Let N(v) N X = {x, y}. If splitting v alongxz or yz is admissible inH, then by
Lemmab.3it is an admissible split il;. Hence, by Lemmd.4, we may assume that there
exist two minimal critical setX, X2 in H, with x, z € X1 andy, z € X2. Note that the
minimality of X1 implies that the uniqué/-circuit J in (H;)}* satisfiesV (J) = X1. Let
C=EW).
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SupposéXNX1|>2. ThenX U X1 andX N X1 are critical and/ (X, X1) = 0 by Lemma
4.2 Sinced(v, X U X1) = 3, Lemma2.15now implies thatX U X; = H; — v. Hence
(E((H){®) — E(X)) <€ C. SinceX N Xy is critical, H;[X N X1] is connected (it is either
K> oris 2-connected by Lemnta6(a)) and hencé& (X) N C # @. Thusv is admissible in
G by Lemmab.3 HenceX N X1 = {x} and, by symmetryX N X2 = {y}.

If |X1N X2/>2thenX; U X, = V(H;) — v and{x, y} is a 2-separator ii;. This
contradicts the 3-connectivity @ and hencgX; N X»| = 1. Now Lemma2.2 implies
thatd(X, X1, X2) = 0. This again implies thafx, y} is a 2-separator 7, and gives a
contradiction. [

Claim 5.7. There is av-critical set X’ c V(H,) such thatX’ is node-critical inH, and
X CcXx.

Proof. It follows from Claims5.5, 5.6thatv has at most one neighbour ¥

Casel: v has exactly one neighbour, sayin X.
Sincev is a leaf inH;[Y N V3], we may assume without loss of generality #igt(y) > 4. If
splittingv alongxz or yz is admissible inH, then by Lemmd.3it is an admissible splitin
G. Hence, by Lemma4.4, we may assume that there exist two minimal critical 3&tsX»
in H, with x, z € X3 andy, z € X». If |[X N X1|>2 then Lemmat.2implies thatX U X1
is the desired-critical, node critical set containing in H;. Hence

XNX1={x} (7)

SupposgX N Xz|>2. Then Lemmat.2 implies thatX U X, and X N X5 are critical
andd(X, X2) = 0. SinceN(v) € X U X2, Lemma2.15givesX U X2 = V(H;) — v.
Hence the unique circuit = (X», C) in (H,))’* satisfieS E((H,)y*) — E(X)) € C and
E(X)NC # ¥ (becauseX N X is also critical, saH;[X N X2] is connected). Thus is
admissible inG by Lemma5.3. Hence

X N Xo|<1. (8)

If | X1 N X2|>2 then we may deduce as above tiKatu X, = V(H;) — v must hold.
Since| X| > 3, this contradicts eithei{ or (8). ThusX1N X> = {z}. SinceH,;[X1], H;[X?2]
are minimally rigid, Lemma&.6(a) implies that eithet/y, (z) >4; ordg, (z) = 3, |X1| =
2 = |Xz|andxz, yz € E. The second alternative would imply tHat y} is a 2-separator in
G, and contradict the fact that is 3-connected. Thudy, (z) > 4. We now choose a critical
setX3in H, with x, y € X3 (if it did not exist then splitting alongxy would be admissible
in G). By symmetry we havgXs N X,| = 1. If | X3 N X|>2 thenX U X3 is the desired
v-critical, node-critical set. Hend&z N X| = 1 and Lemm&.2gives thatX; U X»> U X3
is critical. HenceX1 U X> U X3 = V(H;) — v. We may now deduce thak|< 2, since
X CX1UXypUXzandX N (X1U X3) = {x} and|X N X2| < 1. This contradicts the fact
that|X|>3.

Case2: Nv)NX = 4.

We havex, y,z € Y. Sincev is a leaf in H,[Y N V3] we may assume, without loss of
generality, that/y, (x) >4 anddp, (y) > 4. Lemmab.3implies thatv is not splittable along
yz or zx. Thus there exist minimal critical sef; and X, in H; on {y, z} and{z, x}
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respectively. If two neighbours af form a 2-separator itf;, then the fact thatf,[ X] is
connected by Lemnta2(c) implies that this will also be a 2-separatoinThis contradicts
the 3-connectivity of;. Lemmad.5now impliesthatX1NXz| >2andX1UX2 = V(H;)—v
(possibly after renaming, y, z in the case whedy, (z) > 4). Sincel X | > 3, we may assume
by symmetry thatX1NX| > 2. Now Lemmat.2implies thatX U X is the required-critical,
node critical set containing. O

Choose a maximab-critical and node-critical sek* c V(H;) with X C X*. By
applying Lemmad.3to the critical setX* U {v}, we deduce thall, — X* — v contains a
node. Lemmat.1 now implies that we may choose a leafin H;[V3 — X* — v]. Thenw
has at most one neighbour ki (otherwiseX* + w would either contradict Lemm2.15
or be a largen-critical, node critical set thai*.) Thusw is either a leaf inH;[V3] or is a
series node with a unique neighbaouin X*, such that is a node. Using Lemmé&.6, the
3-connectivity ofG and the maximality of*, we can deduce that is admissible inH,
(and hence irG). This proves the theorem.l]

We shall also need

Theorem 5.8(Berg and Jordanil, Theorem 3.8]. LetG be a3-connectedV-circuit with
at least five vertices. Then eith€rhas three non-adjacent admissible nodeg:dnas four
admissible nodes

Theorems5.4 and 5.8 and Lemmas3.3 and 3.4 imply the following extension of
[1, Theorem 4.4]

Corollary 5.9. G = (V, E) is M-connected if and only & is a connected graph obtained
from disjoint copies 0K 4’ s by recursively applying edge additions aidxtensions within
a connected componemtnd taking2-sums of different connected components

6. Bricks

A graphG is abrick if it is 3-connected and/-connected. A briclG = (V, E) is said
to beminimalif G — e is not a brick for alle € E. An edgef of G is admissibldéf G — f
is M-connected. A node of G is feasibleif G, is a brick for some splittingz, of G at
v. A fragmentin a 2-connected grapH is a setX C V(H) such thai Ny (X)| = 2 and
1<|X|<|V(H)| — 3. Let S be a 2-separator i#, x,y € V(H) ande € E(H). We say
thatS separates andy if x andy belong to different components &f — S. We say that
S separatesc ande if either x ande belong to different components & — S, ore is an
edge fromS to a component off — S which does not contain.

Theorem 6.1. LetG = (V, E) be a minimal brick. IiG # K4 thenG has a feasible node
Proof. We proceed by contradiction. Suppose the theorem is false aidd beta coun-

terexample with as few vertices as possible5 If- ¢ is not M-connected for alé € E (in
particular, ifG is an M-circuit) thenG has an admissible splitting,” by Theorems.4
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and5.8. SinceG is a counterexample to the theorefii,= G,;” is not 3-connected. On the

other hand, ifG is not minimally M-connected, the has an admissible edgé SinceG

is a minimal brick,G' = G — f is not 3-connected. We now consider all possible choices

for an admissible splitting and an admissible edge, and choose one such that some fragment
X of the resultingM -connected grapli”’ is minimal with respect to inclusion.

We shall prove thaX contains a feasible node 6f. SinceG’ is M-connectedG’ has
minimum degree at least three and hef¢g> 2. By Lemma3.5, G’ has no polygons. Let
S := Ng/(X) = {u, v}. Let H, L be the cleavage graphs obtained by cleavingt {u«, v},
whereX = V(H) — {u, v}. Note that the minimality ofX and the fact thatG’ has no
polygons imply thatH is a cleavage unit of’, and the 3-connectivity of; implies that
L — {u, v} is connected.

If G’ = Gy’ andN(w) = {x,y,z}, then letV*(H) = X — {x,y,z} andE*(H) =
(E(H)NE(G)).(The 3-connectivity of; implies that eithek, y € XUSandz € V(L)—S,
orx,y € V(L) andz € X.) On the other hand, i’ = G — f and f = yz, then let
V*(H) = X —{y,z} andE*(H) = E(H) — uv. (The 3-connectivity oG implies that
{y,z} N X £ Pand{y,z} N (V(L) — S) # @.) Note thatE(H) — E*(H) = {uv, xy} if
G' = Gy’ andx, y € V(H). OtherwiseE (H) — E*(H) = {uv}. Let0 = xy if G' = Gy”
andxy € E(H), let0 = zif G’ = G3;” andxy ¢ E(H), and letd be the unique vertex of
X whichisincidenttof inGif G' =G — f.

Claim 6.2. H is 3-connected

Proof. This follows sinceG’ has no polygons and hence all its cleavage units are 3-
connected. [J

Claim 6.3. uv ¢ E(G).

Proof. Supposeww € E(G). SinceG’ is M-connected, anfl, v} is a 2-separator, Lemma
3.8implies thatG’ — uv is M-connected. Sinc€ — uv is obtained fronG’ — uv by either
an edge addition or a 1-extensidaii,— uv is M-connected by Lemma.9. Futhermore,
G’ — uv contains three internally disjoimt-paths (two inH — uv by Claim6.2and one
in L — uv). ThusG — uv has three internally disjointv-paths and the 3-connectivity 6f
implies thatG — uv is 3-connected. This contradicts the fact tGas a minimal brick. O

Claim 6.4. H and L are M-connected

Proof. This follows from Lemma3.4 sinceG’ is M-connected and/ andL are obtained
by cleavingG’ along the 2-separatdi, v}. [

Claim 6.5. Suppose that; — e is M-connected for somee E*(H). ThenH — {u, v, e}
is connected

Proof. SupposeH — {u, v, e} has two component&;, H,. Choose € {1, 2} such that
0 ¢ V(H;) U E(H;). ThenV (H;) is a fragment of; — e which is properly contained iX.
This contradicts the choice ¢f andX. [
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Claim 6.6. G — e is notM-connected for alk € E*(H).

Proof. Suppose that; — ¢ is M-connected for some edge= ab € E*(H). SinceG is
a minimal brick,G — e is not 3-connected. Lef be a 2-separator ir — e. SinceG is
3-connected] separates andb. If G’ = Gy;” then Lemma2.20implies thatw ¢ T.

SinceG’ is M-connected, it is redundantly rigid. Hence the graph= G’ — ¢ is rigid.
Thus G” is 2-connected by Lemm2.6(a). Clearly,T and S are 2-separators i6¢”. By
Lemma3.6, T andS do not cross irG”. By Claim6.5, H — {u, v, e} is connected. Since
a,b € X U S andT separateg andb in G — ¢, we haveT N X # ¢ andG”[X] is a
component ofz” — S. SinceT andS do not cross, we havE N (V — X — §) = @. Since
L — Sis connected, some compondnof G —T = G’ —e—T containsV — X — S. LetJ
be the component @ — e — T which containd’/ — X —S. ThenV — X C V(J)UNg—.(J).
Moreover, ifG' = G, then the neighbour(s) af in X are contained itV (J) U Ng_.(J),
and, if G’ = G — f then the endvertex of in X is contained inV (J) U Ng_.(J). This
implies in both cases that the vertex set of the compone@t-efe — T distinct fromJ is
a proper subset of . This contradicts the minimality of. [

Claim 6.7. H — e is notM-connected for alk € E*(H).

Proof. SupposeH — e is M-connected. Thel’’ —e¢ = (H —¢) ®2 L andG’ — ¢ is
M-connected by Clainé.4 and LemmaB.3. Since, by Lemm&.9, the property of being
M-connected is preserved by edge addition and 1-extension, it followsthat is M-
connected. This contradicts Clait6. [

Note thatifp € V*(H) is a node ofG thenp ¢ {u, v} sincex andv have degree at least
four in G’ by Lemma2.20, and hence also 6.

Claim 6.8. Supposep € V*(H) is a node ofG, Ng(p) = {q,s,t}, and G“,’;’ is M-
connected. Thep ¢ {u, v} and Hf,’t — {u, v} is connected

Proof. Supposer," —{u, v}isdisconnected. TheH — {u, v} has a 1-separatidit{1, H2)
whereV (H1) N V(H2) = {p},s,t € V(Hy) andq € V(H>). Choose € {1, 2} such that
0 ¢ V(H;) UE(H;). ThenV (H;) — pis a fragment oGi,” which is properly contained in
X. This contradicts the choice ¢f andX. [

Claim 6.9. G, is not M-connected for all nodeg of G in V*(H).

Proof. Suppose that, = Gj;’ is M-connected for some nodeof G in V*(H), with
NG (p) = {q, s, t}. SinceG is a counterexample to the theorem;’t is not 3-connected.
Let T be a 2-separator i6};'. SinceG is 3-connected] separatest andg. If G’ = G,;”
then Lemma&2.20implies thatw ¢ T.

SinceG’ is M-connected, it is redundantly rigid. Hen€ — pq is rigid. SinceG’ — p
is obtained fromG’ — pq by deleting a vertex of degree two, it is rigid by Lem&b).
SinceG” = (G")}' is obtained fronG’ — p by an edge addition, it is also rigid. Tha¥' is
2-connected by Lemm2.6(a). Clearly,T andS are 2-separators i&”. By Lemma3.6, T
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andsS do not cross ir;”. By Claim6.8, H,§" —{u, v}is connected. Sinag s, € XUS and

T separatest andg in G”, we havel' N X # ¢ andG”[X — p]is a component of;” — S.
SinceT andS do not cross, we must haZen (V — X — §) = . Hence some component
J'of G" —T = G/, — T containsV — X — S. Let J be the component a&';" — 7 which
containsV — X — S. ThusV — X C V(J) U Ng,(J). Moreover, ifG' = G, then the
neighbour(s) ofw in X are also contained it (J) U Ng,(J), and, ifG' = G — f then
the endvertex of in X is contained inV (J) U Ng,(J). This implies in both cases that the
vertex set of the component 6f, — T which is distinct fromJ is a proper subset of.
This contradicts the minimality of. [

Claim 6.10. H, is notM-connected for all nodeg of G in V*(H).

Proof. SupposeH,, is M-connected. TheiG), = H, &2 L and G), is M-connected
by Claim 6.4 and Lemma3.3. Since the property of bein@/-connected is preserved
by edge addition and 1-extension, it follows th@}, is M-connected. This contradicts
Claim6.9. O

Claim 6.11. H is an M-circuit.

Proof. SupposédH is not anM-circuit. SinceH is M-connected by Clairb.4, there exists
an M-circuit H1 in H which contains:v andf. By Lemma5.1(b) we may extend’; =
E(H;) to an ear-decomposition @fy, Co, ..., C; of M(H). By Claim6.7 H — ¢ is not
M-connected for all but at most two edgesHfsinceE(H) — E*(H) C {uv, xy}. Then

it follows from Claim6.2and Theorend.4that H; — UﬁjHi contains an admissible node
p of G in V*(H). This contradicts Claing.10 [l

Claim 6.12. H is isomorphic toK 4.

Proof. SupposeH is not isomorphic taK4. By Claim 6.10 no node ofH in V*(H) is
admissible inH. Sincexv € E(H), Claim6.2 and Theoren®.8imply thatG’ = G3,”,
x,y € V(H), andu, v, x, y are the only admissible nodes #h. We shall show that is a
feasible node irG.

Sincex is an admissible node @, H;"' is M-connected for some, t € Ny (x). Let
Ny (x) = {q, s, t}. Sincexy is an edge oH andy is a node ofH, we must have € {s, t}.
Without loss of generalityy = 7. Since(G')y” = Hy> @; L, Claim6.4and Lemmé3.3
imply that (G')y” is M-connected. Sinc&}" is a 1-extension ofG’)y” and since the
property of being/-connected is preserved by 1-extension (by Ler8r8y it follows that
GY" is M-connected.

SupposeH,” — {u, v} is disconnected. TheH — {u, v} has a 1-separatiofHy, H>)
whereV (H1) NV (H2) = {x},s,y € V(H1) andg € V(H2). ThenV (H»)—x is afragment
of GY" which is properly contained iiX. This contradicts the choice &’ and X. Thus
H}” — {u, v} is connected.

Since G is a counterexample to the theore@t;” is not 3-connected. Lef be a 2-
separator irG5" . SinceG is 3-connected]” separatesw andg. SinceG’ is M-connected,
it is redundantly rigid. Henc&’ — xgq is rigid. SinceG’ — x is obtained fromG’ — xq by
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deleting a vertex of degree two, it is rigid by Lemi&b). SinceG” = (G’)}’ is obtained
from G’ — x by an edge addition, it is also rigid. Thag' is 2-connected by Lemna6(a).
Clearly, T andS are 2-separators i6” andT separatesy andg in G”. By Lemma3.6,
T andS do not cross. Sincél;” — {u, v} is connectedy, s, y € X U S, andT separates
sy andq in G”, we havel N X # @ andG”[X — x] is a component o;” — S. SinceT
and S do not cross, we must haen (V — X — S) = #. Hence some componelit of
G" —T = (G")Y’ — T containsV — X — S. Let J be the component &’ — T which
containsV — X —S.ThenV —-X Cc V(J)U Ngsy (J). Moreoverw andy are also contained

invV({J)u Ngs»(J). This implies that the vertex set of the componenGgf — T which
is distinct fromJ is a proper subset of. This contradicts the minimality of. [J

Claim 6.13. G' = Gy,”, x,y € V(H), and hencd) = xy € E(H).

Proof. Suppose that the claim is false. Theis a vertex inX, andV (H) = {u, v, 0, t}.
Thent is a node ofG. We shall show tha;"" is a brick. Note thatv ¢ E(G) by Claim
6.3 Note further thatG;"" can be obtained from by a sequence of either one 1-extension
and one edge-addition (5’ = G — f), or two 1-extensions and one edge-addition (if
G' = Gy;”). SinceL is M-connected by Clain.4, it follows from Lemma3.9thatG}""

is M-connected. Sinc@ is adjacent ta: andv, there is no 2-separation separatthfjom

uv in G{*'. ThusG}"" is 3-connected and hence is a brickl]

Claim 6.14. X # {x, y}.

Proof. Suppose thak = {x, y}. Thenx, y are nodes ot;. We shall show thatGy"’ is a
brick. Note thaiwv ¢ E(G) since the neighbour af distinctfromx, y belongstd/ —X —S.
Note further thaiGy"” can be obtained froni by a sequence of two 1-extensions. Since
L is M-connected by Clain®.4, it follows from Lemma3.9that G¢"" is M-connected.
Suppose tha6Gy"" is not 3-connected. Then there is a 2-separ@tan Gy, separating

u andwv. Sinceu, w, andv are all neighbours of in GY"¥, we must have € T. Since
GY'" is M-connected angl is a node inG¥"?, this contradicts Lemma.2Q ThusG}"' is
3-connected and hence is a brick]

We can now complete the proof of the theorem. Using Cl&ém8and6.14 and rela-
belling if necessary, we may suppose that= {x, ¢} andS = {u, y}. Thusx is a node
of G. We shall show thaG¥"" is a brick. Note thatwr ¢ E(G) since the neighbour af
distinct fromx, y belongs tov — X — S. Note further thaG¥"' can be obtained from
by a sequence of two 1-extensions. Siiicis M-connected by Claing.4, it follows from
Lemma3.9thatGY"’ is M-connected. Suppose thal’’ is not 3-connected. Then there is
a 2-separatol” in G, separating: andwt. Sinceur is an edge oG, we must have
t € T. SinceGY"" is M-connected andis a node inGY", this contradicts Lemma.2Q
ThusGY"" is 3-connected and hence is a brickd

We have the following corollaries:

Theorem 6.15.G = (V, E) is a brick if and only ifG can be obtained fronk, by 1-
extensions and edge additions
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Ys Ys Ys
Z3 Ya T3 Y T3 Ya
) Yy T2 Y +— o Ys
xy Yo T4 Ya z Y2
Y
Ty T34 T39 Y
Ys T4 Ys —— Tad Ys
T4 Ya L Ya
I

Fig. 6. A construction oK 3 5 from K4 using 1-extensions and edge additions.

Proof. SinceK, is M-connected, sufficiency follows from Lemn3a9, and the fact that
edge addition and 1-extension preserve 3-connectivity. Necessity follows easily by induction
on|E|, using Theorens.1. [

We illustrate Theorers.15by constructing the minimal bricK'z 5 from K4, see Fig6.
SinceK3 5 is minimal, the first and last operations used in the construction must be 1-
extensions. Sinc&3 5 is not anM-circuit, at least one operation in the construction must
be an edge addition. This shows that one may need to alternate between the two operations
of Theorem6.15while building up a brick fromk 4.

7. Globally rigid graphs in R?

Theorem3.2 implies that a graph is a brick if and only if it is redundantly rigid and
3-connected. Thus Theore®nl5gives an inductive construction for redundantly rigid 3-
connected graphs. It follows from the result of Connglly Theorem 1.5that any graph
which can be obtained frorki4 by edge additions and 1-extensions is globally rigidkin
By using Theorem§.15and1.1we can now characterize globally rigid graphs, and hence
verify Hendrickson’s conjecture, in dimension two.

Theorem 7.1. LetG be a graph. Theit is globally rigid in R? if and only if eitherG is a
complete graph on at most three verticesbis 3-connected and redundantly rigid

Note that the special case of Theor@m when|E(G)| = 2|V (G)| — 2 was proved
earlier in[1, Theorem 6.1]
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It follows from Theorem7.1that global rigidity of frameworks is a generic property in
R2. Lovasz and Yemir[iL 7] proved that 6-connected graphs are redundantly rigid (and that
this bound is best possible). With this result and Theoretwe can show that sufficiently
highly connected graphs are globally rigid. In fact, the same degree of connectivity suffices.

Theorem 7.2. Let G be6-connected. The6 is globally rigid in k2.

This solveq10, Open question 4.47As we noted earlier, there exist efficient algorithms
for testing 3-connectivity and redundant rigidity, and hence global rigidifiinSee[2]
for more details on the algorithmic aspects.
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