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Application of hypergraph theory in chemistry

Elena V. Konstantinova ∗, Vladimir A. Skorobogatov
Sobolev Institute of Mathematics, Novosibirsk-90, 630090 790-784, Russia

Abstract

We investigate hypergraphs as mathematical model for representation of nonclassical molec-
ular structures with polycentric delocalized bonds. The questions of identi0cation and canonical
coding of molecular hypergraphs are considered. In order to recognize isomorphic hypergraphs,
the canonical forms of incidence matrices are to be found. The algorithm for construction of
canonical incidence matrix of hypergraph is proposed. Some chemical problems dealing with the
hypergraph theory are discussed. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Graph representation of molecular structures is widely used in computational chem-
istry and theoretical chemical researches [47,10,42,4]. Trinajsti:c noted [47] that the
roots of chemical graph theory may be found in the works by chemists of 18–19th
centuries such as Higgins, Kopp, Crum Brown. First chemical graphs for representing
molecules were used by them. Molecular structures are represented by graphs where
vertices correspond to atoms, and edges to chemical bonds. This kind of graph, called
now a molecular graph, is the object of study in the theory of ordinary graphs [25].
However, ordinary graphs do not adequately describe chemical compounds of nonclassi-
cal structure. A substantial drawback of the structure theory is the lack of a convenient
representation for molecules with delocalized polycentric bonds [2]. Organometallic
compounds are an example of structures that have at least one metal–carbon bond
[24]. Some of the graph models used for the representation of organometallic com-
pounds were considered in Refs. [43,46]. Sometimes, disconnected molecular graphs
are used for representing ‘sandwich’ and ole0n structures. This representation does not
seem to be illustrative and does not allow to analyze a structure as a whole, because
there are no connections between molecular subgraphs representing individual structural
fragments in it. More illustrative, but still not devoid of drawbacks, are the connected
molecular graphs, where all the vertices corresponding to carbon atoms are connected
to the metal vertex, which corresponds to the metal atom. The degree of the metal
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Fig. 1. Hypergraph H and its incidence matrix.

vertex in this case is equal to the number of vertices connected and not necessarily
equal to the valency of the metal atom. Besides, in both representations, the diHerence
between simple covalent and polycentric bonds is obscured. Sometimes planar graphs
are used to describe organometallic compounds to study the stereochemical properties.
The pyramids obtained from the fragments of the complex are transformed to planar
graphs. In this case, the disconnected planar graph describes the structures.

All the defects of the structure representation that were mentioned above are elim-
inated if the hypergraphs are used to represent the structures with delocalized poly-
centric bonds [29]. We consider some aspects of application of hypergraph theory in
organometallic chemistry. Only unlabeled hypergraphs will be considered in this pa-
per. Various ways of labeled hypergraph representation of molecular structures with
diHerent levels of detail and diverse types of label were considered in [30].

2. Molecular hypergraph

Let us introduce some concepts from the hypergraph theory [7,50].
Hypergraph H=(V ;E) consists of a non-empty set of vertices V={vi | i=1; : : : ; p}

and a family E = {Ej | j = 1; : : : ; q} of diHerent subsets of the set of vertices. Ej sets
are called edges of a hypergraph or hyperedges. An example of hypergraph is given
in Fig. 1. If vi ∈ Ej we say that vertex vi is incident to edge Ej. The cardinality
of the set of all edges incident to vertex vi is called the degree of vertex vi and is
denoted as deg vi. The cardinality of the set of all vertices incident to the edge Ej of a
hypergraph gives the degree of the edge Ej which is denoted as degEj. The degrees of
edges E1; E2 and E3 presented in Fig. 1 are equal to one, two and three, respectively;
vertex v2 is incident to edges E2 and E3 (deg v2 = 2), and vertex v4 is incident only to
edge E3.

An ordinary graph is a special case of a hypergraph with degrees of all the edges
equal to two.

A 0nite hypergraph (set V and family E are 0nite) is unambiguously de0ned by an
incidence matrix B(H) = ||bij||, i = 1; : : : ; p; j = 1; : : : ; q, where

bij =

{
1 if vi ∈ Ej;

0 if vi �∈ Ej:

The incidence matrix of hypergraph H is also shown in Fig. 1.
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Fig. 2. Graph and hypergraph representation of allylic complex.

A hypergraph H = (V ;E) is a molecular hypergraph if it represents molecular
structure F where vertices v ∈ V(H) correspond to individual atoms, hyperedges
E ∈ E(H) with degrees greater than 2 correspond to delocalized polycentric bonds and
hyperedges E ∈ E(H) with degE=2 correspond to simple covalent bonds. Hyperedges
of degree two will be shown as ordinary edges to stress the diHerence between simple
covalent bonds and polycentric bonds.

Fig. 2 illustrates the diHerence between graphs and hypergraphs in the representation
of the same molecular structure of allylic complex. In the case of an ordinary graph,
the metal–ligand bonds in allylic complex are shown by eight edges connecting the
vertex representing metal Me with the other eight vertices. This drawback is eliminated
when allylic complex is represented by hypergraph. Hyperedges E1 and E2 represent
�-bonds between metal and ligands (cases a) and b)). Moreover, the representation of
allylic complex as a hypergraph makes it possible to visually illustrate the diHerence
between sigma (carbon–carbon and carbon–hydrogen) bonds and �-bonds (case b)).
In the hypergraph representations, the valency of the metal atom is being ‘conserved’,
because the degree of metal vertex in the hypergraph is equal to two. The degree of
the same vertex of the graph is equal to eight. Note also that valencies of carbon atoms
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are being conserved under the hypergraph representation. As it seems, in Fig. 2b is
given an adequate hypergraph representation of an allylic complex.

We have to note that the delocalized bonds which can be described by hyperedges
in a molecular hypergraph are not found in organometallic compounds alone. The same
bonds can be also found in conjugated molecules [16]. A special symbol is introduced
to denote the six �-electrons — a circle inside a hexagon. Single hyperedge of the
unlabeled hypergraph is incident to all the six vertices and represents the bonding of
all six �-electrons in the benzene. The valency of a carbon atom is being conserved
in this case.

3. Identi�cation of molecular hypergraph

The problem, known as the identi0cation problem, is to decide whether two given
hypergraphs are isomorphic or not. Two hypergraphs are isomorphic if there exists a
mapping conserving the one-to-one correlation between the sets of vertices and edges
of these hypergraphs.

Most conventional way to de0ne molecular graph G is to determine the adjacency
matrix A(G) = ||aij||; i; j = 1; : : : ; p, where aij = 1 if vertices vi and vj are adjacent
and aij = 0 otherwise. The adjacency matrix characterizes the graphs completely. In
order to recognize isomorphic graphs the canonical forms of adjacency matrices are
to be found. The canonical adjacency matrix is de0ned on the basis of the maximal
matrix. For two binary matrices of the same dimension, the greater matrix is the one,
in which the 0rst row that diHers from the corresponding row of the second matrix
is lexicographically greater. The maximal of all possible matrices is called canonical
matrix. A number of methods of de0ning the canonical form of an adjacency matrix
are described in [1,17,39,27,26,32].

The incidence matrix is convenient for the computer representation of hypergraphs.
Let us de0ne the canonical incidence matrix of hypergraph. The canonical (p × q)-
incidence matrix B∗(H) of hypergraph H is the maximal of all possible (p! · q!)
incidence matrices. The de0nition of a canonical incidence matrix for a hypergraph
is also valid for a graph [5,36]. It is evident that the canonical incidence matrix is
unique and can be used for determining the canonical form of the hypergraph. The
hypergraph de0ned by canonical incidence matrix is the canonical form of a hyper-
graph. The numbering of vertices and edges of a canonical form of a hypergraph is
called canonical. The canonical form of the hypergraph for hydrogen-deleted struc-
ture of allylic complex (Fig. 2) and the canonical incidence matrix are shown in
Fig. 3.

There are works [38,8] dealing with the theoretic aspects of isomorphism problems
for hypergraph. We propose the algorithmic approach to solve this problem. The canon-
ical incidence matrix may be obtained on the basis of a simple algorithm that uses the
representation of hypergraph H = (V ;E) as a bipartite graph K (H) = (V ;E ;Y) (fur-
ther also referred to as KOonig’s representation or KOonig’s graph [50]) with the set
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Fig. 3. Canonical form and canonical incidence matrix of a hypergraph of an allylic complex.

of vertices V ∪ E, |V ∪ E| = p + q = s, and the set of edges Y ; |Y | =∑q
j=1 degEj.

Sets V and E are called parts of a graph: V -part and E-part. Vertices vi ∈ V and
Ej ∈ E in K (H) are adjacent if and only if vertex vi and edge Ej are incident
in H .

Any 0nite hypergraph has KOonig’s representation, and vice versa, any KOonig’s graph
is a representation of some 0nite hypergraph H and de0nes it unambiguously [50].
Hence, the study of the properties of hypergraph can be reduced to the study of anal-
ogous properties of KOonig’s representation.

In particular, the canonical incidence matrix of hypergraph H can be obtained from
the canonical adjacency matrix of KOonig’s representation K (H) of hyper-
graph H .

Let A(K (H))=||aij||, i; j=1; : : : ; s, be adjacency matrix of graph K (H), where aij=1
if vertices vi and vj are adjacent and aij =0 otherwise. The canonical (s× s)-adjacency
matrix A∗(K (H)) of the graph K (H) is the maximal of all possible s! adjacency
matrices.

Beside the adjacency matrix of a bipartite graph, the reduced adjacency matrix
R(K (H))= ||rij||; i=1; : : : ; p; j=1; : : : ; q, is also considered, where rij =1 if vertices
vi and Ej are adjacent and rij = 0 otherwise.

It is evident that matrices R(K (H)) and B(H) are de0ned the same way. If, anal-
ogous to the canonical incidence matrix B∗(H) of hypergraph H , one de0nes the
canonical reduced adjacency matrix R∗(K (H)) for bipartite graph K (H), the follow-
ing theorem is true:

Theorem 1. R∗(K (H)) = B∗(H).

The proof follows from the de0nition of the canonical incidence matrices B∗(H)
and R∗(K (H)).

Hence, the search of canonical incidence matrix B∗(H) is restricted to the search
of canonical reduced adjacency matrix R∗(K (H)). The last one can be obtained from
matrix A∗(K (H)) according to the following theorems:
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Fig. 4. KOonig’s representation of hypergraph H from Fig. 3 and its canonical adjacency matrix.

Theorem 2. The canonical adjacency matrix of K5onig’s representation of hypergraph
H has a symmetrical block-diagonal form:

A∗(K (H)) =

n1 n2 n3 nt−1 nt
0 A12 · · ·
A21 0 A23 · · ·

A32 0 · · ·
· · · · · · · · · · · · · · · · · ·

· · · 0 At−1t

· · · Att−1 0

n1

n2

n3

nt−1

nt

where rows (columns) of non-zero matrices Anini+1(Ani+1ni); i= 1; : : : ; t− 1; are de8ned
only by vertices from V -part; or only by vertices from E-part; and if ni = |Vi|; where
Vi is the subset of the set of vertices; Vi ⊂V ; then ni+1 = |Ei+1|; where Ei+1 is the
subset of the set of hyperedges; Ei+1 ⊂E ; and vice versa.

Proof. Let the canonical numbering of the vertices of graph K (H) be known and the
0rst numbers in the canonical numbering belong to vertices from the set V1, belonging
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to V -part. (Note that it is just an assumption only. Actually, the canonical numbering
of K (H) can start as with the V -part and with the E-part). According to the de0nition,
the two vertices in graph K (H) are adjacent if and only if they belong to diHerent
parts. Hence the vertices of the E-part constitute the set of vertices E2 adjacent to the
vertices from the set V1 and possess the numbers that follow the ones for vertices from
the set V1 in the canonical numbering. For the vertices of the set E2 the vertices from
the V -part are adjacent and so on. Thus the graph K (H) in accordance with canonical
numbering can be presented as a t-partite graph where just the vertices from adjacent
parts are adjacent. So nonzero elements in the matrix A∗(K (H)) are de0ned only by
vertices of the two adjacent parts Vi ⊂V and Ei+1 ⊂E, i.e. Anini+1 �= 0(Ani+1ni �= 0),
where ni = |Vi| and ni+1 = |Ei+1|. The theorem is proved.

The example in Fig. 4 illustrates the Theorem 2.
Let us call the ith row (ith column) of blocks in matrix A∗(K (H)) — i-block row

(i-block column). Let all i-block rows (columns), where i=2k+1; k=0; 1; : : : ; contain
numbers of all vertices from the V -part (the E-part). Then in accordance with Theorem
2, all i-block rows (columns) where i=2k; k=1; 2; : : : ; contain numbers of all vertices
from the E-part (the V -part). To obtain a reduced (p× q)-adjacency matrix we have
to eliminate all even-block (odd-block) rows and all odd-block (even-block) columns
from A∗(K (H)). The resulting matrix R(A∗(K (H))) will have one of the following
forms:

R(A∗(K (H))) =

n2 n4 n6 nt−3 nt−1

A12 0 0 · · ·
A32 A34 0 · · ·

A54 A56 · · ·
· · · · · · · · · · · · · · · · · ·

· · · At−2t−3 At−2t−1

· · · 0 Att−1

n1

n3

n5

nt−2

nt

R(A∗(K (H))) =

n1 n3 n5 nt−2 nt
A21 A23 0 · · ·
0 A43 A45 · · ·

0 A65 · · ·
· · · · · · · · · · · · · · · · · ·

· · · At−3t−2 0
· · · At−1t−2 Att−1

n2

n4

n6

nt−3

nt−1

Theorem 3. R(A∗(K (H))) = R∗(K (H)).

Proof. According to the de0nition, the canonical reduced adjacency matrix of a bi-
partite graph K (H) is the maximal of all possible (p! · q!) matrices. Let us show
that the matrix R(A∗(K (H))) meets the condition of maximum. This follows from
the properties of canonical matrix A∗(K (H)) which is maximal and from the method
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of construction of matrix R(A∗(K (H))). Suppose that R(A∗(K (H))) is not maximal,
i.e. there exists a reduced (p × q)-matrix R(A′(K (H))) which has a lexicographi-
cally greater row in the 0rst pair of diHerent rows. The way of construction of the
reduced adjacency matrix implies that the corresponding adjacency matrix A′(K (H))
should also have a lexicographically greater row than A∗(K (H)), which contradicts
the fact that A∗(K (H)) is the maximal matrix. Thus, R(A∗(K (H))) is the maximal
and R(A∗(K (H))) = R∗(K (H)). The theorem is proved.

Let us note that Fig. 3 presents the canonical incidence matrix of hypergraph H
that coincides with the canonical reduced adjacency matrix R∗(K (H)) obtained from
the canonical adjacency matrix A∗(K (H)) of graph K (H) (Fig. 4) by the method
discussed above.

Thus, the search algorithm for the canonical incidence matrix of a hypergraph in-
cludes the following steps:

(1) construction of KOonig’s graph K (H) for hypergraph H ;
(2) search of canonical adjacency matrix for graph K (H);
(3) construction of reduced canonical adjacency matrix for graph K (H).

The evaluation of complexity of the algorithm is determined by the complexity of
the algorithm for the search for canonical adjacency matrix of graph. Note that the
canonization of bipartite graphs with parts N and M on the base of their reduced adja-
cency matrices is more eHective in comparison with canonization based on adjacency
matrices because the 0rst approach at worst case requires (N !·M !) operations while the
second one requires (N +M)! operations. The eHective algorithms for canonization of
adjacency matrices have been realized in practice [1,17]. Algorithms for canonization
of incidence matrices [5,36] that are known to the authors are enumerative and the
estimations of complexity for the given algorithms are either not presented [5], or not
allow to estimate the running eHectivity of an algorithm in practice [36].

4. The structural analysis of molecular hypergraphs

This kind of analysis allows to investigate molecular hypergraphs through thier com-
mon subgraphs. Let us consider the KOonig’s representation of hypergraphs when the
subgraph isomorphism problem is solved. All graph algorithms may be used in this
case. So we discuss the problem of 0nding common subgraphs of two hypergraphs in
the terms of ordinary graph. In the chemical compounds databases, the problem arises
as one of testing whether a new compound is a known compound (graph isomorphism)
or subcompound (subgraph isomorphism) or contains known subcompounds (common
subgraphs) [18,40,13].

Let H1 = (V1;E1) and H2 = (V2;E2) be hypergraphs and K (H1) order (p1 + q1)
and K (H2) order (p2 + q2) be their KOonig’s representation. Denote K (H1) as G1 and
K (H2) as G2.
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Fig. 5. The table representation of a correspondence graph.

The subgraph isomorphism problem is as follows. Given two graphs G1; m= |V (G1)|
and G2; n= |V (G2)|, m ≤ n, 0nd all the subgraphs of G2 which are is isomorphic G1.
A subgraph S = (V(S);E(S)) of G = (V ;E) is a graph S such that V(S) ∈ V and
E(S) = E ∩ (V(S) × V(S)).

Given two graphs G1 and G2, if there exists a subgraph of order k S1 of G1

isomorphic to a subgraph S2 of G2, the pair of isomorphic subgraphs (S1;S2) is
called a common subgraph of order k of G1 and G2. A common subgraph (S1;S2) is
maximal if there is no common subgraph (S1

i ;S
2
j ) such that S1 is a subgraph of S1

i

and S2 is a subgraph of S2
j .

There are two approaches to solve the subgraph isomorphism problem. The 0rst
approach is based on the following two-step procedure:

(1) 0nd sets of subgraphs of order k of G1 and G2.
(2) test all pairs subgraphs for isomorphism.

Step (2) can be realized, for example, by a trivial algorithm known as vertex re-
ordering algorithm [17], which is based on vertex permutations and adjacency matrix
comparisons. If this algorithm is used, 0nding common subgraphs of order k requires
m!n!=k!(m − k)!(n − k)! matrix comparisons. Returning to hypergraphs this algorithm
requires (p1 + q1)!(p2 + q2)!=k!(p1 + q1 − k)!(p2 + q2 − k)!, where p1(p2) and q1(q2)
is the number of vertices and edges in hypergraph H1(H2).

The second approach is based on the properties of a correspondence graph L(G1;G2)
of given graphs G1 = (V ;E) and G2 = (U ;X) [33,15,6]. This graph L= (W ;Y) has a
set of vertices W = {w= (v; u); v ∈ V ; u ∈ U} and a set of edges Y = {(w; w′), such
that {(v; v′) ∈ E ; (u; u′) ∈ X} or {(v; v′) �∈ E ; (u; u′) �∈ X}} (see Fig. 5).

The main property of the correspondance graph is that every cligue of graph L(G1;G2)
corresponds to some common subgraph of G1 and G2 [33]. So to 0nd the common
subgraph of G1 and G2 it is enough

(1) to have the correspondence graph L(G1;G2) and
(2) to derive all cliques in L(G1;G2).
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The complexity of the subgraph isomorphism problem is equivalent the complexity
of the clique 0nding problem [22]. To 0nd all cliques, the graph recursive analysis
technique is used [19,14,9]. The graph recursive analysis is de0ned as the following
succession of procedures. The set of subgraphs is derived for given graph by the some
rule. Then, for every subgraph its set of subgraphs is derived by the same rule and so
on. The algorithm is completed when the some rule of stop is ful0lled.

The theoretical estimate of complexity for the cliques 0nding algorithm is established
as O(l2 · 3l=3), where l is the order of a correspondence graph [9]. This estimate is
achieved for the k-partite graphs K3;3; :::;3 that are known as the clique extremal graphs
[34]. Returning to a hypergraph, this algorithm requires ((p1 +q1 +p2 +q2)2×3((p1 +
q1 +p2 +q2)=3)). In practice, algorithms of the 0rst [17] and second [14,9] approaches
are realized.

5. Invariants of graphs and hypergraphs

To identify molecular structures of chemical compound, the molecular graph and hy-
pergraph invariants, called topological indices [47,10,4], could be used too. Topological
indices are designed basically by transforming a molecular graph into a number. The
diHerence between graph and hypergraph representations of molecular structures aHects
the values of topological indices. The results of comparative analysis of some topolog-
ical indices based on distances within a graph are listed below. The distance d(u; v)
between vertices u; v, in graph G (hypergraph H), is the length of the shortest walk
(the path) that connects vertices u and v. The length of any hyperedge in H equals
to one, i.e. all the vertices that are incident to the same hyperedge are elongated from
each other at the distance one.

Let G =(V ;EG ) and H =(V ;EH ) be the graph and hypergraph representations of a
molecular structure F with delocalized polycentric bonds, where V(G) =V(H). Then
for u; v ∈ V(G) = V(H) the following theorem is true.

Theorem 4. dG(u; v)¿dH (u; v).

Proof. Let us consider several diHerent cases.
Case 1: The shortest (u; v)-walk in graph G and hypergraph H consists only edges

of degree two. In this case, paths have the same length as G and H , describe the same
molecular structure F on the same set of vertices and as (u; v)-walks are the shortest.
Thus, we have

dG(u; v) = dH (u; v):

Case 2: The shortest (u; v)G-walk in graph G consists only edges of degree two,
and the shortest (u; v)H -walk in hypergraph H contains at least one edge E of degree
more than two.
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Suppose that the same set of vertices belongs to both paths:

As degE¿ 2, the distance between all vertices belonging to the same edge is equal
to one and

dH (u; v) = dG(u; v) − degE + 2;

i.e.

dH (u; v)¡dG(u; v):

Now suppose that (u; v)-paths contain diHerent sets of vertices:

Let (u; v)∗ be the path in hypergraph H , containing the same vertices as (u; v)-path
in graph G . Then due to the cases considered above, either

dG(u; v) = dH (u; v)∗ (1)

or

dG(u; v)¿dH (u; v)∗: (2)

But as (u; v)H -path is the shortest one in H , the following inequality holds:

dH (u; v)¡dH (u; v)∗: (3)

Then from Eqs. (1)–(3) it follows that

dH (u; v)¡dG(u; v):

The theorem is proved.

Theorem 4 implies that for any F represented by G and H the following inequalities
hold: W (G)¿W (H), rad(G)¿ rad(H), diam(G)¿ diam(H), where W is the 0rst
mathematical invariant reQecting the topological structure of a molecular graph, called
the Wiener index [48], rad is the radius and diam is the diameter [25]. Formulas for
indices are presented in the appendix.

A few other topological indices are likely to reveal similar regularities. The behavior
on the whole set of graphs and hypergraphs cannot be estimated for all topological
indices.

In this section we present the results of the comparative analysis of graph and hy-
pergraph invariants for 8 series of molecular structures of type R – X , where R is the
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Fig. 6. The widespread structural types.

widespread structural types presented in Fig. 6 and X is the widespread substituents
presented in Table 1. We investigate the same invariants for the same molecular struc-
tures represented by graphs and hypergraphs. All graph invariants are generalized for
hypergraphs [29,31].

Three groups of invariants presented in the appendix are considered: metric, topolog-
ical and information indices. Metric indices of graphs have been studied in many papers
of graph theory. A bibliography on the subjects is given in [44,37]. Topological indices
are well known in mathematical chemistry and are used for representing the molecular
structure and for 0nding the quantitative structure-property and structure-activity rela-
tionships [47]. Information indices [10,12] are constructed for various matrices (layer
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Table 1
The widespread substituent X

N X N X

1 R–H 16 R–COOC2H5

2 R–CH3 17 R–COCH3
3 R–C2H5 18 R–CH2OH
4 R–(CH2)2CH3 19 R–N(CH3)2
5 R–CH(CH3)2 20 R–CH(OH)CH3
6 R–(CH2)3CH3 21 R–CH(OH)C(CH3)3
7 R–C(CH3)3 22 R–CH2C6H5

8 R–CN 23 R–COC6H5

9 R–CH=CH2 24 R–C6H11
10 R–COOH 25 R–C(CH3)=CH2
11 R–OCOH 26 R–CH=CHCH3
12 R–COOCH3 27 R–CH=CHCOC6H5

13 R–OCOCH3 28 R–COOC6H5

14 R–COH 29 R–OCOC6H5

15 R–CH=CHC6H5 30 R–(CH2)4COOH

matrix, distance matrix, adjacency matrix) and also for some topological indices such
as the Wiener index.

The sensitivity of indices for both models are investigated and the noncorrelating
indices are revealed.

The sensitivity of topological index I is the measure of its ability to distinguish
the nonisomorphic graphs by the given topological index I . The theoretical evalua-
tion of sensitivity I on the set of all graphs is too diRcult, therefore, the evaluation
S of sensitivity I on the 0xed set M of nonisomorphic graphs is used [11,41] by
formula

S = (N −NI )=N ;
where NI is the number of degeneracies I on the set M , M = N . The sensitivity
of all 23 indices from the appendix for both models are calculated. The results have
shown that for the series of considered molecular structures the indices sensitivity for
the hypergraph model are two times higher than those for the graph model.

The indices correlations for the models considered are also investigated. Let us de0ne
the noncorrelating indices as those with the correlation r ranging from 0 to 0.9. All
noncorrelating indices were found for the graph and hypergraph models. Solid lines
presented in Fig. 7 correspond to the percentage of noncorrelating indices for diHerent
models. Fig. 7 shows that the number of noncorrelating indices for the hypergraph
model is greater than that of the graph one, for all molecular structures series. For
example, on the set M8, this number exceeds the same parameter for the graph model
by 1.5 times as large.

So the comparative analysis of indices for both models of eight series of nonclassi-
cal molecular structures shows that the hypergraph model gives a higher accuracy of
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Fig. 7. The percentage of noncorrelating indices for diHerent models.

molecular structure description: the higher is the accuracy of the model, the greater is
the diversity of the behavior of its invariants.

6. Conclusion

By now many chemists have realized the usefulness of graph theory for chemistry.
In the present work, it is proposed to use the hypergraph theory in chemistry. In fact, it
is tempting to use hypergraph (a graph, one edge of which at least is incident to more
than two vertices) for description of a molecule in which more than two atoms are
bonded by one and the same bond, such as the one in an allylic complex. Such cases
cause diRculties in traditional chemical graph theory. The defects peculiar for ordinary
molecular graphs are absent in molecular hypergraphs and moreover the hypergraph
representation facilitates the task of comparing the ordinary molecular structures with
the structures containing polycentric bonds.

The concept of a molecular hypergraph was introduced and the ways of its implemen-
tation were shown for organometallic (sandwich-type) compounds having polycentric
bonds. As was mentioned above, bonds of the same kind occur also in polycyclic
conjugated molecules. The new approach of hypergraph theory application to the Clar
aromatic sextet theory was considered in [23]. It was shown that the Clar hypergraph
has properties quite diHerent from the traditional molecular graph.

The use of hypergraphs for representation of the molecular structure of nonclassical
compounds and polycyclic conjugated molecules reveals a new area of research where
the results of chemical application of graph theory are generalized and also allows to
expand the range of hypergraph theory application.
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Appendix

A.1. Metric indices

The 0rst 0ve invariants are based on the vertex eccentricity e(v) = maxu∈V d(u; v)
[25].

1. The radius [25]

rad = min
v∈V

e(v):

2. The diameter [25]

diam = max
v∈V

e(v):

3. The average vertex eccentricity [44]

eav: =
1
p
e;

where p is a number of graph vertices.
4. The eccentricity [44]

e =
∑
v∈V

e(v):

5. The eccentric [44]

SG =
1
p

∑
v∈V

|e(v) − eav:|:

Next seven invariants are based on the vertex distance D(v) =
∑

u∈V d(u; v) and the
graph distance D = 1

2

∑
v∈V D(v) [24,43].

6. The average vertex distance [44]

Dav: =
2D
p
:

7. The unipolarity [44]

D∗ = min
v∈V

D(v):

8. The centralization [44]

#∗ = 2D − pD∗:

9. The mean distance deviation [44]

SD =
1
p

∑
v∈V

|D(v) − Dav:|:

10. The dispersion [35]

m∗
2 = min

v∈V

(
1
p

∑
u∈V

[d(u; v)]2
)
:
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11. The compactness [20]

$ =
4

p(p− 1)
D:

12. The variation [21]

var = max
v∈V

(D(v) − D∗):

A.2. Topological indices

13. The Wiener index [48]

W =
1
2

∑
u;v∈V

d(u; v):

14. The polarity number [49]

P =
1
2

p∑
i=1

d3; i ;

where d3; i is a distance of length three.
15. The mean square distance index [3]

D2 =
(∑max

i=1 gii
2∑max

i=1 gi

)1=2

;

where gi is a number of vertex pairs at a distance i from each other.
16. The distance index [42]

GDI =
max∑
i=1

g2
i :

17. The total adjacency index [42]

A=
p∑

i; j=1

aij;

where aij is the adjacency matrix element.

A.3. Information indices

18. The Information Weiner Index [12]

IWD =
1
2

max∑
i=1

gii
W

log2
gii
W
:

19. The autometricity index [45]

H1 = −
N∑
i=1

pi
p

log2
pi
p
;
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where pi is the number of vertices in the ith (i = 1; : : : ; N ) class of autometricity and
p=

∑N
i=1 pi is the total number of vertices in graph. Class autometricity is the set of

vertices with the same vector (i1; : : : ; (id, where (ij is the number vertex at a distance
j from vertex i.

20,21,22. The information integral indices H(; Hd; HA are de0ned on the basis of
the information vertex indices H((i); Hd(i); HA(i) [28]

H((i) = −
e(i)∑
i=1

(ij
p

log2
(ij
p
;

Hd(i) = −
p∑
i=1

d(i; j)
D(i)

log2
d(i; j)
D(i)

;

HA(i) = −
deg(i)∑
i=1

aij∑deg(i)
j=1 aij

log2
aij∑deg(i)

j=1 aij
;

where deg(i) is the degree of vertex i.
Then, the integral information indices take the forms:

H( =
p∑
i=1

H((i);

Hd =
p∑
i=1

Hd(i);

HA =
p∑
i=1

HA(i):

23. The information index of average vertex distance [45]

Hav: = log2Dav:
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