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Abstract

A d-dimensionalframeworkis a straight line realization of a graphG in Rd . We shall only consider
genericframeworks, in which the co-ordinates of all the vertices ofG are algebraically independent.
Two frameworks forG areequivalentif corresponding edges in the two frameworks have the same
length. A framework is aunique realizationof G in Rd if every equivalent framework can be obtained
from it by an isometry ofRd . Bruce Hendrickson proved that ifGhas a unique realization inRd thenG
is(d+1)-connected and redundantly rigid. He conjectured that every realization of a(d+1)-connected
and redundantly rigid graph inRd is unique. This conjecture is true ford = 1 but was disproved
by Robert Connelly ford�3. We resolve the remaining open case by showing that Hendrickson’s
conjecture is true ford = 2. As a corollary we deduce that every realization of a 6-connected graph as
a two-dimensional generic framework is a unique realization. Our proof is based on a new inductive
characterization of 3-connected graphs whose rigidity matroid is connected.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices. Ad-
dimensionalframeworkis a pair(G, p), whereG = (V ,E) is a graph andp is a map
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Fig. 1. Two realizations of the same graphG in R2: F1 is a unique realization,F2 is not since we can obtain a
realization ofG which is equivalent but not congruent toF2 by reflectingp2 in the line throughp1, p5, p3.

fromV to Rd . We consider the framework to be a straight line realization ofG in Rd . Two
frameworks(G, p) and(G, q) areequivalentif ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds
for all pairsu, v with uv ∈ E, where‖.‖ denotes the Euclidean norm inRd . Frameworks
(G, p), (G, q) arecongruentif ‖p(u)−p(v)‖ = ‖q(u)−q(v)‖ holds for all pairsu, v with
u, v ∈ V . This is the same as saying that(G, q) can be obtained from(G, p) by an isometry
of Rd . We shall say that(G, p) is aunique realizationof G in Rd if every framework which
is equivalent to(G, p) is congruent to(G, p), see Fig.1.

Theunique realization problemis to decide whether a given realization is unique. Saxe
[19] proved that this problem is NP-hard. We obtain a problem of different type, however, if
we exclude ‘degenerate’ cases. A framework(G, p) is said to begenericif the coordinates
of all the points are algebraically independent over the rationals. Note that the framework
F2 of Fig. 1 is not generic since the three pointsp1, p5, p3 all lie on the same line. In what
follows we shall consider the unique realization problem for generic frameworks.

A simple necessary condition for unique realization of generic frameworks is rigidity.
The framework(G, p) is rigid if there exists an� > 0 such that if(G, q) is equivalent to
(G, p) and‖p(u)− q(u)‖ < � for all v ∈ V then(G, q) is congruent to(G, p). Intuitively,
this means that if we think of ad-dimensional framework(G, p) as a collection of bars and
joints where points correspond to joints and each edge to a rigid bar joining its end-points,
then the framework is rigid if it has no non-trivial continuous deformations (see also[9,24,
Section 3.2]). It is known[24] that rigidity is a generic property, that is, the rigidity of(G, p)

depends only on the graphG, if (G, p) is generic. We say that the graphG is rigid in Rd if
every generic realization ofG in Rd is rigid. (A combinatorial definition for the rigidity of
G in R2 will be given in Section 2 of this paper. We refer the reader to[23,24]for a detailed
survey of the rigidity ofd-dimensional frameworks.)

The necessary condition of rigidity was strengthened by Hendrickson[13] as follows.
A graphG is redundantly rigidin Rd if deleting any edge ofG results in a graph which
is rigid in Rd . By using methods from differential topology, Hendrickson proved that the
redundant rigidity ofG is a stronger necessary condition for the unique realizability of a
generic framework(G, p).

Hendrickson[13] also pointed out that the(d+1)-connectivity ofG is another necessary
condition for ad-dimensional generic framework(G, p) to be a unique realization of
G: if G has at leastd + 2 vertices and has a vertex separatorS of sized, then we can
obtain a framework which is equivalent but not congruent to(G, p) by reflecting one
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component ofG−S along the hyperplane spanned byp(S). Similarly, if (G, p) is a unique
realization ofG andG has at mostd +1 vertices thenG is a complete graph. Summarizing
we have

Theorem 1.1(Hendrickson[13] ). If a generic framework(G, p) is a unique realization
ofG in Rd then eitherG is a complete graph with at mostd + 1 vertices, or the following
conditions hold:

(a) G is (d + 1)-connected, and
(b) G is redundantly rigid.

Hendrickson[11–13]conjectured that conditions (a) and (b) are sufficient to guarantee
that any generic framework(G, p) is a unique realization ofG. This conjecture is easy to
prove ford = 1 sinceG is rigid in R if and only if G is connected;G is redundantly rigid
in R if and only if G is 2-edge-connected; and(G, p) is a unique generic realization of
G in R if and only if G is 2-connected. On the other hand, Connelly[4] has shown that
Hendrickson’s conjecture is false ford�3. We shall settle the remaining case by showing
that the conjecture is true ford = 2. As a corollary we deduce that unique realizability is
also a generic property, that is to say the unique realizability of a two-dimensional generic
framework(G, p) depends only on the graphG. Note that it is not known whether unique
realizability is a generic property inRd for d�3. Following Connelly[4], we say that
a graphG is globally rigid in Rd if every generic realization ofG in Rd is a unique
realization. Our solution of the conjecture implies thatG is globally rigid inR2 if and only
if G is a complete graph on at most three vertices orG is 3-connected and redundantly
rigid. Globally rigid graphs have several diverse applications, e.g. in distance geometry[7],
molecular conformation[12,14], and localization problems in sensor networks[8].

Our proof of the conjecture is based on an inductive construction for all 3-connected
redundantly rigid graphs. We shall show that every graph in this family can be built up from
K4 (which is globally rigid) by an appropriate sequence of operations, where each of the
two operations we use preserves global rigidity.

One operation isedge addition: we add a new edge connecting some pair of non-adjacent
vertices. The other is 1-extension: we subdivide an edgeuv by a new vertexz, and add a new
edgezw for somew �= u, v. Clearly, the first operation preserves global rigidity. So does
the second. This fact follows from a deep result of Connelly, first proved in the 1980s (see
[12]), and recently published in[5]. Connelly developed a sufficient condition for a generic
framework inRd to be a unique realization in terms of the rank of its ‘stress matrix’ (see
also[3]). Based on this condition, he proved that ifG is obtained fromK4 by a sequence
of edge additions and 1-extensions thenG is globally rigid inR2.

In what follows we shall assume thatd = 2. In this case both conditions in Hendrickson’s
conjecture can be characterized (and efficiently tested) by purely combinatorial methods.
This is straightforward for 3-connectivity. In the case of redundant rigidity, the combinatorial
characterization and algorithm are based on the following result of Laman[16]. For a graph
(G,E) and a subsetX ⊆ V let iG(X) (or simply i(X) when it is obvious to which graph
we are referring) denote the number of edges in the subgraph induced byX in G. The graph
G is said to beminimally rigid if G is rigid, andG − e is not rigid for alle ∈ E.
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Fig. 2. Three examples ofM-circuits.

Theorem 1.2(Laman[16] ). A graphG = (V ,E) is minimally rigid inR2 if and only if
|E| = 2|V | − 3 and

i(X)�2|X| − 3 for all X ⊂ V with |X|�2. (1)

Note that a graph is rigid if and only if it has a minimally rigid spanning subgraph.
It can be seen from Theorem1.2that a redundantly rigid graphG = (V ,E) will have at

least four vertices and at least 2|V | − 2 edges. We call graphs which are redundantly rigid
and have this minimum number of edgesM-circuits, see Fig.2. Motivated by Hendrickson’s
conjecture, Connelly conjectured (see e.g.[10, p. 99]; [24, p. 188]) in the 1980s that all
3-connectedM-circuits can be obtained fromK4 by 1-extensions. It is easy to see that the
1-extension operation preserves 3-connectivity and that it creates anM-circuit from anM-
circuit. The other direction is more difficult. It is equivalent to saying that every 3-connected
M-circuit on at least five vertices has a vertex of degree three which can be ‘suppressed’
by the inverse operation to 1-extension, so that the resulting graph is a smaller 3-connected
M-circuit.

The inverse operation to 1-extension is calledsplitting: it chooses a vertexv of degree
three in a graphG, deletesv (and the edges incident tov) and adds a new edge connecting
two non-adjacent neighbours ofv. If G is a 3-connectedM-circuit with at least five vertices
and at least one of the splittings ofv results in a 3-connectedM-circuit, then we say that the
vertexv is feasible. It can be seen that eachM-circuitG has at least four vertices of degree
three. It is not true, however, that each vertex of degree three inG is feasible. The existence
of such a vertex was verified by Berg and the second author[1] in their recent solution to
Connelly’s conjecture.

In this paper we shall show that every 3-connected redundantly rigid graph can be obtained
fromK4 by edge additions and 1-extensions by extending the methods in[1]. We show that
every 3-connected redundantly rigid graphG on at least five vertices either contains an edge
e such thatG − e is 3-connected and redundantly rigid, or a vertexv of degree three such
that some splitting ofv in G results in a graph which is 3-connected and redundantly rigid.

The structure of the paper is as follows. In Section2 we review elementary results
on rigidity: we define the rigidity matroid of a graph and use it to give combinatorial
definitions for when a graph is rigid, redundantly rigid or anM-circuit. In Section3 we
characterizeM-connected graphs (graphs with a connected rigidity matroid). Section4
describes and extends lemmas from[1] on splitting inM-circuits. In Section5, we use the
concept of an ear decomposition of a matroid to extend the splitting theorem of[1] from
M-circuits toM-connected graphs. We use this in Section6 to obtain our above-mentioned
recursive construction for 3-connected redundantly rigid graphs. This verifies Hendrickson’s
conjecture. This, and other corollaries on global rigidity are included in Section7.
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2. Rigid graphs and the rigidity matroid

In this section we prove a number of preliminary lemmas and basic results, most of which
are known. Our goal is to make the paper self-contained and to give a unified picture of
these frequently used statements. Our proofs are based on Laman’s theorem and use only
graph theoretical arguments. Some of these results can be found in[10,17,21,23,24].

Let G = (V ,E) be a graph. LetF be a non-empty subset ofE, U be the set of vertices
incident withF , andH = (U, F ) be the subgraph ofG induced byF . We say thatF is
independentif

iH (X)�2|X| − 3 for all X ⊆ V (H) with |X|�2. (2)

The empty set is also defined to be independent. Therigidity matroidM(G) = (E, I) is
defined on the edge set ofG by

I = {F ⊆ E : F is independent inG}.
To see thatM(G) is indeed a matroid, we shall verify that the following three matroid
axioms are satisfied. (For basic matroid definitions not given here the reader may consult
the book[18].)

(M1) ∅ ∈ I,
(M2) if D ⊂ F ∈ I thenD ∈ I,
(M3) for everyE′ ⊆ E the maximal independent subsets ofE′ have the same cardinality.

Let G = (V ,E) be a graph. ForX, Y,Z ⊂ V , let G[X] be the induced subgraph
of G on vertex setX andEG(X) be the set of edges ofG[X]. We simply useE(X) if
the graph is clear from the context. Letd(X, Y ) = |E(X ∪ Y ) − (E(X) ∪ E(Y ))|, and
d(X, Y,Z) = |E(X ∪ Y ∪ Z) − (E(X) ∪ E(Y ) ∪ E(Z))|. We define thedegreeof X by
d(X) = d(X, V −X). Thusd(X, Y ) is the number of edges betweenX−Y andY −X and
d(X) is the number of edges with precisely one endvertex inX. The degree of a vertexv
is simply denoted byd(v). We shall need the following equalities, which are easy to check
by counting the contribution of an edge to each of their two sides.

Lemma 2.1. LetG be a graph andX, Y ⊆ V (G). Then

i(X) + i(Y ) + d(X, Y ) = i(X ∪ Y ) + i(X ∩ Y ). (3)

Lemma 2.2. LetG be a graph andX, Y,Z ⊆ V (G). Then

i(X) + i(Y ) + i(Z) + d(X, Y,Z) = i(X ∪ Y ∪ Z) + i(X ∩ Y ) + i(X ∩ Z)

+i(Y ∩ Z) − i(X ∩ Y ∩ Z).

We say that the graphH = (V , F ) isM-independentif F is independent inM(H). We
call a setX ⊆ V critical if i(X) = 2|X| − 3 holds.

Lemma 2.3. LetH = (V , F ) beM-independent and letX, Y ⊂ V be critical sets inH
with |X ∩ Y |�2.ThenX ∩ Y andX ∪ Y are also critical, andd(X, Y ) = 0.
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Proof. SinceH is M-independent, (2) holds. By (3) we have
2|X| − 3 + 2|Y | − 3 = i(X) + i(Y ) = i(X ∩ Y ) + i(X ∪ Y ) − d(X, Y )�
2|X∩Y |−3+2|X∪Y |−3−d(X, Y ) = 2|X|−3+2|Y |−3−d(X, Y ). Thusd(X, Y ) = 0
and equality holds everywhere. ThereforeX ∩ Y andX ∪ Y are also critical. �

Lemma 2.4. LetG = (V ,E′) be a graph with|E′|�1 and letF ⊆ E′ be a maximal
independent subset ofE′. Then

|F | = min

{
t∑

i=1

(2|Xi | − 3)

}
, (4)

where the minimum is taken over all collections of subsets{X1, X2, . . . , Xt } ofV such that
{EG(X1), EG(X2), . . . , EG(Xt )} partitionsE′.

Proof. SinceF is independent, we have|F ∩ EG(Xi)|�2|Xi | − 3 for all 1� i� t . Thus
|F |� ∑t

i=1(2|Xi | − 3) for any collection of subsets{X1, X2, . . . , Xt } satisfying the hy-
pothesis of the lemma.

To see that equality can be attained, letH be the subgraph ofG induced byF . Consider
the maximal critical setsX1, X2, . . . , Xt in H . By Lemma2.3 we have|Xi ∩ Xj |�1
for all 1� i < j � t . Since every single edge ofF induces a critical set, it follows that
{EH(X1), EH (X2), . . . , EH (Xt )} is a partition ofF . Thus

|F | =
t∑
1

|EH(Xi)| =
t∑
1

(2|Xi | − 3).

To complete the proof we show that{EG(X1), EG(X2), . . . , EG(Xt )} is a partition ofE′.
Chooseuv ∈ E′ −F . SinceF is a maximal independent subset ofE′,F +uv is dependent.
Thus there exists a setX ⊆ V such thatu, v ∈ X andiH (X) = 2|X| − 3. HenceX is a
critical set inH . This implies thatX ⊆ Xi and henceuv ∈ EG(Xi) for some 1� i� t . �

It follows from the definition of independence thatM(G) satisfies axioms (M1) and (M2).
Lemma2.4 implies thatM(G) also satisfies (M3). It also determines the rank function of
M(G), which we shall denote byrG or simply byr.

Corollary 2.5. LetG = (V ,E) be a graph. ThenM(G) is a matroid, in which the rank
of a non-empty setE′ ⊆ E of edges is given by

r(E′) = min

{
t∑

i=1

(2|Xi | − 3)

}
,

where the minimum is taken over all collections of subsets{X1, X2, . . . , Xt } ofV such that
{EG(X1), EG(X2), . . . , EG(Xt )} partitionsE′.
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Fig. 3. There are only two possible splittings ofv in G. Splittingv onuv,wv results in the graphGu,w
v .

We say that a graphG = (V ,E) is rigid if r(E) = 2|V | − 3 in M(G). The graphG is
minimally rigid if it is rigid and |E| = 2|V | − 3. Thus, ifG is rigid andH = (V ,E′) is
a spanning subgraph ofG, thenH is minimally rigid if and only ifE′ is a base inM(G).
Theorem1.2ensures that these definitions agree with the geometric definitions for rigidity
given in Section 1.

A k-separationof a graphH = (V ,E) is a pair(H1, H2) of edge-disjoint subgraphs of
G each with at leastk + 1 vertices such thatH = H1 ∪H2 and|V (H1)∩V (H2)| = k. The
graphH is said to bek-connectedif it has at leastk + 1 vertices and has noj -separation
for all 0�j �k − 1. If (H1, H2) is ak-separation ofH , then we say thatV (H1) ∩ V (H2)

is ak-separatorof H .

2.1. Minimally rigid graphs

We first investigate the connectivity properties of minimally rigid graphs.

Lemma 2.6. LetG = (V ,E) be minimally rigid with|V |�3.Then

(a) G is 2-connected.
(b) For every∅ �= X ⊂ V we haved(X)�2 and ifd(X) = 2 holds then either|X| = 1 or

|V − X| = 1.

Proof. Suppose that for somev ∈ V the graphG − v is disconnected and letA ∪ B be a
partition ofV − v with d(A,B) = 0. Then (2) gives|E| = 2|V | − 3 = i(A + v) + i(B +
v)�2(|A| + 1)− 3+ 2(|B| + 1)− 3 = 2(|A| + |B| + 1)− 4 = 2|V | − 4, a contradiction.
This proves (a).

Using (a), we haved(X)�2 for every∅ �= X ⊂ V . Suppose|X|, |V − X|�2. By
(2) we obtain|E| = i(X) + i(V − X) + d(X)�2|X| − 3 + 2|V − X| − 3 + d(X) =
2|V | − 6 + d(X) = |E| − 3 + d(X). This impliesd(X)�3 and proves (b). �

Let v be a vertex in a graphG with d(v) = 3 andN(v) = {u,w, z}. Recall that the
operationsplittingmeans deletingv (and the edges incident tov) and adding a new edge,
sayuw, connecting two non-adjacent vertices ofN(v). The resulting graph is denoted by
Gu,w

v and we say that the splitting is madeon the pairuv,wv. Note thatv can be split in at
most three different ways, see Fig.3.

Let G = (V ,E) be minimally rigid and letv be a vertex withd(v) = 3. Splittingv

on the pairuv,wv is said to besuitableif Gu,w
v is minimally rigid. Note that in Fig.3,
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splitting v on uv,wv is suitable inG, but splittingv on xv,wv is not. We call a vertexv
suitableif there is a suitable splitting atv. We shall show that every vertex of degree three
in a minimally rigid graph is suitable.

Lemma 2.7. LetG = (V ,E) be minimally rigid and letX, Y,Z ⊂ V be critical sets inG
with |X ∩ Y | = |X ∩ Z| = |Y ∩ Z| = 1 andX ∩ Y ∩ Z = ∅. ThenX ∪ Y ∪ Z is critical,
andd(X, Y,Z) = 0.

Proof. SinceG is minimally rigid and our sets are critical, Lemma2.2 gives 2|X| − 3 +
2|Y |−3+2|Z|−3+d(X, Y,Z) = i(X)+i(Y )+i(Z)+d(X, Y,Z)� i(X∪Y∪Z)�2(|X∪
Y ∪ Z|) − 3 = 2(|X| + |Y | + |Z| − 3) − 3 = 2|X| − 3 + 2|Y | − 3 + 2|Z| − 3. Hence
d(X, Y,Z) = 0 and equality holds everywhere. ThusX ∪ Y ∪ Z is critical. �

ForX ⊆ V let N(X) denote the set ofneighboursof X (that is,N(X) := {v ∈ V − X :
uv ∈ E for someu ∈ X}).

Lemma 2.8. Letv be a vertex in a minimally rigid graphG = (V ,E).

(a) If d(v) = 2 thenG − v is minimally rigid.
(b) If d(v) = 3 thenv is suitable.

Proof. Part (a) follows easily from (2) and from the definition of minimally rigid graphs.
To prove (b) letN(v) = {u,w, z}. It is easy to see that splittingv on the pairuv,wv

is not suitable if and only if there exists a critical setX ⊂ V with u,w ∈ X andv, z /∈
X. Also observe that no critical setZ ⊆ V − v can satisfyd(v, Z)�3, since otherwise
E(G[Z ∪ {v}]) is not independent inG, contradicting the fact thatG is minimally rigid.
Thus ifv is not suitable then there exist maximal critical setsXuw,Xuz,Xwz ⊂ V −v each
containing precisely two neighbours ({u,w}, {u, z}, {w, z}, resp.) ofv. By Lemma2.3and
the maximality of these sets we must have|Xuw ∩ Xuz| = |Xuw ∩ Xwz| = |Xuz ∩ Xwz| =
1. Thus, by Lemma2.7 the setY := Xuw ∪ Xuz ∪ Xwz is also critical. SinceN(v) ⊆
Y , we haved(v, Y )�3. This is impossible by our previous observation. Thereforev is
suitable. �

The minimally rigid graphK4 − e shows that among the three possible splittings at a
vertex of degree three there may be only one which is suitable.

We now define the reverse operations of vertex deletion and vertex splitting used in
Lemma2.8. The operation 0-extensionadds a new vertexv and two edgesvu, vw with
u �= w. The operation 1-extensionsubdivides an edgeuw by a new vertexv and adds a new
edgevz for somez �= u,w. (Thus, in Fig.3, G is a 1-extension ofGuw

v .) An extensionis
either a 0-extension or a 1-extension. The next lemma follows easily from (2).

Lemma 2.9. LetG beminimally rigid and letG′ be obtained fromG by an extension. Then
G′ is minimally rigid.

Theorem 2.10.LetG = (V ,E) be minimally rigid and letG′ = (V ′, E′) be a minimally
rigid subgraph ofG. ThenG can be obtained fromG′ by a sequence of extensions.
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Proof. We shall prove thatG′ can be obtained fromG by a sequence of vertex splittings
and deletions of vertices (of degree two). The theorem will then follow since these are the
inverse operations of extensions.

The proof is by induction on|V − V ′|. SinceG′ is rigid andG is minimally rigid,G′
must be an induced subgraph ofG. Thus the theorem holds trivially when|V − V ′| = 0.
Now suppose thatY = V − V ′ �= ∅. SinceG′ andG are minimally rigid, it is easy to see
that |E − E′| = 2|Y | holds. Therefore, if|Y | = 1, then we must haved(v) = 2 for the
unique vertexv ∈ Y . HenceG′ can be obtained fromG by deleting a vertex of degree two.
Thus we may assume that|Y |�2.

Claim 2.11. If |Y |�2 then
∑

v∈Y d(v)�4|Y | − 3.

Proof. Since|V ′|�2 and|V −V ′|�2, we can apply Lemma2.6(b) to deduce thatd(Y )�3.
Sincei(Y ) + d(Y ) = |E − E′| = 2|Y |, we obtain

∑
v∈Y

d(v) = 2i(Y ) + d(Y ) = 4|Y | − d(Y )�4|Y | − 3.

It follows from Claim2.11(and from the fact that the minimum degree inG is at least
two) that there is a vertexv ∈ Y with 2�d(v)�3. Now Lemma2.8 implies that either
H = G − v or H = Gu,w

v is minimally rigid and is such thatG′ is a subgraph ofH and
|V (H) − V (G′)| < |V (G) − V (G′)|. The theorem now follows by induction. �

By choosingG′ to be an arbitrary edge ofG we obtain the following constructive char-
acterization of minimally rigid graphs (called the Henneberg or Henneberg–Laman con-
struction, c.f.[15,16,21]).

Corollary 2.12. G = (V ,E) is minimally rigid if and only ifG can be obtained fromK2
by a sequence of extensions.

Theorem 2.13.LetG1 = (V1, E1) andG2 = (V2, E2) be twominimally rigid graphs with
|V1 ∩V2|�2.ThenG1 ∪G2 is rigid. Moreover, if G1 ∩G2 is minimally rigid thenG1 ∪G2
is minimally rigid as well.

Proof. LetF ′ be a maximal independent set inM(G1 ∩G2). LetK be the complete graph
with vertex setV (G1∩G2) andF be a base ofM(K) containingF ′. LetH be a minimally
rigid spanning subgraph ofG2 + (F − F ′) which containsF . Such anH exists, sinceG2,
and henceG2 + (F − F ′), is rigid. (To see thatF andH exist we use the fact that any
independent set in a matroid can be extended to a base.) Now Theorem2.10implies that
H can be obtained by a sequence of extensions from(V1 ∩ V2, F ). The same sequence
of extensions, applied toG1, yields a minimally rigid spanning subgraph ofG1 ∪ G2 by
Lemma2.9. This proves thatG1 ∪ G2 is rigid.

The second assertion follows from the fact that ifG1∩G2 is minimally rigid thenF = F ′
andH = G2. �
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Corollary 2.14. LetG1 = (V1, E1) andG2 = (V2, E2) be two rigid graphs with|V1 ∩
V2|�2.ThenG1 ∪ G2 is rigid.

Let G = (V ,E) be a graph. Since every edge ofG induces a rigid subgraph ofG,
Corollary2.14implies that the maximal rigid subgraphsR1, R2, . . . , Rt (called therigid
components ofG) of G are pairwise edge-disjoint andE(R1), E(R2), . . . , E(Rt ) is a par-
tition of E. Thus a graph is rigid if and only if it has precisely one rigid component.

2.2. M-circuits and redundantly rigid graphs

Given a graphG = (V ,E), a subgraphH = (W,C) is said to be anM-circuit in G if C
is a circuit (i.e. a minimal dependent set) inM(G). In particular,G is anM-circuit if E is
a circuit inM(G). For example,K4, K3,3 plus an edge, andK3,4 are allM-circuits. Using
(2) we may deduce:

Lemma 2.15. LetG = (V ,E) be a graph. The following statements are equivalent.

(a) G is anM-circuit.
(b) |E| = 2|V | − 2 andG − e is minimally rigid for all e ∈ E.
(c) |E| = 2|V | − 2 andi(X)�2|X| − 3 for all X ⊆ V with 2� |X|� |V | − 1.

We shall need the following elementary properties ofM-circuits which can be derived
in a similar way to Lemma2.6.

Lemma 2.16(Berg and Jordán[1, Lemma 2.4]). LetH = (V ,E) be anM-circuit.
(a) For every∅ �= X ⊂ V we haved(X)�3 and ifd(X) = 3 holds then either|X| = 1 or

|V − X| = 1.
(b) If X ⊂ V is critical with |X|�3 thenH [X] is 2-connected.

Let H = (V ,E) be a 2-connected graph and suppose that(H1, H2) is a 2-separation
of G with V (H1) ∩ V (H2) = {a, b}. For 1� i�2, letH ′

i = Hi + ab if ab /∈ E(Hi) and
otherwise putH ′

i = Hi . We say thatH1, H2 are thecleavage graphsobtained bycleaving
G along {a, b}. Given two graphsH1 = (V1, E1) andH2 = (V2, E2) with V1 ∩ V2 = ∅
and two designated edgesu1v1 ∈ E1 andu2v2 ∈ E2, the 2-sumof H1 andH2 (along the
edge pairu1v1, u2v2), denoted byH1 ⊕2 H2, is the graph obtained fromH1 − u1v1 and
H2 −u2v2 by identifyingu1 with u2 andv1 with v2. These definitions are illustrated by the
graphsG1,G2 of Fig.2. If we cleaveG2 along its unique 2-seperator we obtain two copies
of G1, sayH1 andH2, andG2 = H1 ⊕2 H2.

We shall use the following results on 2-sums and cleaving.

Lemma 2.17(Berg and Jordán[1, Lemma 4.1]). LetG1 = (V1, E1) andG2 = (V2, E2)

beM-circuits and letu1v1 ∈ E1 andu2v2 ∈ E2.Then the2-sumG1 ⊕2 G2 along the edge
pair u1v1, u2v2 is anM-circuit.

Lemma 2.18(Berg and Jordán[1, Lemmas 2.4(c), 4.2]). LetG = (V ,E)beanM-circuit
and{a, b} be a2-separator ofG. Thenab /∈ E. Furthermore, if G′ andG′′ are the graphs
obtained fromG by cleavingG along{a, b} thenG′ andG′′ are bothM-circuits.
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Recall that a graphG is redundantly rigidif G has at least two edges andG − e is rigid
for all e ∈ E. M-circuits are examples of (minimally) redundantly rigid graphs. Note also
that a graphG is redundantly rigid if and only ifG is rigid and each edge ofG belongs to
a circuit inM(G) i.e. anM-circuit of G.

It follows from Corollary2.14that any two maximal redundantly rigid subgraphs of a
graphG = (V ,E) can have at most one vertex in common, and hence are edge-disjoint.
Defining aredundantly rigid componentof G to be either a maximal redundantly rigid
subgraph ofG, or a subgraph induced by an edge which belongs to noM-circuit of G, we
deduce that the redundantly rigid components ofG partitionE. Since each redundantly
rigid component is rigid, this partition is a refinement of the partition ofE given by the
rigid components ofG.

We shall need two elementary lemmas on redundant rigidity.

Lemma 2.19. If G is redundantly rigid andG′ is obtained fromG by an edge addition or
a 1-extension, thenG′ is redundantly rigid.

Proof. This follows from the definition of redundant rigidity and the facts that edge addi-
tions, 0-extensions and 1-extensions preserve rigidity.�

Lemma 2.20. IfG is redundantly rigid and{u, v} is a2-separator inG thend(u), d(v)�4.

Proof. Supposed(u)�3. Then we can choose an edgee incident tou such thatG−e is not
2-connected. By Lemma2.6(a),G − e is not rigid. This contradicts the redundant rigidity
of G. �

3. Graphs with a connected rigidity matroid

Given a matroidM = (E, I), we define a relation onE by saying thate, f ∈ E are
related ife = f or if there is a circuitC in M with e, f ∈ C. It is well-known that this
is an equivalence relation. The equivalence classes are called thecomponentsof M. If
M has at least two elements and only one component thenM is said to beconnected. If
M has componentsE1, E2, . . . , Et andMi is the matroid restriction ofM ontoEi then
M = M1 ⊕ M2 . . . ⊕ Mt , where⊕ denotes the direct sum of matroids, see[18].

We say that a graphG = (V ,E) is M-connectedif M(G) is connected. For example,
K3,m isM-connected for allm�4. TheM-componentsofG are the subgraphs ofG induced
by the components ofM(G).

Lemma 3.1. Suppose thatG isM-connected. ThenG is redundantly rigid.

Proof. G is rigid, since otherwiseG has at least two rigid components and hence at least
two M-components. SinceM(G) is connected, every edgee is contained in a circuit of
M(G). ThusG is redundantly rigid. �

Since theM-components ofG are redundantly rigid by Lemma3.1, the partition ofE(G)

given by theM-components is a refinement of the partition given by the redundantly rigid
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Fig. 4. This graph is rigid so has exactly one rigid component. There are three redundantly rigid components,
consisting of the union of the three copies ofK4, and the remaining two copies ofK2. There are fiveM-connected
components: each of the three copies ofK4, and the remaining two copies ofK2.

components and hence a further refinement of the partition given by the rigid components,
see Fig.4.

Furthermore,M(G) can be expressed as the direct sum of the rigidity matroids of the
rigid components ofG, the redundantly rigid components ofG, or theM-components of
G.

The main result of this section (Theorem3.7below) characterizesM-connected graphs.
We say that a graphG is nearly3-connectedif G can be made 3-connected by adding at
most one new edge.

Theorem 3.2. Suppose thatG is nearly3-connected and redundantly rigid. ThenG is
M-connected.

Proof. For a contradiction suppose thatG is notM-connected and letH1,H2,…,Hq be the
M-components ofG. LetXi = V (Hi) − ∪j �=i V (Hj ) denote the set of vertices belonging
to no otherM-component thanHi , and letYi = V (Hi)−Xi for 1� i�q. Letni = |V (Hi)|,
xi = |Xi |, yi = |Yi |. Clearly,ni = xi + yi and|V | = ∑q

i=1 xi + | ∪q

i=1 Yi |. Moreover, we
have

∑q

i=1 yi �2|∪q

i=1Yi |. Since every edge ofG is in someM-circuit, and everyM-circuit
has at least four vertices, we have thatni �4 for 1� i�q. Furthermore, sinceG is nearly
3-connected,yi �2 for all 1� i�q, andyi �3 for all but at most twoM-components.

Let us choose a baseBi in each rigidity matroidM(Hi). Using the above inequalities
we have

| ∪q

i=1 Bi | =
q∑

i=1

|Bi | =
q∑

i=1

(2ni − 3) = 2
q∑

i=1

ni − 3q
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�
(

2
q∑

i=1

xi +
q∑

i=1

yi

)
+

q∑
i=1

yi − 3q

�2|V | + 3q − 2 − 3q = 2|V | − 2.

SinceM(G) has rank 2|V | − 3, this implies that∪q

i=1 Bi contains a circuit, contradicting
the fact that theBi ’s are bases for theM(Hi)’s andM(G) = ⊕q

i=1M(Hi). �

A graphG is birigid if G − v is rigid for all v ∈ V (G). It was shown by Servatius
[20, Theorem 2.2](using a similar argument to our proof of Theorem3.2) that every birigid
graph isM-connected. Theorem3.2 extends this result, since birigid graphs are clearly
3-connected and redundantly rigid. The wheels (on at least 5 vertices) are 3-connected
redundantly rigid graphs which are not birigid. This shows that the extension is proper.

We need the following results to complete our characterization ofM-connected graphs.
The first two lemmas follow from Lemmas2.17and2.18, respectively.

Lemma 3.3. SupposeG1 andG2 areM-connected. ThenG1 ⊕2 G2 isM-connected.

Lemma 3.4. SupposeG1 andG2 are obtained fromG by cleavingG along a2-separator.
If G isM-connected thenG1 andG2 are alsoM-connected.

Let G = (V ,E) be a 2-connected graph,c�3 be an integer, and let(X1, X2, . . . , Xc)

be cyclically ordered subsets ofV satisfying (by takingXc+1 = X1):

(i) |Xi ∩ Xj | = 1, for |i − j | = 1, andXi ∩ Xj = ∅ for |i − j |�2, and
(ii) {E(X1), E(X2), . . . , E(Xc)} is a partition ofE.

Then we say that(X1, X2, . . . , Xc) is apolygon (of sizec) in G. (The graph in Fig.4 is a
polygon of size 3, where the setsX1, X2, X3 are given by the vertex sets of its redundantly
rigid components.) It is easy to see that ifu andv are distinct vertices with{u} = Xi−1∩Xi

and{v} = Xj ∩Xj+1, for some 1� i, j �c, then either{u, v} is a 2-separator inG or i = j

andXi = {u, v}.

Lemma 3.5. Suppose thatG = (V ,E) has a polygon of sizec. Then

(a) G is notM-connected.
(b) If c�4 thenG is not rigid.

Proof. Let X1, X2, . . . , Xc be a polygon and letEi = E(Xi) for 1� i�c. Note that
E1, E2, . . . , Ec is a partition ofE. Using the polygon structure we obtain

r(E)�
c∑

i=1

r(Ei)�
c∑

i=1

(2|Xi | − 3) = 2|V | + 2c − 3c = 2|V | − c. (5)

Thus forc�4 we haver(E)�2|V |−4, and henceG is not rigid. This proves (b). To prove
(a) suppose thatG is M-connected. ThenG is rigid andr(E) = 2|V | − 3. By (b) this
yieldsc = 3. Moreover, equality must hold everywhere in (5). Thusr(E) = ∑c

i=1 r(Ei).
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It follows that no two edges in different setsEi belong to anM-circuit, see[18, Proposition
4.2.1]. This contradicts the fact thatM(G) is a connected matroid.�

We say that a 2-separator{x1, x2} crossesanother 2-separator{y1, y2} in a 2-connected
graphG, if x1 andx2 are in different components ofG − {y1, y2}. It is easy to see that
if {x1, x2} crosses{y1, y2} then {y1, y2} crosses{x1, x2}. Thus, we can say that these 2-
separators arecrossing. It is also easy to see that crossing 2-separators induce a polygon of
size four inG. Thus Lemma3.5(a) has the following corollary:

Lemma 3.6. Suppose thatG is rigid (and hence2-connected). Then there are no crossing
2-separators inG.

Let G = (V ,E) be a 2-connected graph with no crossing 2-separators. Thecleavage
unitsof G are the graphs obtained by recursively cleavingG along each of its 2-separators.
SinceG has no crossing 2-separators this sequence of operations is uniquely defined and
results in a unique set of graphs each of which have no 2-separators. Thus each cleavage
unit ofG is either 3-connected or else a complete graph on three vertices. (The graphG in
Fig. 4 has three cleavage units, obtained by cleavingG along the 2-separators{v,w} and
{x, y}.) The stronger hypothesis thatG has no polygons will imply that each cleavage unit
of G is a 3-connected graph. In this case, an equivalent definition for the cleavage units is
to first construct theaugmented grapĥG from G by adding all edgesuv for which {u, v}
is a 2-separator ofG anduv /∈ E, and then take the cleavage units to be the maximal 3-
connected subgraphs ofĜ. (These definitions are a special case of a general decomposition
theory for 2-connected graphs due to Tutte[22].)

Theorem 3.7. A graphG isM-connected if and only if it is2-connected, has no polygon,
and each of its cleavage units is redundantly rigid.

Proof. If G is M-connected, thenG is rigid and hence 2-connected by Lemma2.6(a),G
has no polygons by Lemma3.5(a), each cleavage unit ofG is M-connected by Lemma
3.4, and hence each cleavage unit is redundantly rigid by Lemma3.1. On the other hand, if
G is 2-connected, has no polygons and each cleavage unit is redundantly rigid, then each
cleavage unit isM-connected by Theorem3.2, andG is M-connected by Lemma3.3. �

The weaker hypothesis thatG is 2-connected, has no polygons, and is redundantly rigid
is not sufficient to imply thatG isM-connected. This can be seen by considering the graph
G obtained from the triangular prismH by replacing each edgevivj of H by a complete
graph with vertex set{vi, vj , v′

i , v
′
j }, wherev′

i , v
′
j /∈ V (H). The graphG is redundantly

rigid since it is rigid and every edge belongs to anM-circuit (a complete graph on four
vertices). To see thatG is notM-connected we first note thatH is minimally rigid and
hence it is not redundantly rigid. We may now deduce thatG is notM-connected sinceH
is a cleavage unit ofG, and every cleavage unit of anM-connected graph isM-connected
by Lemma3.4.

We close this section by obtaining two further results onM-connectivity which we will
need later.
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Lemma 3.8. LetG = (V ,E) be a2-connected graph and{u, v} be a2-separator ofG
such thatuv ∈ E. ThenG isM-connected if and only ifG − uv isM-connected.

Proof. First suppose thatG − uv is M-connected. ThenG − uv is rigid by Lemma3.1,
and hence there exists anM-circuit H in G with uv ∈ E(H). TheM-connectivity of
G now follows from the transitivity of the relation onE which defines theM-connected
components. To see the other direction suppose thatG is M-connected and let(G1,G2)

be a 2-separation ofG with V (G1) ∩ V (G2) = {u, v} and lete, f ∈ E(G − uv). We
shall prove that there is anM-circuit H in G − uv which containse andf . SinceG is
M-connected, there is anM-circuit H ′ with e, f ∈ E(H ′). If uv /∈ E(H ′) then we are
done by choosingH = H ′. Note that ifE(H ′) intersects both sides of the 2-separation (in
particular, ife andf belong to differentGi ’s) then{u, v} is also a 2-separator ofH ′ and
henceuv /∈ E(H ′) by Lemma2.18. Thus we may suppose, without loss of generality, that
e, f ∈ E(G1), uv ∈ E(H ′), andE(H ′)∩E(G2 −uv) = ∅. Letg ∈ E(G2)−uv. SinceG
is M-connected, there is anM-circuit H ′′ in G with e, g ∈ E(H ′′). LetH1 andH2 be the
subgraphs ofG obtained by cleavingH ′′ along{u, v}, wheree ∈ E(H1) andg ∈ E(H2).
ThenH2 is anM-circuit by Lemma2.18. NowH = H ′ ⊕2 H2 is the desiredM-circuit in
G with e, f ∈ E(H) by Lemma2.17. �

Lemma 3.9. If G is M-connected andG′ is obtained fromG by an edge addition or a
1-extension, thenG′ isM-connected.

Proof. First suppose thatG′ is obtained fromG by adding an edgee. SinceG is M-
connected, it is rigid by Lemma3.1. Thus there is anM-circuit H in G′ with e ∈ E(H).
Now theM-connectivity ofG′ follows from transitivity.

Next consider the case whenG′ is obtained fromG by a 1-extension which subdivides
an edgeuw of G by a new vertexv and adds a new edgevz for somez /∈ {u,w}. Let
f ∈ E(G) be an edge which is incident withz. Sincef �= uw, we also havef ∈ E(G′).
We shall prove that for all edgesg ∈ E(G′) − f there exists anM-circuit H in G′ with
f, g ∈ E(H). This will imply thatG′ is M-connected by transitivity.

If g ∈ E(G) then there is anM-circuitH ′ in G with f, g ∈ E(H ′). If uw /∈ E(H ′) then
we are done by choosingH = H ′. Otherwise we letH be the 1-extension ofH ′ (on the
edgeuw and vertexz), which is a subgraph ofG′, and is also anM-circuit by Lemma2.19.
Finally, if g /∈ E(G), that is, ifg ∈ {vu, vw, vz}, then we take anM-circuit H ′′ of G with
uw, f ∈ E(H ′′) and letH be the 1-extension ofH ′′ (on the edgeuw and vertexz). As
above,H is anM-circuit of G′ with f, g ∈ E(H). �

4. Admissible splittings inM-circuits

LetG = (V ,E) be a graph and letV3 = {v ∈ V : d(v) = 3}. We will refer to vertices in
V3 asnodesof G and to the subgraphG[V3] as thenode-subgraphof G. A node ofG with
degree at most one (exactly two) in the node-subgraph ofG is called aleaf node(series
node, respectively). AwheelWn = (V ,E) is a graph onn�4 vertices which has a vertex
z which is adjacent to all the other vertices and for whichWn[V − z] is a cycle. Thus the
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node-subgraph of a wheelWn with n�5 is a cycle. It was shown in[1, Lemma 2.1]that if
G is anM-circuit then eitherG is a wheel orG[V3] is a forest. The proof can be extended
to M-connected graphs to give:

Lemma 4.1. LetG beM-connected. IfG is not a wheel, then the nodes ofG induce a
forest inG.

We also need two results onM-circuits from[1]. The proof of the first lemma is similar
to that of Lemma2.3.

Lemma 4.2(Berg and Jardán[1, Lemma 2.3]). LetH = (V ,E) be anM-circuit and let
X, Y ⊂ V be critical sets with|X ∩ Y |�2 and|X ∪ Y |� |V | − 1.ThenX ∩ Y andX ∪ Y

are both critical, andd(X, Y ) = 0.

Lemma 4.3(Berg and Jardán[1, Lemma 2.5]). LetH = (V ,E) be anM-circuit and let
X ⊂ V be a critical set. ThenV − X contains at least one node ofH . Furthermore, if
|V − X|�2, thenV − X contains at least two nodes ofH .

We shall say that splitting a nodev in anM-connected graph isadmissibleif it preserves
M-connectivity, thatv is anadmissible nodeif it has an admissible splitting, and otherwise
thatv is non-admissible. Note that an admissible splitting in anM-circuit results in anM-
connected graph with|E| = 2|V |−2, and hence results in anotherM-circuit. The following
result follows easily from Lemma2.15.

Lemma 4.4(Berg and Jordán[1, Lemma 3.1]). LetH = (V ,E) be anM-circuit and v
be a node inGwithN(v) = {u,w, z}.Then splittingv on the pairuv,wv is not admissible
if and only if there is a critical setX ⊂ V with u,w ∈ X andv, z /∈ X.

If v is a node in a graphG with N(v) = {u,w, z} andX is a critical set withu,w ∈ X

andv, z /∈ X then we callX a v-critical set on{u,w}, or simply av-critical set. If X is a
v-critical set on{u,w} for some nodev with N(v) = {u,w, z}, andd(z)�4, thenX is said
to benode-critical.

Our next lemma extends[1, Lemma 3.2].

Lemma 4.5. LetH = (V ,E) be anM-circuit, |V |�5, and v be a non-admissible leaf
node inH withN(v) = {x, y, z}. Suppose that no two neighbours ofv are a2-separator
in H .
(a) If z is a node ofH then for any pairX, Y of v-critical sets on{y, z}, and {x, z},

respectively, we have|X ∩ Y |�2 andX ∪ Y = V (H) − v.
(b) If v is not adjacent to anode then thereexist twov-critical setsX1, X2with |X1∩X2|�2,

X1 ∪ X2 = V (H) − v.

Proof. (a) If the edgesxz andyz are both present inE(H) then, sincez is a node ofH
and|V |�5, {x, y} is a 2-separator, contradicting an hypothesis of the lemma. Thus we may
assume, without loss of generality, thatyz /∈ E. Then for thev-critical setX ony, z we must
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have|X|�3. By Lemma2.16(b) H [X] is 2-connected, and hencez has two neighbours in
X. If z has no neighbours inY thenxz /∈ E(Y ), |Y |�3, andz is an isolated vertex inH [Y ].
This would contradict Lemma2.16(b). Hencez has a neighbour inY . Sincez is a node and
has two neighbours inX, this implies that|X∩Y |�2. By Lemma4.2this gives thatX∪Y

is also critical. Sinced(v,X ∪ Y )�3, Lemma2.15implies thatX ∪ Y = V (H)− v. Thus
(a) holds.

(b) Sincev is non-admissible, Lemma4.4 implies that there exist threev-critical sets
X, Y,Z on{y, z}, {x, z} and{x, y}, respectively. Suppose that no two of these sets intersect
each other in at least two vertices. Then we also haveX ∩ Y ∩ Z = ∅. Lemma2.2implies
thatX ∪ Y ∪Z is critical andd(X, Y,Z) = 0. Sinced(v,X ∪ Y ∪Z) = 3, we deduce that
X∪Y ∪Z = V −v (otherwise(X∪Y ∪Z)+v violates Lemma2.15). Since|V |�5, at least
one of the three critical setsX, Y,Z (say,X) satisfies|X|�3. But we haved(X, Y,Z) = 0,
and hence{y, z} is a 2-separator inH , contradicting an hypothesis of the lemma. This
contradiction shows that we can choose two setsX1, X2 ∈ {X, Y,Z} with |X1 ∩ X2|�2.
ThenX1 ∪ X2 is critical by Lemma4.2and soX1 ∪ X2 = V − v follows, using Lemma
2.15andd(v,X ∪ Y ) = 3. Thus (b) holds. �

The next lemma extends[1, Lemma 3.3].

Lemma 4.6. LetH = (V ,E) be anM-circuit which is not a wheel, and letv be a node.
LetN(v) = {x, y, z} and letX be av-critical set onx, y withd(z)�4and|X|�3.Suppose
that either
(a) there is a non-admissible series nodeu ∈ V − X − v with exactly one neighbourw in

X, andw is a node, or
(b) there is a non-admissible leaf nodet ∈ V − X − v.
Theneither there is a2-separation(H1, H2)ofH withX ⊆ V (H1)or there is anode-critical
setX∗ withX properly contained inX∗.

Proof. Suppose first that (a) occurs and letN(u) = {w,p, q}. By our assumptionN(u) ∩
X = {w} andd(w) = 3. Sinceu is a series node, we can assume thatd(p) = 3 and
d(q)�4. Sinceu is non-admissible, there exists au-critical setY on{w,p} by Lemma4.4.
NowH is not a wheel, and hence the node subgraph ofH contains no cycles by Lemma4.1.
Thuspw /∈ E and hence|Y |�3. This implies, by Lemma2.6(a), thatG[Y ] is 2-connected,
and henceY contains two neighbours ofw. Since|X|�3, Lemma2.6(a) implies thatG[X]
is 2-connected, and hence at least one of the neighbours ofw in Y must be inX. Thus
|X ∩ Y |�2. LetX∗ = X ∪ Y . We haveX∗ ⊆ V − u − q, and Lemma4.2 implies that
X∗ is au-critical set on{w,p}. Sinced(q)�4 andp /∈ X, the setX∗ is a node-critical set
which properly containsX.

We next suppose that (b) occurs. We must have|N(t) ∩ X|�2, since|N(t) ∩ X| = 3
would imply thatX+ t violates Lemma2.15(c). If |N(t)∩X| = 2 thenX+ t is also critical
and by choosingX∗ = X+ t the lemma follows. Thus we may assume that|N(t)∩X|�1.

Sincet is a non-admissible leaf node, Lemma4.5implies that either there is a 2-separator
consisting of two neighbours oft or there exist twot-critical setsY1 andY2 with Y1 ∪ Y2 =
V − t , |Y1 ∩ Y2|�2, and so that ift has a neighbourr which is a node thenr ∈ Y1 ∩ Y2.
In the former case we are done (sinceG[X] is 2-connected by Lemma2.6(a) and hence
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Fig. 5. IfC1 = E(G−y1),C2 = E(G−y2) andC3 = E(G−{y4, y5}), thenC1, C2, C3 is an ear decomposition
of the rigidity matroid ofG. We haveC̃2 = {x1y1, x2y1, x3y1} andC̃3 = {y1y2}.

X is contained in one side of the corresponding 2-separation). Suppose that the latter case
holds. Note thatY1 andY2 are node-critical sincet is a leaf node and|Y1|, |Y2|�3. Since
Y1 ∪ Y2 = V − t , t /∈ X, and|X|�3, we have|X ∩ Y1|�2 or |X ∩ Y2|�2. Let us assume,
without loss of generality, that|X∩Y1|�2 holds. By Lemma4.2, X∪Y1 is a critical set. If
N(t)∩X ⊆ Y1, then the lemma follows by choosingX∗ = X∪Y1. (The setX∗ is t-critical
and the unique neighbour oft in V − X∗ has degree four inH .)

Thus we may assume thatN(t) ∩ X = {s} ands /∈ Y1 holds. This implies thatd(s)�4,
since ifd(s) = 3 then we haves ∈ Y1 ∩ Y2 as noted above. SinceY1 ∪ Y2 = V − t , we
haves ∈ Y2. Hence if|X ∩ Y2|�2 then we are done, as above, by choosing thet-critical
setX∗ = X ∪ Y2. Thus, we may suppose that|X ∩ Y2| = 1. Sinced(t, X ∪ Y1) = 3, and
X ∪ Y1 is critical, Lemma2.15impliesX ∪ Y1 = V − t . SinceY1 ∪ Y2 = V − t , we have
(X − s) ⊆ Y1. ThusV − Y1 = {s, t}. This contradicts Lemma4.3, sinced(s)�4, and
completes the proof of the lemma.�

5. Ear decompositions and admissible splittings inM-connected graphs

LetM = (E, I) be a matroid and letC1, C2, . . . , Ct be a non-empty sequence of circuits
of M. LetDj = C1 ∪ C2 ∪ . . . ∪ Cj for 1�j � t . We say thatC1, C2, . . . , Ct is apartial
ear decompositionof M if for all 2 � i� t the following properties hold:

(E1) Ci ∩ Di−1 �= ∅,
(E2) Ci − Di−1 �= ∅,
(E3) no circuit C′

i satisfying (E1) and (E2) hasC′
i − Di−1 properly contained in

Ci − Di−1.

The setCi − Di−1 is called thelobeof circuit Ci , and is denoted bỹCi . An ear decom-
positionof M is a partial ear decomposition withDt = E. As an example, we construct
an ear-decompositionC1, C2, C3 of the rigidity matroid of the graph obtained fromK3,5
by adding an edge, see Fig.5.

We need the following facts about ear decompositions. The proof of (a) and (b) in the
next lemma can be found in[6]. The proof of (c) is easy and is omitted.
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Lemma 5.1. LetM be a matroid with rank functionr. Then

(a) M is connected if and only ifM has an ear decomposition.
(b) If M is connected then any partial ear decomposition ofM can be extended to an ear

decomposition ofM.
(c) If C1, C2, . . . , Ct is an ear decomposition ofM then

r(Di) − r(Di−1) = |C̃i | − 1 for 2� i� t. (6)

Lemma 5.2. LetG = (V ,E) be anM-connected graph andH1, H2, . . . , Ht be theM-
circuits ofG induced by an ear decompositionC1, C2, . . . , Ct of M(G) with t�2. Let
Y = V (Ht) − ∪t−1

i=1V (Hi), and letX = V (Ht) − Y . Then:
(a) EitherY = ∅ and|C̃t | = 1,or Y �= ∅ and every edgee ∈ C̃t is incident toY .
(b) |C̃t | = 2|Y | + 1.
(c) If Y �= ∅ thenX is critical in Ht .
(d) G[Y ] is connected.
(e) If G is 3-connected then|X|�3.

Proof. SinceM-connected graphs are rigid, it follows thatG, ∪t−1
i=1Hi , andHt are all

rigid. Thus (E3) implies that (a) holds. Furthermore,r(E) = 2|V | − 3 andr(∪t−1
i=1Ci) =

2|V − Y | − 3. By Lemma5.1(c) this implies that 2|Y | = |C̃t | − 1. This gives (b).
SinceHt is anM-circuit, we have|E(Ht)| = 2|V (Ht)| − 2. Hence, since|X|�2, (b)

implies thatX is critical inHt and hence (c) holds.
To prove (d) suppose thatY can be partitioned into two non-empty setsY1, Y2 with

d(Y1, Y2) = 0. SinceX is critical andHt is anM-circuit, we must havei(Yj )+d(Yj ,X)�2
|Yj | for j = 1,2. This gives|C̃t | = ∑2

j=1 i(Yj ) + d(Yj ,X)�2(|Y1| + |Y2|)�2|Y |,
contradicting (b). Property (e) follows from the fact that eitherY �= ∅ andX is a separator
in G (using (c)), orY = ∅ and|X| = |V (Ht)|�4 (sinceHt is anM-circuit). �

Let H = (V ,E) be anM-circuit, v be a node ofH , N(v) = {x, y, z}, and suppose that
xy /∈ E. SinceH − vz is rigid,H − v is rigid by Lemma2.8(a). ThusHx,y

v = H − v + xy

is rigid. Since|V (H
x,y
v )| = 2|E(H

x,y
v )| − 2,Hx,y

v contains a uniqueM-circuit J . We have
J = H

x,y
v if and only if the splitting ofv onvx, vy is admissible. If not,V (J ) is the minimal

v-critical set on{x, y} in H .

Lemma 5.3. LetG = (V ,E) be anM-connected graph andH1, H2, . . . , Ht be theM-
circuits ofG induced by an ear decompositionC1, C2, . . . , Ct of M(G) with t�2. Let
Y = V (Ht) − ∪t−1

i=1 V (Hi) andX = V (Ht) − Y . Let v be a node ofG in Y , and let
x, y ∈ N(v) with x /∈ X and xy /∈ E. Let J be the uniqueM-circuit in (Ht )

x,y
v and

C = E(J ). If C ∩ EHt (X) �= ∅ andE((Ht )
x,y
v ) − EHt (X) ⊂ C then splittingv onvx, vy

is admissible inG.

Proof. Let N(v) = {x, y, z}. It suffices to show thatC1, C2, . . . , Ct−1, C is an ear-
decomposition ofM(G

x,y
v ) since this will imply thatGx,y

v is M-connected. LetDt−1 =
∪t−1
i=1Ci . ThenEHt (X) ⊆ Dt−1 by Lemma5.2(a). SinceE((Ht )

x,y
v ) − EHt (X) ⊂ C,
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Dt−1 ∪C = E(G
x,y
v ). Properties (E1), (E2) and (E3) are clearly satisfied for 2� i� t − 1.

Property (E1) follows for ‘i = t ’ from the hypothesis thatC ∩ EHt (X) �= ∅ and the fact
thatEHt (X) ⊆ Dt−1. Property (E2) holds for ‘i = t ’ sincexy ∈ C − Dt−1. To see that
(E3) holds for ‘i = t ’ we proceed by contradiction. Suppose that there is anM-circuit J ′
whereC′ = E(J ′) satisfiesC′ ∩ Dt−1 �= ∅ �= C′ − Dt−1 andC′ − Dt−1 ⊂ C − Dt−1.
SinceC1, C2, . . . , Ct satisfies (E3), we must havexy ∈ C′. LetJ ′′ be obtained fromJ ′ by a
1-extension, which deletes the edgexy, adds a new vertexv, and the edgesvx, vy, vz. Then
J ′′ is anM-circuit andC′′ = E(J ′′) violates (E3) with respect to the ear decomposition
C1, C2, . . . , Ct of M(G), a contradiction. �

Note that if splittingv alongvx, vy is admissible inHt , then the hypotheses of Lemma
5.3 are trivially satisfied since we haveJ = (Ht )

x,y
v . Thus an admissible splitting ofv in

Ht is admissible inG. However, it is possible a non-admissible splitting ofv in Ht still
satisfies the hypotheses of Lemma5.3and hence is admissible inG.

Theorem 5.4. Let G = (V ,E) be a3-connectedM-connected graph which is not an
M-circuit. LetH1, H2, . . . , Ht be theM-circuits ofG induced by an ear decomposition
C1, C2, . . . , Ct ofM(G).Suppose thatG− e is notM-connected for alle ∈ C̃t and for all
but at most two edges ofCt . ThenV (Ht)− ∪t−1

i=1 V (Hi) contains an admissible node ofG.

Proof. Suppose the theorem is false and letG be a counterexample. SinceG is not an
M-circuit, we havet�2. LetY = V (Ht) − ∪t−1

i=1V (Hi), X = V (Ht) − Y . SinceG − e is
notM-connected for alle ∈ C̃t , we haveY �= ∅ by Lemma5.2(a). LetL = ∪t−1

i=1V (Hi).
SinceG is 3-connected, we have|X|�3 by Lemma5.2(e). Note that every edgee ∈ C̃t is
incident toY by Lemma5.2(a).

By Lemmas4.3 and5.2(c), Y contains a node. SinceG is not anM-circuit, G is not a
wheel. Lemma4.1 implies that we can choose a nodev of G in Y such thatv is a leaf in
G[Y ∩ V3] = Ht [Y ∩ V3], whereV3 is the set of nodes ofG. LetN(v) = {x, y, z}.

Claim 5.5. v does not have three neighbours inX.

Proof. For a contradiction supposeN(v) ⊂ X. Then, by Lemma5.2(d), we must have
Y = {v}. By the hypothesis of the theorem there exists a pair of neighbours ofv, say
x, y ∈ N(v), such that eitherxy /∈ E or xy ∈ E andG − xy is notM-connected. In the
former case splittingv on the pairvx, vy givesL + xy, which isM-connected by Lemma
3.9. Thusv is an admissible node ofG. In the latter caseG−xy is a 1-extension ofL. Thus
G − xy is M-connected by Lemma3.9, a contradiction. �

Claim 5.6. v does not have two neighbours inX.

Proof. Let N(v) ∩ X = {x, y}. If splitting v alongxz or yz is admissible inHt then by
Lemma5.3it is an admissible split inG. Hence, by Lemma4.4, we may assume that there
exist two minimal critical setsX1, X2 in Ht with x, z ∈ X1 andy, z ∈ X2. Note that the
minimality of X1 implies that the uniqueM-circuit J in (Ht )

x,z
v satisfiesV (J ) = X1. Let

C = E(J ).
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Suppose|X∩X1|�2. ThenX∪X1 andX∩X1 are critical andd(X,X1) = 0 by Lemma
4.2. Sinced(v,X ∪ X1) = 3, Lemma2.15now implies thatX ∪ X1 = Ht − v. Hence
(E((Ht )

x,z
v ) − E(X)) ⊆ C. SinceX ∩ X1 is critical,Ht [X ∩ X1] is connected (it is either

K2 or is 2-connected by Lemma2.6(a)) and henceE(X)∩C �= ∅. Thusv is admissible in
G by Lemma5.3. HenceX ∩ X1 = {x} and, by symmetry,X ∩ X2 = {y}.

If |X1 ∩ X2|�2 thenX1 ∪ X2 = V (Ht) − v and {x, y} is a 2-separator inG. This
contradicts the 3-connectivity ofG and hence|X1 ∩ X2| = 1. Now Lemma2.2 implies
that d(X,X1, X2) = 0. This again implies that{x, y} is a 2-separator inG, and gives a
contradiction. �

Claim 5.7. There is av-critical setX′ ⊂ V (Ht) such thatX′ is node-critical inHt and
X ⊆ X′.

Proof. It follows from Claims5.5, 5.6thatv has at most one neighbour inX.
Case1: v has exactly one neighbour, sayx, in X.

Sincev is a leaf inHt [Y ∩V3], we may assume without loss of generality thatdHt (y)�4. If
splittingv alongxz or yz is admissible inHt then by Lemma5.3it is an admissible split in
G. Hence, by Lemma4.4, we may assume that there exist two minimal critical setsX1, X2
in Ht with x, z ∈ X1 andy, z ∈ X2. If |X ∩ X1|�2 then Lemma4.2 implies thatX ∪ X1
is the desiredv-critical, node critical set containingX in Ht . Hence

X ∩ X1 = {x}. (7)

Suppose|X ∩ X2|�2. Then Lemma4.2 implies thatX ∪ X2 andX ∩ X2 are critical
andd(X,X2) = 0. SinceN(v) ⊆ X ∪ X2, Lemma2.15 givesX ∪ X2 = V (Ht) − v.
Hence the unique circuitJ = (X2, C) in (Ht )

y,z
v satisfies(E((Ht )

y,z
v ) − E(X)) ⊆ C and

E(X) ∩ C �= ∅ (becauseX ∩ X2 is also critical, soHt [X ∩ X2] is connected). Thusv is
admissible inG by Lemma5.3. Hence

|X ∩ X2|�1. (8)

If |X1 ∩ X2|�2 then we may deduce as above thatX1 ∪ X2 = V (Ht) − v must hold.
Since|X|�3, this contradicts either (7) or (8). ThusX1 ∩X2 = {z}. SinceHt [X1], Ht [X2]
are minimally rigid, Lemma2.6(a) implies that eitherdHt (z)�4; or dHt (z) = 3, |X1| =
2 = |X2| andxz, yz ∈ E. The second alternative would imply that{x, y} is a 2-separator in
G, and contradict the fact thatG is 3-connected. ThusdHt (z)�4. We now choose a critical
setX3 in Ht with x, y ∈ X3 (if it did not exist then splittingv alongxy would be admissible
in G). By symmetry we have|X3 ∩ X2| = 1. If |X3 ∩ X|�2 thenX ∪ X3 is the desired
v-critical, node-critical set. Hence|X3 ∩ X| = 1 and Lemma2.2gives thatX1 ∪ X2 ∪ X3
is critical. HenceX1 ∪ X2 ∪ X3 = V (Ht) − v. We may now deduce that|X|�2, since
X ⊆ X1 ∪ X2 ∪ X3 andX ∩ (X1 ∪ X3) = {x} and|X ∩ X2|�1. This contradicts the fact
that|X|�3.
Case2: N(v) ∩ X = ∅.

We havex, y, z ∈ Y . Sincev is a leaf inHt [Y ∩ V3] we may assume, without loss of
generality, thatdHt (x)�4 anddHt (y)�4. Lemma5.3implies thatv is not splittable along
yz or zx. Thus there exist minimal critical setsX1 andX2 in Ht on {y, z} and {z, x}
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respectively. If two neighbours ofv form a 2-separator inHt , then the fact thatHt [X] is
connected by Lemma5.2(c) implies that this will also be a 2-separator inG. This contradicts
the 3-connectivity ofG. Lemma4.5now implies that|X1∩X2|�2 andX1∪X2 = V (Ht)−v

(possibly after renamingx, y, z in the case whendHt (z)�4). Since|X|�3, we may assume
by symmetry that|X1∩X|�2. Now Lemma4.2implies thatX∪X1 is the requiredv-critical,
node critical set containingX. �

Choose a maximalv-critical and node-critical setX∗ ⊂ V (Ht) with X ⊆ X∗. By
applying Lemma4.3 to the critical setX∗ ∪ {v}, we deduce thatHt − X∗ − v contains a
node. Lemma4.1now implies that we may choose a leafw in Ht [V3 − X∗ − v]. Thenw
has at most one neighbour inX∗ (otherwiseX∗ + w would either contradict Lemma2.15
or be a largerv-critical, node critical set thanX∗.) Thusw is either a leaf inHt [V3] or is a
series node with a unique neighbourr in X∗, such thatr is a node. Using Lemma4.6, the
3-connectivity ofG and the maximality ofX∗, we can deduce thatw is admissible inHt

(and hence inG). This proves the theorem.�

We shall also need

Theorem 5.8(Berg and Jordán[1, Theorem 3.8]). LetG be a3-connectedM-circuit with
at least five vertices. Then eitherG has three non-adjacent admissible nodes orG has four
admissible nodes.

Theorems5.4 and 5.8, and Lemmas3.3 and 3.4 imply the following extension of
[1, Theorem 4.4].

Corollary 5.9. G = (V ,E) isM-connected if and only ifG is a connected graph obtained
from disjoint copies ofK4’s by recursively applying edge additions and1-extensions within
a connected component, and taking2-sums of different connected components.

6. Bricks

A graphG is abrick if it is 3-connected andM-connected. A brickG = (V ,E) is said
to beminimal if G − e is not a brick for alle ∈ E. An edgef of G is admissibleif G − f

is M-connected. A nodev of G is feasibleif Gv is a brick for some splittingGv of G at
v. A fragmentin a 2-connected graphH is a setX ⊆ V (H) such that|NH(X)| = 2 and
1� |X|� |V (H)| − 3. LetS be a 2-separator inH , x, y ∈ V (H) ande ∈ E(H). We say
thatS separatesx andy if x andy belong to different components ofH − S. We say that
S separatesx ande if either x ande belong to different components ofH − S, or e is an
edge fromS to a component ofH − S which does not containx.

Theorem 6.1. LetG = (V ,E) be a minimal brick. IfG �= K4 thenG has a feasible node.

Proof. We proceed by contradiction. Suppose the theorem is false and letG be a coun-
terexample with as few vertices as possible. IfG − e is notM-connected for alle ∈ E (in
particular, ifG is anM-circuit) thenG has an admissible splittingGx,y

w by Theorems5.4
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and5.8. SinceG is a counterexample to the theorem,G′ = G
x,y
w is not 3-connected. On the

other hand, ifG is not minimallyM-connected, thenG has an admissible edgef . SinceG
is a minimal brick,G′ = G − f is not 3-connected. We now consider all possible choices
for an admissible splitting and an admissible edge, and choose one such that some fragment
X of the resultingM-connected graphG′ is minimal with respect to inclusion.

We shall prove thatX contains a feasible node ofG. SinceG′ is M-connected,G′ has
minimum degree at least three and hence|X|�2. By Lemma3.5, G′ has no polygons. Let
S := NG′(X) = {u, v}. LetH,L be the cleavage graphs obtained by cleavingG′ at {u, v},
whereX = V (H) − {u, v}. Note that the minimality ofX and the fact thatG′ has no
polygons imply thatH is a cleavage unit ofG′, and the 3-connectivity ofG implies that
L − {u, v} is connected.

If G′ = G
x,y
w andN(w) = {x, y, z}, then letV ∗(H) = X − {x, y, z} andE∗(H) =

(E(H)∩E(G)). (The 3-connectivity ofG implies that eitherx, y ∈ X∪S andz ∈ V (L)−S,
or x, y ∈ V (L) andz ∈ X.) On the other hand, ifG′ = G − f andf = yz, then let
V ∗(H) = X − {y, z} andE∗(H) = E(H) − uv. (The 3-connectivity ofG implies that
{y, z} ∩ X �= ∅ and{y, z} ∩ (V (L) − S) �= ∅.) Note thatE(H) − E∗(H) = {uv, xy} if
G′ = G

x,y
w andx, y ∈ V (H). OtherwiseE(H)−E∗(H) = {uv}. Let� = xy if G′ = G

x,y
w

andxy ∈ E(H), let � = z if G′ = G
x,y
w andxy /∈ E(H), and let� be the unique vertex of

X which is incident tof in G if G′ = G − f .

Claim 6.2. H is 3-connected.

Proof. This follows sinceG′ has no polygons and hence all its cleavage units are 3-
connected. �

Claim 6.3. uv /∈ E(G).

Proof. Supposeuv ∈ E(G). SinceG′ isM-connected, and{u, v} is a 2-separator, Lemma
3.8implies thatG′ − uv isM-connected. SinceG− uv is obtained fromG′ − uv by either
an edge addition or a 1-extension,G − uv is M-connected by Lemma3.9. Futhermore,
G′ − uv contains three internally disjointuv-paths (two inH − uv by Claim6.2and one
in L− uv). ThusG− uv has three internally disjointuv-paths and the 3-connectivity ofG
implies thatG−uv is 3-connected. This contradicts the fact thatG is a minimal brick. �

Claim 6.4. H andL areM-connected.

Proof. This follows from Lemma3.4sinceG′ is M-connected andH andL are obtained
by cleavingG′ along the 2-separator{u, v}. �

Claim 6.5. Suppose thatG − e isM-connected for somee ∈ E∗(H). ThenH − {u, v, e}
is connected.

Proof. SupposeH − {u, v, e} has two componentsH1, H2. Choosei ∈ {1,2} such that
� /∈ V (Hi)∪E(Hi). ThenV (Hi) is a fragment ofG− e which is properly contained inX.
This contradicts the choice ofG′ andX. �
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Claim 6.6. G − e is notM-connected for alle ∈ E∗(H).

Proof. Suppose thatG − e is M-connected for some edgee = ab ∈ E∗(H). SinceG is
a minimal brick,G − e is not 3-connected. LetT be a 2-separator inG − e. SinceG is
3-connected,T separatesa andb. If G′ = G

x,y
w then Lemma2.20implies thatw /∈ T .

SinceG′ isM-connected, it is redundantly rigid. Hence the graphG′′ = G′ − e is rigid.
ThusG′′ is 2-connected by Lemma2.6(a). Clearly,T andS are 2-separators inG′′. By
Lemma3.6, T andS do not cross inG′′. By Claim6.5, H − {u, v, e} is connected. Since
a, b ∈ X ∪ S andT separatesa andb in G − e, we haveT ∩ X �= ∅ andG′′[X] is a
component ofG′′ − S. SinceT andS do not cross, we haveT ∩ (V − X − S) = ∅. Since
L−S is connected, some componentJ ′ of G′′ −T = G′ −e−T containsV −X−S. LetJ
be the component ofG−e−T which containsV −X−S. ThenV −X ⊂ V (J )∪NG−e(J ).
Moreover, ifG′ = Gw, then the neighbour(s) ofw in X are contained inV (J )∪NG−e(J ),
and, ifG′ = G − f then the endvertex off in X is contained inV (J ) ∪ NG−e(J ). This
implies in both cases that the vertex set of the component ofG − e − T distinct fromJ is
a proper subset ofX. This contradicts the minimality ofX. �

Claim 6.7. H − e is notM-connected for alle ∈ E∗(H).

Proof. SupposeH − e is M-connected. ThenG′ − e = (H − e) ⊕2 L andG′ − e is
M-connected by Claim6.4 and Lemma3.3. Since, by Lemma3.9, the property of being
M-connected is preserved by edge addition and 1-extension, it follows thatG − e is M-
connected. This contradicts Claim6.6. �

Note that ifp ∈ V ∗(H) is a node ofG thenp /∈ {u, v} sinceu andv have degree at least
four in G′ by Lemma2.20, and hence also inG.

Claim 6.8. Supposep ∈ V ∗(H) is a node ofG, NG(p) = {q, s, t}, andG
s,t
p is M-

connected. Thenp /∈ {u, v} andHs,t
p − {u, v} is connected.

Proof. SupposeHs,t
p −{u, v} is disconnected. ThenH −{u, v} has a 1-separation(H1, H2)

whereV (H1) ∩ V (H2) = {p}, s, t ∈ V (H1) andq ∈ V (H2). Choosei ∈ {1,2} such that
� /∈ V (Hi)∪E(Hi). ThenV (Hi)− p is a fragment ofGs,t

p which is properly contained in
X. This contradicts the choice ofG′ andX. �

Claim 6.9. Gp is notM-connected for all nodesp ofG in V ∗(H).

Proof. Suppose thatGp = G
s,t
p is M-connected for some nodep of G in V ∗(H), with

NG(p) = {q, s, t}. SinceG is a counterexample to the theorem,G
s,t
p is not 3-connected.

Let T be a 2-separator inGs,t
p . SinceG is 3-connected,T separatesst andq. If G′ = G

x,y
w

then Lemma2.20implies thatw /∈ T .
SinceG′ is M-connected, it is redundantly rigid. HenceG′ − pq is rigid. SinceG′ − p

is obtained fromG′ − pq by deleting a vertex of degree two, it is rigid by Lemma2.8(b).
SinceG′′ = (G′)s,tp is obtained fromG′ −p by an edge addition, it is also rigid. ThusG′′ is
2-connected by Lemma2.6(a). Clearly,T andS are 2-separators inG′′. By Lemma3.6, T
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andS do not cross inG′′. By Claim6.8,Hs,t
p −{u, v} is connected. Sinceq, s, t ∈ X∪S and

T separatesst andq in G′′, we haveT ∩X �= ∅ andG′′[X−p] is a component ofG′′ −S.
SinceT andS do not cross, we must haveT ∩ (V − X − S) = ∅. Hence some component
J ′ of G′′ − T = G′

p − T containsV − X − S. LetJ be the component ofGs,t
p − T which

containsV − X − S. ThusV − X ⊂ V (J ) ∪ NGp(J ). Moreover, ifG′ = Gw, then the
neighbour(s) ofw in X are also contained inV (J ) ∪ NGp(J ), and, ifG′ = G − f then
the endvertex off in X is contained inV (J )∪NGp(J ). This implies in both cases that the
vertex set of the component ofGp − T which is distinct fromJ is a proper subset ofX.
This contradicts the minimality ofX. �

Claim 6.10. Hp is notM-connected for all nodesp ofG in V ∗(H).

Proof. SupposeHp is M-connected. ThenG′
p = Hp ⊕2 L and G′

p is M-connected
by Claim 6.4 and Lemma3.3. Since the property of beingM-connected is preserved
by edge addition and 1-extension, it follows thatGp is M-connected. This contradicts
Claim 6.9. �

Claim 6.11. H is anM-circuit.

Proof. SupposeH is not anM-circuit. SinceH isM-connected by Claim6.4, there exists
anM-circuit H1 in H which containsuv and�. By Lemma5.1(b) we may extendC1 =
E(H1) to an ear-decomposition ofC1, C2, . . . , Ct of M(H). By Claim 6.7H − e is not
M-connected for all but at most two edges ofH sinceE(H) − E∗(H) ⊆ {uv, xy}. Then
it follows from Claim6.2and Theorem5.4thatHt − ∪t−1

i=1Hi contains an admissible node
p of G in V ∗(H). This contradicts Claim6.10. �

Claim 6.12. H is isomorphic toK4.

Proof. SupposeH is not isomorphic toK4. By Claim 6.10, no node ofH in V ∗(H) is
admissible inH . Sinceuv ∈ E(H), Claim 6.2 and Theorem5.8 imply thatG′ = G

x,y
w ,

x, y ∈ V (H), andu, v, x, y are the only admissible nodes inH . We shall show thatx is a
feasible node inG.

Sincex is an admissible node ofH , Hs,t
x is M-connected for somes, t ∈ NH(x). Let

NH(x) = {q, s, t}. Sincexy is an edge ofH andy is a node ofH , we must havey ∈ {s, t}.
Without loss of generality,y = t . Since(G′)s,yx = H

s,y
x ⊕2 L, Claim6.4and Lemma3.3

imply that (G′)s,yx is M-connected. SinceGs,w
x is a 1-extension of(G′)s,yx and since the

property of beingM-connected is preserved by 1-extension (by Lemma3.9), it follows that
G

s,w
x is M-connected.
SupposeHs,y

x − {u, v} is disconnected. ThenH − {u, v} has a 1-separation(H1, H2)

whereV (H1)∩V (H2) = {x}, s, y ∈ V (H1) andq ∈ V (H2). ThenV (H2)−x is a fragment
of Gs,w

x which is properly contained inX. This contradicts the choice ofG′ andX. Thus
H

s,y
x − {u, v} is connected.
SinceG is a counterexample to the theorem,G

s,w
x is not 3-connected. LetT be a 2-

separator inGs,w
x . SinceG is 3-connected,T separatessw andq. SinceG′ isM-connected,

it is redundantly rigid. HenceG′ − xq is rigid. SinceG′ − x is obtained fromG′ − xq by
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deleting a vertex of degree two, it is rigid by Lemma2.8(b). SinceG′′ = (G′)syx is obtained
fromG′ − x by an edge addition, it is also rigid. ThusG′′ is 2-connected by Lemma2.6(a).
Clearly,T andS are 2-separators inG′′ andT separatessy andq in G′′. By Lemma3.6,
T andS do not cross. SinceHs,y

x − {u, v} is connected,q, s, y ∈ X ∪ S, andT separates
sy andq in G′′, we haveT ∩ X �= ∅ andG′′[X − x] is a component ofG′′ − S. SinceT
andS do not cross, we must haveT ∩ (V − X − S) = ∅. Hence some componentJ ′ of
G′′ − T = (G′)s,yx − T containsV − X − S. Let J be the component ofGs,y

x − T which
containsV −X−S. ThenV −X ⊂ V (J )∪NG

s,y
x
(J ). Moreover,w andy are also contained

in V (J ) ∪ NG
s,y
x
(J ). This implies that the vertex set of the component ofG

s,y
x − T which

is distinct fromJ is a proper subset ofX. This contradicts the minimality ofX. �

Claim 6.13. G′ = G
x,y
w , x, y ∈ V (H), and hence� = xy ∈ E(H).

Proof. Suppose that the claim is false. Then� is a vertex inX, andV (H) = {u, v, �, t}.
Thent is a node ofG. We shall show thatGu,v

t is a brick. Note thatuv /∈ E(G) by Claim
6.3. Note further thatGu,v

t can be obtained fromL by a sequence of either one 1-extension
and one edge-addition (ifG′ = G − f ), or two 1-extensions and one edge-addition (if
G′ = G

x,y
w ). SinceL is M-connected by Claim6.4, it follows from Lemma3.9 thatGu,v

t

is M-connected. Since� is adjacent tou andv, there is no 2-separation separating� from
uv in G

u,v
t . ThusGu,v

t is 3-connected and hence is a brick.�

Claim 6.14. X �= {x, y}.
Proof. Suppose thatX = {x, y}. Thenx, y are nodes ofG. We shall show thatGw,v

x is a
brick. Note thatwv /∈ E(G)since the neighbour ofw distinct fromx, y belongs toV−X−S.
Note further thatGw,v

x can be obtained fromL by a sequence of two 1-extensions. Since
L is M-connected by Claim6.4, it follows from Lemma3.9 thatGw,v

x is M-connected.
Suppose thatGw,v

x is not 3-connected. Then there is a 2-separatorT in G
w,v
x , separating

u andwv. Sinceu,w, andv are all neighbours ofy in G
w,v
x , we must havey ∈ T . Since

G
w,v
x is M-connected andy is a node inGw,v

x , this contradicts Lemma2.20. ThusGw,v
x is

3-connected and hence is a brick.�

We can now complete the proof of the theorem. Using Claims6.13and6.14, and rela-
belling if necessary, we may suppose thatX = {x, t} andS = {u, y}. Thusx is a node
of G. We shall show thatGw,t

x is a brick. Note thatwt /∈ E(G) since the neighbour ofw
distinct fromx, y belongs toV − X − S. Note further thatGw,t

x can be obtained fromL
by a sequence of two 1-extensions. SinceL is M-connected by Claim6.4, it follows from
Lemma3.9thatGw,t

x isM-connected. Suppose thatG
w,t
x is not 3-connected. Then there is

a 2-separatorT in G
w,t
x , separatingu andwt . Sinceut is an edge ofGw,t

x , we must have
t ∈ T . SinceGw,t

x is M-connected andt is a node inGw,t
x , this contradicts Lemma2.20.

ThusGw,t
x is 3-connected and hence is a brick.�

We have the following corollaries:

Theorem 6.15.G = (V ,E) is a brick if and only ifG can be obtained fromK4 by 1-
extensions and edge additions.
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Fig. 6. A construction ofK3,5 from K4 using 1-extensions and edge additions.

Proof. SinceK4 is M-connected, sufficiency follows from Lemma3.9, and the fact that
edge addition and 1-extension preserve 3-connectivity. Necessity follows easily by induction
on |E|, using Theorem6.1. �

We illustrate Theorem6.15by constructing the minimal brickK3,5 from K4, see Fig.6.
SinceK3,5 is minimal, the first and last operations used in the construction must be 1-

extensions. SinceK3,5 is not anM-circuit, at least one operation in the construction must
be an edge addition. This shows that one may need to alternate between the two operations
of Theorem6.15while building up a brick fromK4.

7. Globally rigid graphs in R2

Theorem3.2 implies that a graph is a brick if and only if it is redundantly rigid and
3-connected. Thus Theorem6.15gives an inductive construction for redundantly rigid 3-
connected graphs. It follows from the result of Connelly[5, Theorem 1.5]that any graph
which can be obtained fromK4 by edge additions and 1-extensions is globally rigid inR2.
By using Theorems6.15and1.1we can now characterize globally rigid graphs, and hence
verify Hendrickson’s conjecture, in dimension two.

Theorem 7.1. LetG be a graph. ThenG is globally rigid inR2 if and only if eitherG is a
complete graph on at most three vertices orG is 3-connected and redundantly rigid.

Note that the special case of Theorem7.1 when |E(G)| = 2|V (G)| − 2 was proved
earlier in[1, Theorem 6.1].
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It follows from Theorem7.1 that global rigidity of frameworks is a generic property in
R2. Lovász and Yemini[17] proved that 6-connected graphs are redundantly rigid (and that
this bound is best possible). With this result and Theorem7.1we can show that sufficiently
highly connected graphs are globally rigid. In fact, the same degree of connectivity suffices.

Theorem 7.2. LetG be6-connected. ThenG is globally rigid inR2.

This solves[10, Open question 4.47]. As we noted earlier, there exist efficient algorithms
for testing 3-connectivity and redundant rigidity, and hence global rigidity inR2. See[2]
for more details on the algorithmic aspects.
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