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a b s t r a c t

Machine learning algorithms (MLAs) are a powerful group of data-driven inference tools that offer an
automated means of recognizing patterns in high-dimensional data. Hence, there is much scope for the
application of MLAs to the rapidly increasing volumes of remotely sensed geophysical data for geological
mapping problems. We carry out a rigorous comparison of five MLAs: Naive Bayes, k-Nearest Neighbors,
Random Forests, Support Vector Machines, and Artificial Neural Networks, in the context of a supervised
lithology classification task using widely available and spatially constrained remotely sensed geophysical
data. We make a further comparison of MLAs based on their sensitivity to variations in the degree of spatial
clustering of training data, and their response to the inclusion of explicit spatial information (spatial
coordinates). Our work identifies Random Forests as a good first choice algorithm for the supervised
classification of lithology using remotely sensed geophysical data. RandomForests is straightforward to train,
computationally efficient, highly stable with respect to variations in classification model parameter values,
andasaccurate as, or substantiallymore accurate than theotherMLAs trialed. The resultsofour study indicate
that as training data becomes increasingly dispersed across the region under investigation, MLA predictive
accuracy improves dramatically. The use of explicit spatial information generates accurate lithology
predictions but should be used in conjunction with geophysical data in order to generate geologically
plausible predictions. MLAs, such as Random Forests, are valuable tools for generating reliable first-pass
predictions for practical geological mapping applications that combine widely available geophysical data.

& 2013 The Authors. Published by Elsevier Ltd.

1. Introduction

Machine learning algorithms (MLAs) use an automatic inductive
approach to recognize patterns indata. Once learned, pattern relation-
ships are applied to other similar data in order to generate predictions
for data-driven classification and regression problems. MLAs have
been shown to perform well in situations involving the prediction of
categories from spatially dispersed training data and are especially
useful where the process under investigation is complex and/or
represented by a high-dimensional input space (Kanevski et al.,
2009). In this study we compare MLAs, applied to the task of
supervised lithology classification, i.e. geological mapping, using

airborne geophysics and multispectral satellite data. The algorithms
that we evaluate represent the five general learning strategies
employed byMLAs: Naive Bayes (NB) – statistical learning algorithms,
k-NearestNeighbors (kNN)– instance-based learners, RandomForests
(RF) – logic-based learners, Support Vector Machines (SVM), and
Artificial Neural Networks (ANN) – Perceptrons (Kotsiantis, 2007).

The basic premise of supervised classification is that it requires
trainingdata containing labeled samples representingwhat is known
about the inference target (Kotsiantis, 2007; Ripley,1996;Witten and
Frank, 2005). MLA architecture and the statistical distributions of
observed data guides the training of classification models, which is
usually carried out by minimizing a loss (error) function (Kuncheva,
2004; Marsland, 2009). Trained classification models are then
applied to similar input variables to predict classes present within
the training data (Hastie et al., 2009; Witten and Frank, 2005).

The majority of published research focusing on the use of MLAs
for the supervised classification of remote sensing data has been for
the prediction of land cover or vegetation classes (e.g., Foody and
Mathur, 2004; Ham et al., 2005; Huang et al., 2002; Pal, 2005; Song
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et al., 2012; Waske and Braun, 2009). These studies use multi or
hyperspectral spectral reflectance imagery as inputs and training
data is sourced from manually interpreted classes. MLAs such as RF,
SVM and ANN are commonly compared in terms of their predictive
accuracies to more traditional methods of classifying remote sen-
sing data such as the Maximum Likelihood Classifier (MLC). In
general, RF and SVM outperform ANN and MLC, especially when
faced with a limited number of training samples and a large
number of inputs and/or classes. Previous investigations into the
use of MLAs for supervised classification of lithology (e.g.,
Leverington, 2010; Leverington and Moon, 2012; Oommen et al.,
2008; Waske et al., 2009; Yu et al., 2012) focus on comparing MLAs,
such as RF and/or SVM, with more traditional classifiers.

Common to all remote sensing image classification studies is the
use of geographical referenced input data containing co-located
pixels specified by coordinates linked to a spatial reference frame.
Despite this, inputs used in the majority of studies cited do not
include reference to the spatial domain. This is equivalent to
carrying out the classification task in geographic space where
samples are only compared numerically (Gahegan, 2000). To date
few investigations have evaluated the performance of MLAs in
conjunction with the input of spatial coordinates. Kovacevic et al.
(2009), for example, investigated the performance of SVM using
Landsat ETMþ multispectral bands and spatial coordinates, con-
cluding that, given training data of suitable quality, there was
sufficient information in the spatial coordinates alone to make
reliable predictions. However, when applying trained classification
model to regions outside the spatial domain of the training data the
information in Landsat ETMþ bands became increasingly important.

Our supervised lithology classification example evaluates MLA
performance in the economically important Broken Hill area of
western New South Wales, a region of Paleoproterozoic metase-
dimentary, metavolcanic and intrusive rocks with a complex
deformation history. In this study, we use airborne geophysics
and Landsat ETMþ imagery to classify lithology. Airborne geo-
physics, unlike satellite spectral reflectance imaging, it is not
affected by cloud and/or vegetation cover and represents the
characteristics of surface and near surface geological materials
(Carneiro et al., 2012). Landsat ETMþ data are freely available and
have extensive coverage at medium resolutions over large regions
of the globe (Leverington and Moon, 2012). Although hyperspec-
tral data has been shown to generate excellent results in sparsely
vegetated regions due to high spectral and spatial resolutions
(Waske et al., 2009) this data is limited in its coverage and ability
to penetrate dense vegetation for the characterization of geologi-
cal materials (Leverington and Moon, 2012).

We explore and compare the response of MLAs to variations in
the spatial distributions and spatial information content of training
data, and their ability to predict lithologies in spatially disjoint
regions. We facilitate this comparison by conducting three separate
experiments: (1) assessing the sensitivity of MLA performance
using different training datasets on test samples not located within
training regions; (2) random sampling of multiple training datasets
with contrasting spatial distributions; and (3) using three different
combinations of input variables, X and Y spatial coordinates (XY
Only), geophysical data (i.e. airborne geophysics and Landsat ETMþ
imagery; no XY), and combining geophysical data and spatial
coordinates (all data). These experiments are combined to provide
a robust understanding of the capabilities of MLAs when faced with
training data collected by geologists in challenging field sampling
situations using widely available remotely sensed input data.

1.1. Machine learning for supervised classification

Classification can be defined as mapping from one domain (i.e.
input data) to another (target classes) via a discrimination function

y¼ f(x). Inputs are represented as d vectors of the form 〈x1, x2, …,
xd〉 and y is a finite set of c class labels {y1, y2, …, yc}. Given
instances of x and y, supervised machine learning attempts to
induce or train a classification model f', which is an approximation
of the discrimination function, ŷ¼ f'(x), and maps input data to
target classes (Gahegan, 2000; Hastie et al., 2009; Kovacevic et al.,
2009). In practice, as we only have class labels for a limited set of
data, Τ, it is necessary to divide available data into separate groups
for training and evaluating MLAs. Training data, Τa, are used to
optimize and train classification models via methods such as
cross-validation. Test data, Τb, contains an independent set of
samples not previously seen by the classifier and is used to provide
an unbiased estimate of classifier performance (Hastie et al., 2009;
Witten and Frank, 2005).

The task of MLA supervised classification can be divided into
three general stages, (1) data pre-processing, (2) classification
model training, and (3) prediction evaluation. Data pre-
processing aims to compile, correct, transform or subset available
data into a representative set of inputs. Pre-processing is moti-
vated by the need to prepare data so that it contains information
relevant to the intended application (Guyon, 2008; Hastie et al.,
2009).

MLAs require the selection of one or more algorithm specific
parameters that are adjusted to optimize their performance given
the available data and intended application (Guyon, 2009). With
only Τa available for training and estimating performance, the use
of techniques such as k-fold cross-validation is required. Trained
classification model performance is usually estimated by summing
or averaging over the results of k folds. Parameters that generate
the best performing classifier, given the conditions imposed, are
used to train a MLA using all of the samples in Τa (Guyon, 2009;
Hastie et al., 2009).

An unbiased evaluation of the ability of MLAs to classify samples
not used during training, i.e. to generalize, is achieved using Τb

(Hastie et al., 2009; Witten and Frank, 2005). Classifier performance
metrics such as overall accuracy and kappa (Lu and Weng, 2007) are
easily interpretable and commonly used measures of MLA perfor-
mance for remote sensing applications (Congalton and Green, 1998).

1.2. Machine learning algorithm theory

1.2.1. Naive Bayes
Naive Bayes (NB) is a well known statistical learning algorithm

recommended as a base level classifier for comparison with other
algorithms (Guyon, 2009; Henery, 1994). NB estimates class-
conditional probabilities by “naively” assuming that for a given
class the inputs are independent of each other. This assumption
yields a discrimination function indicated by the products of the
joint probabilities that the classes are true given the inputs. NB
reduces the problem of discriminating classes to finding class
conditional marginal densities, which represent the probability
that a given sample is one of the possible target classes (Molina
et al., 1994). NB performs well against other alternatives unless the
data contains correlated inputs (Hastie et al., 2009; Witten and
Frank, 2005).

1.2.2. k-Nearest Neighbors
The k-Nearest Neighbors (kNN) algorithm (Cover and Hart,

1967; Fix and Hodges, 1951) is an instance-based learner that does
not train a classification model until provided with samples to
classify (Kotsiantis, 2007). During classification, individual test
samples are compared locally to k neighboring training samples
in variable space. Neighbors are commonly identified using a
Euclidian distance metric. Predictions are based on a majority vote
cast by neighboring samples (Henery, 1994; Kotsiantis, 2007;
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Witten and Frank, 2005). As high k can lead to over fitting and
model instability, appropriate values must be selected for a given
application (Hastie et al., 2009).

1.2.3. Random Forests
Random Forests (RF), developed by Breiman (2001), is an

ensemble classification scheme that utilizes a majority vote to
predict classes based on the partition of data from multiple
decision trees. RF grows multiple trees by randomly subsetting a
predefined number of variables to split at each node of the
decision trees and by bagging. Bagging generates training data
for each tree by sampling with replacement a number of samples
equal to the number of samples in the source dataset (Breiman,
1996). RF implements the Gini Index to determine a “best split”
threshold of input values for given classes. The Gini Index returns a
measure of class heterogeneity within child nodes as compared
to the parent node (Breiman et al., 1984; Waske et al., 2009).
RF requires the selection ofmtrywhich sets the number of possible
variables that can be randomly selected for splitting at each node
of the trees in the forest.

1.2.4. Support Vector Machines
Support Vector Machines (SVM), formally described by Vapnik

(1998), has the ability to define non-linear decision boundaries in
high-dimensional variable space by solving a quadratic optimiza-
tion problem (Hsu et al., 2010; Karatzoglou et al., 2006). Basic SVM
theory states that for a non-linearly separable dataset containing
points from two classes there are an infinite number of hyper-
planes that divide classes. The selection of a hyperplane that
optimally separates two classes (i.e. the decision boundary) is
carried out using only a subset of training samples known as
support vectors. The maximal margin M (distance) between the
support vectors is taken to represent the optimal decision bound-
ary. In non-separable linear cases, SVM finds M while incorporat-
ing a cost parameter C, which defines a penalty for misclassifying
support vectors. High values of C generate complex decision
boundaries in order to misclassify as few support vectors as

possible (Karatzoglou et al., 2006). For problems where classes
are not linearly separable, SVM uses an implicit transformation of
input variables using a kernel function. Kernel functions allow
SVM to separate non-linearly separable support vectors using a
linear hyperplane (Yu et al., 2012). Selection of an appropriate
kernel function and kernel width, s, are required to optimize
performance for most applications (Hsu et al., 2010). SVM can be
extended to multi-class problems by constructing c(c-1)/2 binary
classification models, the so called one-against-one method, that
generate predictions based on a majority vote (Hsu and Lin, 2002;
Melgani and Bruzzone, 2004).

1.2.5. Artificial Neural Networks
Artificial Neural Networks (ANN) have been widely used in

science and engineering problems. They attempt to model the
ability of biological nervous systems to recognize patterns and
objects. ANN basic architecture consists of networks of primitive
functions capable of receiving multiple weighted inputs that are
evaluated in terms of their success at discriminating the classes in
Τa. Different types of primitive functions and network configura-
tions result in varying models (Hastie et al., 2009; Rojas, 1996).
During training network connection weights are adjusted if the
separation of inputs and predefined classes incurs an error.
Convergence proceeds until the reduction in error between itera-
tions reaches a decay threshold (Kotsiantis, 2007; Rojas, 1996).
We use feed-forward networks with a single hidden layer of
nodes, a so called Multi-Layer Perceptron (MLP) (Venables and
Ripley, 2002), and select one of two possible parameters: size, the
number nodes in the hidden layer.

1.3. Geology and tectonic setting

This study covers an area of �160 km2 located near Broken
Hill, far western New South Wales, Australia (Fig. 1). The geology
of the Broken Hill Domain (BHD) (Webster, 2004) features an inlier
of the Paleoproterozoic Willyama Supergroup (WSG) (Willis et al.,
1983). WSG contains a suite of metamorphosed sedimentary,

Fig. 1. Reference geological map (after Buckley et al., 2002) and associated class proportions for the 13 lithological classes present within the Broken Hill study area, modified
from Cracknell and Reading (2013). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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volcanic and intrusive rocks, deposited between 1710 and
170473 Ma (Page et al., 2005a; Page et al., 2005b). WSG features
complex lithology distributions resulting from a long history of
folding, shearing, faulting and metamorphism (Stevens, 1986;
Webster, 2004). BHD is of significant economic importance as it
is the location of the largest and richest known Broken Hill Type
stratiform and stratabound Pb–Zn–Ag deposit in the world
(Webster, 2004; Willis et al., 1983).

Within the study area defined for this experiment are 13
lithology classes that form a chronological sequence younging
from west to east. In general, WSG basal units are dominated by
quartzo-feldspathic composite gneisses (i.e., Thorndale Composite
Gneiss and Thackaringa Group), and are overlain by dominantly
psammitic and pelitic metasedimentary rocks (i.e., Allendale
Metasediments, Purnamoota Subgroup and Sundown Group).
Table 1 provides a detailed summary of lithology classes present
within the study area.

BHD deformation history can be summarized into four events
(Stevens, 1986; Webster, 2004). The first two events of the Olarian
Orogeny (1600–1590 Ma; Page et al., 2005a; Page et al., 2005b) are
associated with amphibolite–granulite facies metamorphism and
north-northeast to south–southwest trending regional fabric.
A third event is characterized by localized planar or curviplanar
zones of Retrograde Schist. These zones fulfill the role of faults in
the BHD and display well developed and intense schistosity,

strongly deformed metasediment bedding, and generally displace
the units they intersect (Stevens, 1986). The fourth deformation
event, associated with the Delamerian Orogeny (458–520 Ma)
(Webster, 2004), is interpreted from gentle dome and basin
structures.

2. Data

The published 1:250,000 Broken Hill digital geological map,
compiled by Buckley et al. (2002), was used to obtain labeled
samples representing lithology classes for training and to evaluate
MLA predictions. We maintained the number of training samples
at 10% (�6500) of the total number of samples in the selected
scene. Multiple sets of Ta were randomly sampled from approxi-
mately circular regions, randomly seeded across the study area.
The number of training regions were varied from 1 to 1024, such
that the number of regions was equal to 2a, where a represents
sequential integers from 0 to 10. In all cases, the total coverage of
training regions equates to 410% and o20% of the study area
(Fig. 2).

Spatially disjoint Tb samples were sampled from all other pixels
in the study area not contained within Τa, equating to 480% of
the total number of samples. We randomly sample 10 sets of Τa

and Τb for each combination of training clusters in order to avoid

Table 1
Summary of 13 lithological classes within the Broken Hill study region, complied using information from Willis et al. (1983) and Buckley et al. (2002).

Class Label Class
(undiff.)

Class Description

Retrograde Retrograde Schist Retrograde micaceous schist, original stratigraphic position unknown.
Sundown Sundown Group Predominantly non-graphitic meta-sediment. Pelite–psammopelite units most abundant and more common in the

lower half. Psammite–psammopelite units more common in the upper half.
Hores Purnamoota Hores Gneiss Mainly garnet-bearing quartzo-feldspathic gneiss. Medium to fine-grained quartz-plagioclase-K-feldspar-biotite garnet

gneiss.
Freyers Freyers

Metasediments
Mainly metasediments ranging from well bedded pelitic/psammopelitic schists, with some psammitic intervals, to
psammopelitic or psammitic/pelitic metasediments.

Parnell Parnell Formation Extensive bodies of basic gneiss, lenticular masses of garnet-bearing quartzo–feldspathic gneiss, and "lode horizon"
rocks, intercalated with pelitic to psammopelitic and psammitic metasediments.

Allendale Allendale
Metasediments

Mainly metasediment and metasedimentary composite gneiss. Variable ratio of pelite, psammopelite, psammite.
Commonly garnet rich. Sporadic bodies of basic gneiss and quartz-gahnite.

Himalaya Thackaringa Himalaya Formation Extensive bodies of medium-grained saccharoidal leucocratic sodic plagioclase quartzþK-feldspar biotite rocks, with
variably developed interbedded metasedimentary composite gneiss, and basic gneiss.

Cues Cues Formation Mainly psammopelitic to psammitic composite gneisses or metasediments, with intercalated bodies of basic gneiss.
Alders Alders Tank

Formation
Consists largely of composite gneisses, with little or no basic gneiss, local minor plagioclase-quartz rocks and minor
granular quartz-iron oxide/iron sulfide "lode" rocks.

Alma Alma Gneiss Mainly medium to coarse-grained quartz–feldspar–biotiteþgarnet gneiss with abundant to sporadic megacrysts of K-
feldspar and plagioclase, or of aggregates of quartzþ feldspar.

Thorndale Thorndale
Composite Gneiss

Mainly sedimentary quartz–feldspar–biotite–sillimanite7garnet7cordierite composite gneiss, consisting of interlayer
psammite and psammopelite, generally with minor pelite and abundant pegmatitic segregations commonly disrupt
bedding.

1 cluster 32 clusters 1024 clusters

Fig. 2. Example of Ta spatial distributions for 1, 32 and 1024 clusters. Gray areas outside Ta regions were used to obtain Tb for MLA accuracy and kappa comparisons.
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any bias associated with individual groups of Τa or Τb. Due to the
natural variability of lithological class distributions, Ta sampled
from low numbers of training regions often did not contain
representatives for all 13 lithological classes. This leads to biased
accuracy assessments due to the incorporation of samples that
cannot be accurately classified. Therefore, those classes not repre-
sented in Τa were eliminated from their corresponding Τb when
evaluating MLA predictions.

Airborne geophysical data used in this study contained a Digital
Elevation Model (DEM ASL), Total Magnetic Intensity TMI (nT), and
four Gamma-Ray Spectrometry (GRS) channels comprising Potas-
sium (K%), Thorium (Th ppm), Uranium (U ppm), and Total Count
channels. The Landsat 7 ETMþ data contained 8 bands supplied
with Level 1 processing applied. Landsat 7 ETMþ band 8, which
covers the spectral bandwidths of bands 2, 3, and 4 (Williams,
2009) was not included.

3. Methods

3.1. Pre-processing

Geophysical data were transformed to a common projected
coordinate system WGS84 UTM zone 54S, using bilinear interpola-
tion. All inputs were resampled to a common extent (12.8�
12.8 km) and cell resolution (50 m�50 m), resulting in image
dimensions of 256�256 pixels (65,536 samples). To enhance their
relevance to the task of lithology discrimination, projected data were
processed in a variety of ways specific to the geophysical property
they represent. An account of pre-processing steps implemented to
generate input data is provided in Supplementary Information
Section 1 (S1 – Data). Spatial coordinates (Easting (m) and Northing
(m)), obtained from the location of grid cell centers were included
resulting in a total of 27 variables available for input. Processed input
data were standardized to zero mean and unit variance. Highly
correlated data, with mean Pearson's correlation coefficients 40.8
associated with a large proportion of other data, were eliminated

resulting in a total of 17 inputs available for MLA training and
prediction. Relative normalized variable importance was calculated
by generating Receiver Operating Curves (ROC) (Provost and Fawcett,
1997) for all pair-wise class combinations and obtaining the area
under the curve for each pair. The maximum area under the curve
across all pair-wise comparisons was used to defined the importance
of variables with respect to individual classes (Kuhn et al., 2012).

3.2. Classification model training

Table 2 indicates the MLA parameter values assessed in this
study. Optimal parameters were selected based on maximum
mean accuracies resulting from 10-fold cross-validation. MLA
classification models were trained using selected parameters on
the entire set of samples in Τa prior to prediction evaluation.
Information on the R packages and functions used to train MLA
classification models and details regarding associated parameters
are provided in Supplementary information Section (S2 – MLA
Software and Parameters).

3.3. Prediction evaluation

Overall accuracy and Cohen's kappa statistic (Cohen, 1960) are
commonly used to evaluate classifier performance (Lu and Weng,
2007). Overall accuracy treats predictions as either correct or
incorrect and is defined as the number of correctly classified test
samples divided by the total number of test samples. The kappa
statistic is a measure of the similarity between predictions and
observations while correcting for agreement that occurs by chance
(Congalton and Green, 1998). We do not use the area under ROC to
evaluate MLA predictions because multiclass ROC becomes
increasing intractable with a large number of classes (i.e. 48)
(Landgrebe and Paclik, 2010). We visualize the spatial distribution
of prediction error and assess their geological validity by plotting
MLA predictions in the spatial domain and by comparing the
locations of misclassified samples.

4. Results

In this section we present the results of our comparison of the
five MLAs trialed in this study. Initially, we assess the effect of
changes in the spatial distribution of training data on the relative
importance of input variables and MLA parameter selection. This is
followed by a comparison of MLA test statistics in light of
variations in the spatial distribution of training data and the
inclusion of explicit spatial information.

Fig. 3 indicates variations in the importance of input variables
with respect to changes in the spatial distribution of training

Table 2
MLA specific parameters evaluated during classifier training. Note RF parameters
presented indicate those used for all input variables (All Data), when inputting only
spatial coordinates (XY Only) there is only one possible mtry value (2).

MLA Parameter 1 2 3 4 5 6 7 8 9 10

NB usekernel FALSE TRUE – – – – – – – –

kNN k 1 3 5 7 9 11 13 15 17 19
RF mtry 2 3 5 6 8 9 11 12 14 16
SVM C 0.25 0.5 1 2 4 8 16 32 64 128
ANN size 5 8 11 13 16 19 22 24 27 30
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Normalized Variable Importance Normalized Variable Importance Normalized Variable Importance 

1 cluster 32 clusters 1024 clusters

Fig. 3. Mean ranked normalized variable importance for 1, 32, and 1024 Τa clusters using all data after the removal of highly correlated variables. Boxplots indicate the
distribution of combined class univariate importance across all 10 sets of Ta.
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samples. A large range of importance suggests that the usefulness
of a particular input at discriminating individual classes is highly
variable. Top ranked variables with relatively narrow distributions
include X and Y spatial coordinates, DEM and Reduced to Pole
(RTP) magnetics. Less important inputs represent GRS channels
and ratios with Landsat ETMþ band 5 variables. Lowest ranked
variables are 1st Vertical Derivative (1VD) of RTP TMI, and the
remaining Landsat ETMþ bands. As the number of training
regions increases, GRS variables decrease in importance while
ratios with Landsat ETMþ 5 increase in importance. The X
coordinate is consistently the most important variable, reflecting
the presence of approximately north–south trending geological
structures.

Fig. 4 compares MLA cross-validation accuracy with respect to
classification model parameter and number of Ta clusters. NB, SVM
and ANN cross-validation accuracies are more sensitive to model
parameters than to the number of Ta clusters. In contrast, RF and
kNN cross-validation accuracies are relatively stable. Fluctuations
in cross-validation accuracy are observed for all MLAs with respect
to variations in Ta clusters, indicating the sensitivity of MLA
classifiers to individual sets of Ta.

Fig. 5 provides MLA Tb accuracy comparisons with respect to
numbers of Ta clusters across the three input variable combina-
tions. All MLAs generate increasingly accurate predictions and
exhibit less variation between different Ta for larger numbers of
(smaller) Ta clusters. For r32 Ta clusters and when incorporating
spatial coordinates, either exclusively or inclusively, substantial
differences between MLA accuracies are not indicated. A o0.10
increase in Tb accuracy is observed when including spatial coordi-
nates and training MLAs using 432 Ta clusters, compared to using
only geophysical data as input. NB consistently generates the
lowest mean Tb accuracies of all MLAs. Where the number of Ta
clusters is 432 and when using only spatial coordinates, kNN, RF
and SVM obtain Tb accuracies within 0.05 of each other up to a
maximum accuracy of �0.70–0.75 when using 1024 clusters.
When utilizing only geophysical data, and all available data
(including spatial coordinates) RF generates substantially higher
Tb accuracies than all other MLAs for Ta clusters 432.

Table 3 compares the mean and standard deviation of cross-
validation and Tb accuracies and kappa statistics when using all
input variables. MLAs exhibit a slight decrease in mean cross-
validation accuracy (and kappa) and substantial increase in mean
Tb accuracy (and kappa) with increasing numbers of Ta clusters.
As the number of Ta clusters increases the difference between
mean cross-validation accuracy (and kappa) and mean Tb accuracy
(and kappa) decreases, indicating that trained classification mod-
els are increasingly over-fitted when presented with smaller
numbers of Ta clusters. MLAs were unable to train classification
models using the samples provided within Ta or due to cross-
validation partitions not containing at least one sample from each
class. SVM was more likely to encounter errors during training
than other MLAs.

Figs. 6–8 compare the spatial distribution of MLA lithology
predictions and location of misclassifications for selected numbers
of Ta clusters. Where inputs consist only of spatial coordinates
(Fig. 6), Ta must be distributed across the entire study area in order
to train MLAs that generate predictions closely mimicking the
spatial distribution of lithologies. Despite lower overall accuracies
when provided with only geophysical data (Fig. 7), all MLAs
generate lithological predictions that indicate major geological
structures and trends (i.e. approximate locations of contacts
between lithologies); however, the correct lithologies are not
always identified. Nevertheless, a large amount of high frequency
noise is present in all MLA predictions when spatial coordinates
are excluded. Using training data dispersed across the study area
and all available data (Fig. 8) not only generates geologically

plausible predictions but the degree to which predictions are
affected by high frequency noise is greatly reduced.
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Fig. 9 provides a comparison of the processing time required to
train MLAs and generate predictions given input variables and the
spatial distribution of training samples. As the number of Ta clusters
increases all MLAs incur additional computation cost. Overall, kNN
takes consistently less and SVM consistently more time to run than
other MLAs. Increases in processing time are observed when more
variables are used as input, with NB and RF taking considerably
longer to run. ANN processing times do not substantially increase
when including additional data. In contrast to other MLAs, NB
requires more time to generate predictions than to train classifica-
tion models.

5. Discussion

5.1. Machine learning algorithms compared

Of the MLAs trialed in this study, RF performed well across several
aspects evaluated, such as stability, ease of use, processing time and
prediction accuracy. A strong aspect of RF performance was its relative
insensitivity to variations in parameter values, indicating that RF
reduces the potential for classifier over fitting (Breiman, 2001). The
range of RF cross-validation accuracies were less than �0.05 with
increasing mtry values. In contrast, SVM (C) and ANN (size) cross-
validation accuracy ranges were 40.35 across all parameter values.
The relative instability of SVM and ANN highlights the need to
effectively search a large parameter space to optimize their perfor-
mance. In this study, we have simplified comparisons by deliberately
limiting the search to one parameter for SVM (s estimated), and ANN
(decay constant). In situations where multiple parameters require
optimization grid searches can be employed. However, this can be
very computationally expensive with fine search grids or, as in the
case of coarse search grids, they may not be effective at identifying
optimal parameters for a given dataset due to the effect of discretiza-
tion (Guyon, 2009). Alternatively, a multi-stage nested search could be
employed to reduce computational cost and improve parameter
selection outcomes (Oommen et al., 2008). A nested search initially
identifies a small region of parameter space using a coarse grid then
searches this region using a finer grid of parameter values.

The least computationally costly MLA to implement was kNN.
RF, ANN and NB each had similar processing times (when using
geophysical variables) and took less time to run than SVM. Rankings
of MLAs based on processing time were maintained regardless of an

increase in the number of Τa clusters or the number of input
variables. The use of spatially dispersed training samples resulted
in a large increase in the already lengthy SVM processing times.

Τb accuracy and kappa results indicate that RF generated
substantially higher (between �0.05 and 0.1) Τb mean accuracy
and kappa than other MLAs when provided with geophysical data
represented by spatially dispersed Τa. SVM, kNN and ANN all
obtained Τb mean accuracies and kappa statistics within �0.05,
while NB obtained significantly lower test accuracies compared to
other MLAs. SVM was more likely to encounter convergence errors
when training classification models as compared to other MLAs.
The good performance of RF in these experiments suggests that its
approach to learning, which resembles an adaptive kNN strategy
(Hastie et al., 2009), provides advantages over other MLAs when
applied to spatially constrained supervised classification problems.
Furthermore, RF is generally insensitive to noisy input data where
the number of relevant variables is comparatively large. In these
situations, the effect of variations in the information content of Ta
on RF classification models is reduced, improving RF general-
ization on unseen data (Breiman, 2001; Hastie et al., 2009).

5.2. Influence of training data spatial distribution

Previous studies into the application of MLAs to remote sensing
supervised classification examined the influence of the number of
samples in Τa on overall predictive accuracy (e.g., Gelfort, 2006;
Ham et al., 2005; Oommen et al., 2008; Song et al., 2012). These
studies found the minimum number of Τa samples required to
induce accurate MLA classifiers needs to be between 10% and 25% of
the total number of samples. Furthermore, increasing the number of
samples in Τa did not lead to improved classification accuracy
despite additional computational cost. The experiments conducted
in this study clearly indicate that Τa spatial clustering is a limiting
factor in the efficacy of MLA to predict spatially distributed
phenomena while having little effect on processing time.

As samples within Τa become increasingly dispersed across the
region of interest, classifier Τb accuracy (and kappa) improves drama-
tically. Moreover, the difference between cross-validation performance
estimates and spatially disjoint Τb accuracy decreases, indicating
better classifier generalization capabilities. Improvements in classifier
generalization with highly dispersed Τa are coupled with reduced
variability of MLA performance on individual sets of Τa. These findings
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imply that for real worldmapping applications, spatially scattered field
observations are most likely to generate stable MLA predictions that
accurately reflect the spatial distributions of lithologies. Given appro-
priately distributed Τa, the proposed methods are applicable to

problems such as generating rapid first-pass predictions in complex
geological terranes, reducing the subjectivity with which geological
interpretations are formulated, and validating pre-existing interpreted
geological maps.

Table 3
Comparison of MLA cross-validation and Tb accuracy and kappa using all input variables with respect to different numbers of Ta clusters. Ta n indicates the number
successfully trained classification models for a given run used to calculate mean and standard deviation. Selected parameters correspond to the MLA parameter (refer to
Table 2) that obtained the maximum mean cross-validation accuracy and count indicates the number of times this parameter occurred.

Ta clusters Ta n Cross-Validation Selected parameter Count Tb

Accuracy Kappa Accuracy Kappa

Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

NB
1 9 0.618 0.069 0.527 0.073 TRUE 9 0.234 0.028 0.082 0.021
2 10 0.644 0.030 0.553 0.040 TRUE 10 0.269 0.052 0.122 0.038
4 9 0.620 0.070 0.534 0.086 TRUE 9 0.255 0.038 0.104 0.032
8 8 0.615 0.017 0.536 0.024 TRUE 8 0.262 0.017 0.132 0.026

16 10 0.638 0.059 0.569 0.071 TRUE 10 0.327 0.043 0.196 0.053
32 10 0.632 0.029 0.568 0.037 TRUE 10 0.351 0.034 0.234 0.043
64 8 0.630 0.052 0.568 0.056 TRUE 8 0.417 0.018 0.319 0.020

128 9 0.609 0.021 0.548 0.025 TRUE 9 0.445 0.008 0.355 0.010
256 10 0.582 0.029 0.516 0.033 TRUE 10 0.473 0.019 0.389 0.020
512 10 0.573 0.018 0.506 0.021 TRUE 10 0.492 0.009 0.413 0.010

1024 10 0.543 0.009 0.472 0.010 TRUE 10 0.506 0.012 0.430 0.013

kNN
1 9 0.832 0.024 0.787 0.023 1 9 0.278 0.047 0.120 0.053
2 10 0.852 0.019 0.806 0.020 1 9 0.323 0.038 0.166 0.031
4 9 0.850 0.007 0.808 0.014 1 8 0.297 0.019 0.153 0.032
8 9 0.848 0.014 0.808 0.014 1 8 0.336 0.030 0.203 0.033

16 10 0.861 0.016 0.828 0.022 1 8 0.377 0.024 0.256 0.029
32 10 0.865 0.009 0.837 0.011 1 9 0.415 0.039 0.306 0.047
64 8 0.866 0.013 0.840 0.014 1 7 0.474 0.020 0.378 0.022

128 9 0.867 0.005 0.843 0.005 1 9 0.507 0.006 0.420 0.007
256 10 0.860 0.007 0.834 0.009 1 10 0.551 0.005 0.472 0.005
512 10 0.860 0.006 0.835 0.007 1 10 0.594 0.006 0.522 0.007

1024 10 0.835 0.008 0.806 0.010 1 10 0.635 0.004 0.571 0.004

RF
1 9 0.914 0.010 0.890 0.009 9 4 0.326 0.035 0.148 0.050
2 10 0.921 0.009 0.896 0.010 9 3 0.374 0.050 0.220 0.049
4 9 0.924 0.004 0.902 0.006 6 4 0.359 0.048 0.216 0.054
8 9 0.915 0.007 0.893 0.008 6 3 0.379 0.043 0.242 0.048

16 10 0.918 0.011 0.899 0.013 5 4 0.425 0.022 0.300 0.028
32 10 0.918 0.002 0.901 0.004 6 4 0.484 0.034 0.381 0.041
64 8 0.917 0.007 0.901 0.009 5 2 0.553 0.017 0.466 0.020

128 9 0.915 0.006 0.900 0.008 5 3 0.606 0.013 0.531 0.016
256 10 0.910 0.004 0.893 0.005 6 3 0.658 0.012 0.594 0.014
512 10 0.907 0.003 0.891 0.003 8 4 0.709 0.009 0.654 0.011

1024 10 0.892 0.005 0.872 0.006 9 3 0.762 0.007 0.718 0.008

SVM
1 9 0.877 0.019 0.843 0.020 64 6 0.305 0.055 0.144 0.059
2 6 0.890 0.011 0.857 0.012 128 4 0.327 0.055 0.175 0.063
4 7 0.891 0.006 0.862 0.007 128 5 0.315 0.040 0.184 0.044
8 7 0.876 0.015 0.846 0.017 128 4 0.350 0.054 0.217 0.057

16 9 0.888 0.011 0.862 0.016 64 5 0.398 0.031 0.280 0.037
32 7 0.882 0.008 0.857 0.009 128 5 0.453 0.041 0.351 0.046
64 8 0.884 0.012 0.860 0.014 64 5 0.497 0.014 0.404 0.015

128 7 0.877 0.008 0.855 0.010 64 4 0.536 0.011 0.453 0.014
256 8 0.870 0.006 0.846 0.008 128 6 0.580 0.014 0.505 0.017
512 10 0.861 0.004 0.836 0.004 128 5 0.630 0.006 0.563 0.007

1024 10 0.832 0.007 0.802 0.009 64 7 0.671 0.008 0.613 0.009

ANN
1 9 0.816 0.036 0.765 0.039 30 8 0.267 0.048 0.121 0.056
2 10 0.838 0.019 0.788 0.022 30 7 0.324 0.040 0.180 0.027
4 9 0.840 0.024 0.795 0.033 30 5 0.289 0.077 0.172 0.064
8 9 0.828 0.015 0.783 0.015 30 8 0.332 0.049 0.208 0.047

16 10 0.837 0.021 0.798 0.028 30 6 0.381 0.033 0.267 0.035
32 10 0.826 0.015 0.790 0.018 30 8 0.420 0.042 0.314 0.044
64 8 0.824 0.026 0.789 0.030 30 8 0.475 0.012 0.379 0.014

128 9 0.808 0.012 0.772 0.015 30 8 0.505 0.013 0.418 0.017
256 10 0.787 0.012 0.747 0.015 30 8 0.558 0.010 0.479 0.011
512 10 0.765 0.012 0.723 0.013 30 8 0.591 0.012 0.517 0.013

1024 10 0.735 0.008 0.687 0.009 30 6 0.627 0.005 0.561 0.005
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Fig. 6. Visualization of the spatial distribution of MLA lithology class predictions (refer to Fig. 1 for reference map and key to class labels), and misclassified samples (black
pixels) for 1, 32 and 1024 Ta clusters (red circles) using X and Y spatial coordinates (XY Only) as inputs. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Visualization of the spatial distribution of MLA lithology class predictions (refer to Fig. 1 for reference map and key to class labels), and misclassified samples (black
pixels) for 1, 32 and 1024 Ta clusters (red circles) using geophysical data (No XY) as inputs. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)



5.3. Using spatially constrained data

Spatial dependencies (spatial autocorrelation), i.e. closer obser-
vations are more related than those farther apart, are commonly

encountered within spatial data (Anselin, 1995; Getis, 2010; Lloyd,
2011). When incorporating spatial coordinates as input data for
training and prediction, MLAs are provided with explicit informa-
tion linking location and lithology classes. Spatial values, coupled

Fig. 8. Visualization of the spatial distribution of MLA lithology class predictions (refer to Fig. 1 for reference map and key to class labels), and misclassified samples (black
pixels) for 1, 32 and 1024 Ta clusters (red circles) using spatial coordinates and geophysical data (all data) as inputs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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with randomly distributed Τa samples over the entire study area,
resulted in a best-case scenario in terms of MLA test accuracy.
However, geologically plausible predictions were only achieved
using input variables containing information that reflected the
physical properties of the lithologies under investigation. This
observation suggests that standard measures of classifier perfor-
mance, such as accuracy and kappa, do not necessarily provide an
indication of the validity of MLA classifications in the spatial
domain. Therefore, the use of spatial coordinates should be
approached with caution. If, for instance, training data were
collected only from field observations, these data are likely to be
spatially clustered due outcrop exposure, accessibility, and time
constraints. Using only spatial coordinates with highly spatially
clustered Τa samples generates classifiers that incorrectly learn a
finite range of coordinate values for a particular class and were
unable to generalize well to spatially disjoint regions (Gahegan,
2000).

An alternative to the use of spatial coordinates as a means of
providing MLAs with spatial context would be to incorporate some
measure of local spatial relationships during pre-processing using
neighborhood models (Gahegan, 2000). In its simplest form,
neighborhood models generate new variables by deriving statis-
tical measures of the values of proximal observations such as
mean or standard deviation. In this way neighborhood models
represent local spatial similarity or dissimilarity (Lloyd, 2011).
An alternative to pre-processing inputs to include information on
the spatial context of observations is to code some notion of
spatial dependency into the MLA itself. Li et al. (2012) developed
and tested a SVM algorithm that directly utilized spatial informa-
tion to improve classifier accuracy. Their SVM variant takes
analyzed hold-out test sample results obtained in geographical
space, and using a local neighborhood identifies the support
vectors that are likely to be misclassified. The SVM hyperplane
boundary is then adjusted to include these support vectors. This
process proceeds iteratively until the change in prediction accu-
racy reaches some minimum threshold.

6. Conclusions

We compared five machine learning algorithms (MLAs) in
terms their performance with respect to a supervised lithology
classification problem in a complex metamorphosed geological
terrane. These MLAs, Naive Bayes, k-Nearest Neighbors, Random
Forests, Support Vector Machines and Artificial Neural Networks,
represent the five general machine learning strategies for auto-
mated data-driven inference. MLA comparisons included their
sensitivity to variations in spatial distribution of training data,
and response to the inclusion of explicit spatial information.

We conclude that Random Forests is a good first choice MLA for
multiclass inference using widely available high-dimensional multi-
source remotely sensed geophysical variables. Random Forests
classification models are, in this case, easy to train, stable across a
range of model parameter values, computationally efficient, and
when faced with spatially dispersed training data, substantially
more accurate than other MLAs. These traits, coupled with the
insensitively of Random Forests to noise and over fitting, indicate
that it is well suited to remote sensing lithological classification
applications.

As the spatial distribution of training data becomes more
dispersed across the region under investigation, MLA predictive
accuracy (and kappa) increases. In addition, the sensitivity of MLA
categorical predictions to different training datasets decreases. The
inclusion of explicit spatial information (i.e. spatial coordinates)
proved to generate highly accurate MLA predictions when training
data was dispersed across the study area. Despite resulting in

lower test accuracy (and kappa), the use of geophysical data
provided MLAs with information that characterized geological
structural trends. Therefore, combining spatial and geophysical
data is beneficial, especially in situations where training data is
moderately spatially clustered. Our results illustrate the use of
machine learning techniques to address data-driven spatial infer-
ence problems and will generalize readily to other geoscience
applications.
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