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Many lakes worldwide are experiencing great change due to eutrophication. Consequently, species composition
changes, toxic algal blooms proliferate, and drinking water supplies dwindle. The transition to the deteriorated
state can be catastrophic with an abrupt change from macrophyte to phytoplankton domination. This has been
shown repeatedly in small lakes. Whether such alternative stable states also exist in large shallow lakes is less
clear, however. Here we discuss the characteristics that give rise to alternative stable states in large shallow
lakes either in the lake aswhole or restricted to specific regions of the lake.We include the effect of lake size, spa-
tial heterogeneity and internal connectivity on a lake's response along the eutrophication axis. As a case study, we
outline the eutrophication history of Lake Taihu (China) and illustrate how lake size, spatial heterogeneity and in-
ternal connectivity can explain the observed spatial presence of different states. We discuss whether these states
can be alternatively stable by comparing the datawithmodel output (PCLake). These findings are generalised for
other large, shallow lakes.We conclude that locationswith prevailing size effects generally lackmacrophytes; and,
therefore, alternative stable states are unlikely to occur there. However, most large shallow lakes have macro-
phytes whose presence remains unexplainedwhen only size effect is taken into account. By including spatial het-
erogeneity in the analysis, the presence of macrophytes and alternative stable states in large shallow lakes is
better understood. Finally, internal connectivity is important because a high internal connectivity reduces the sta-
bility of alternative states.
© 2014 International Association for Great Lakes Research. Published by Elsevier B.V. Open access under CC BY-NC-N
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Fig. 1.Model output indicating the presence of alternative stable states depending on lake
fetch and depth (PCLake, (Janse et al., 2010)). Alternative stable states are predicted in the
grey area (labelled ‘Hysteresis’).
Introduction

Eutrophication drives numerous lakes worldwide to a deteriorated
state where phytoplankton dominate over macrophytes (Smith et al.,
1999). As a result, species composition changes (Jeppesen et al., 2000;
Smith et al., 1999), toxic algal blooms proliferate (Paerl et al., 2011a)
and drinking water supplies dwindle (Falconer and Humpage, 2005;
Smith et al., 1999). The transition to a phytoplankton dominated state
is often non-linear and in many cases catastrophic (Scheffer et al.,
2000). In case of a catastrophic transition, a change from the macro-
phyte dominating state to the alternative phytoplankton state will be
rapid and recovery may show hysteresis (alternative stable states)
when positive feedbacks between macrophytes and phytoplankton
are strong (Scheffer et al., 1993).

Small lakes are more likely to exhibit a macrophyte-rich state
than large lakes (Van Geest et al., 2003) primarily because small
lakes are less prone to destructive wind forces (Janse et al., 2008) and
fish are less abundant (Scheffer and Van Nes, 2007). Examples of
small lakes that shifted between the macrophyte and phytoplankton
dominated state are the gravel pit lakes in England (b1 km2, b2 m
depth) (Scheffer et al., 1993; Wright and Phillips, 1992) and Lake
Veluwe in the Netherlands (30 km2, 1.5 m depth) (Meijer, 2000).
But there are also larger lakes withmacrophytes, and where alternative
stable states are presumed. For example, Lake Apopka (125 km2) in
the USA became susceptible to disturbances due to increasing
nutrient loading; the large macrophyte stands finally disappeared
after a disruptive hurricane event (Bachmann et al., 1999; Lowe et al.,
2001).

It is an intriguing question under which conditions large shallow
lakes exhibit alternative stable states. The impression is often that
these alternative states appear lake wide (Scheffer, 1990; Scheffer
et al., 1993), though it is conceivable that in some cases these may
be restricted to certain areas within a lake as well. This information
is crucial because the type of transition (catastrophic or not) will de-
termine the lake's response to restoration measures (Scheffer et al.,
2001). It has been shown that it is difficult to restore large shallow
lakes (Gulati et al., 2008). For instance Lake Okeechobee (USA,
1900 km2, 2.7 m depth) (Beaver et al., 2013), Chaohu (China,
760 km2, 2.5 m depth) (Shang and Shang, 2005) and Lake
Markermeer (The Netherlands, 700 km2, 3.2 m depth) (Kelderman
et al., 2012b; Lammens et al., 2008) still suffer from water quality
problems after restoration. The lasting water quality issues in these
larger lakes often affect large populations that depend on their eco-
system services (Carpenter et al., 2011).

Here, we discuss the response of large shallow lakes to eutrophica-
tion. We aim to characterise conditions that promote alternative stable
states within large shallow lakes (N100 km2). First, we describe the ef-
fect of different lake characteristics on the lake response to eutrophica-
tion. We focus on lake size, spatial heterogeneity (spatial variation in
patterns and processeswithin a lake) and internal connectivity (horizon-
tal exchange between lake compartments; here defined as spatially dis-
tinct regions that are relatively homogenous in characteristics and
processes). These characteristics are all recognised as key factors in un-
derstanding ecological systems (Cadenasso et al., 2006). Second, wewill
present the eutrophication history of Lake Taihu, China's third largest
freshwater lake. Next, the effects of lake size, spatial heterogeneity and in-
ternal connectivity on the observed spatial development of this lake will
be discussed in relation to model output. Finally, we discuss how we
may generalise the effects of lake size, spatial heterogeneity and internal
connectivity for other large shallow lakes.
Theory: size effect, spatial heterogeneity and internal connectivity

Alternative stable states are the result of strong reinforcing feedback
loops that strengthen the competitiveness of the ruling state with other
states (May, 1977; Scheffer et al., 2001). The dominant state is therefore
not only dependent on the present conditions, but also on the prevalent
state in the past (Scheffer and Carpenter, 2003). As a result of strong
reinforcing feedback, multiple states are possible given the same condi-
tions (Scheffer and Van Nes, 2007). Two important states distinguished
in shallow lakes are the clear macrophyte state and the turbid phyto-
plankton state (Scheffer et al., 1993). These states are alternatively sta-
ble if the reinforcing feedback between algae and macrophytes is
sufficiently strong to facilitate potential dominance of either of both
(Hosper, 1989; Phillips et al., 1978; Scheffer et al., 1993).

PCLake is an ecosystem model that can be used as a tool to predict
the state of lakes (e.g. macrophyte dominated or turbid) and indicate
whether these states are stable or not (Janse, 1997). Previous studies
showed that the presence of alternative stable states strongly depends
on depth and fetch (‘distance between any point in a lake and the
shore in thewind direction’) (Janse et al., 2008, 2010). Results of a bifur-
cation analysis using the general settings of PCLake illustrate that too
great a depth or fetch prevents macrophyte dominance (Fig. 1) while
very shallow lakes are likely to have unconditionally sufficient light
conditions allowing macrophyte growth to impede algal domination
(Fig. 1). Only lakes that meet the requirements for both states to
dominate under the same conditions will show alternative stable
states (Fig. 1). These requirements for alternative stable states can be
fulfilled in a lake as a whole but also in regions (compartments) of a
lake allowing different states to exist side by side. For details on the
general settings used here see Janse (2005) and for details on the
bifurcation analysis see Electronic Supplementary Materials ESM
Appendix S1.
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Size effect

Lake size is a very important factor in shaping the response of lakes to
eutrophication, here further referred to as the size effect. As a result of
the size effect, large shallow lakes are often presumed to lack alternative
stable states (Janse et al., 2008). First, with larger lake size, fetch is in-
creased (Fig. 2A, process 1) (Janse et al., 2008; Jeppesen et al., 2007). A
longer fetch leads to larger wind-driven waves resulting in a higher
shear stress on the sediment surface (Carper and Bachmann, 1984).
Therefore, large shallow lakes are more prone to wind forces than
small shallow lakes. As a result of high size effect, macrophytes are dam-
aged by wave forces and sediment resuspension is more severe which
inhibits macrophyte growth by light attenuation (Scheffer, 2004;
Scheffer et al., 1993). A second example of a size effect is the depth,
which tends to be deeper when lake size increases (Bohacs et al.,
2003; Søndergaard et al., 2005). As depth increases, macrophytes can
become light limited with their depth limit imposed by the euphotic
zone depth. A third example of the size effect is the relatively small
A) Size effect

B) Spatial heterogeneity
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Fig. 2. Schematisation of theA) size effect, B) spatial heterogeneity and C) internal connectiv-
ity of lakes. Numbers denote the different processes including (1) fetch, (2) perimeter to
surface area ratio, (3) heterogeneous distribution of input, (4) heterogeneity within the
lake like depth, sediment etc. (5) heterogeneous shape /fetch and (6a) high and (6b)
low connectivity.
littoral zone in larger lakes, due to a low perimeter to surface area
ratio (Fig. 2A, process 2). Macrophytes growing in the littoral zone
therefore have less impact on the limnetic zone of the lake ecosystem
(Janse et al., 2001; Sollie et al., 2008b).
Spatial heterogeneity

According to Tobler's ‘first law of geography’ “everything is related
to everything else, but near things are more related than distant things”
(Tobler, 1970). This implies that the chance of spatial heterogeneity
within a lake increases with lake size, a phenomenon known in spatial
ecology as well (Wiens, 1989). With spatial heterogeneity is meant
here the horizontal spatial variation in structure and biochemical pro-
cesses within a lake. Examples of spatial heterogeneity are variation in
depth and sediment type related nutrient storage (Fig. 2B, process 3),
both influencing the potential for macrophyte growth (Canfield et al.,
1985; Chambers and Kaiff, 1985; Jeppesen et al., 1990; Middelboe and
Markager, 1997; Stefan et al., 1983).

Additionally, external drivers can be spatially heterogeneous such as
allochthonous nutrient input. Data imply that eutrophication stress
per unit of area experienced by lakes with similar land use is indepen-
dent of lake size (Fig. 3). However, particularly in large lakes, the
distribution of the nutrient input is often spatially heterogeneous. Alloch-
thonous nutrient input enters the lake mostly via tributaries and over-
land flow (Fig. 2B, process 4) which exerts a higher eutrophic stress in
the vicinity of inlets and lake shores, than further away.When eutrophi-
cation stress becomes excessive, themacrophytes that often grow luxu-
riously in the vicinity of the inlet and lake shoreswill retreat to only very
shallow parts of the lake where light is not limited (Fig. 1, lower white
region). Subsequently, these littoral macrophytes lose their capacity to
reduce thqe impact of inflowing nutrients (Fisher and Acreman, 1999).

A last example of spatial heterogeneity is the irregular shape of the
lake's shoreline or presence of islandswhich can result in unequal distri-
bution of wind stress. The hypothetical lake in Fig. 2B for example, has a
large fetch indicated by the dashed circle. At the same time the bay in
the lower right corner forms a compartment with a shorter fetch and
is thus more protected from strong wind forces (Fig. 2B, process 5). In
this way the size of different lake compartments matters for macro-
phyte growth potential (Andersson, 2001).
Fig. 3.Relationship between lake surface area and catchment area (Y= aX+ b, a=
0.965 ± 0.07, b = 1.397 ± 0.11). With a≈ 1 on the log–log scale, the relationship is
close to linear on normal scale as well (y= 10bxa≈ 101.4x0.97≈ 24x), indicating on aver-
age a nearly constant lake area to catchment area ratio. Data from ILEC (1999).

image of Fig.�2
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Internal connectivity

The internal connectivity is defined here as horizontal exchange be-
tween different compartments (‘connectivity’) within a lake (‘internal’).
With respect to the earlier mentioned ‘first law of geography’ (Tobler,
1970), internal connectivity concerns the degree of relatedness of the
different compartments and processes in a lake. A higher internal
connectivity provides a higher relatedness and thus tends to minimise
variability (Hilt et al., 2011; Van Nes and Scheffer, 2005). High
connectivity (Fig. 2C, process 6a) leads therefore to a well-mixed lake
in which transport processes (e.g. water flow, diffusion, wind driven
transport) are dominant. On the other hand, with low connectivity
(Fig. 2C, process 6b) the lake processes are biochemically driven and
heterogeneity is maintained in different lake compartments (Van Nes
and Scheffer, 2005). Intuitively, internal connectivity decreases though
narrowing of the lake or dams in the lake, since they obstruct water
flow between different lake compartments. Additionally, with increas-
ing lake size, opposing shores become less connected because a longer
distance needs to be spanned which requires increasing time for ex-
change. Depending on the connectivity of a lake, local regime shifts
can be obstructed or, on the contrary, promoted by water quality states
elsewhere within a lake (Hilt et al., 2011; Scheffer and Van Nes, 2007).
In this way, events like state shifts can propagate as a domino effect
throughout a lake (Hilt et al., 2011; Van Nes and Scheffer, 2005).

The combination of size effect, spatial heterogeneity and internal
connectivity of large shallow lakes leads to a unique spatial response of
these lakes to eutrophication. Given the relatively low number of large
shallow lakes (Bohacs et al., 2003; Downing et al., 2006; ILEC, 1999)
and the large differences between these lakes (e.g. in precipitation, alti-
tude or latitude) it is difficult to make generalisations. Here, we will
focus on a large shallow lake, Lake Taihu, located in eastern China
(Fig. 4). Measured in terms of its depth to surface ratio, Taihu is
among the shallowest of large lakes, only surpassed by Lake Eyre
(Australia, which is ephemeral), Lake Chilwa (Malawi, temporarily
dried out in 1968), Lake Taimyr (Russia, riverine and frozen for most
of the year), Lake Hungtze (China, riverine) and during the dry season
by Lake Tonlé Sap (Cambodia, riverine) (ILEC, 1999). Taihu is therefore
a good model system to study the contribution of size effect, spatial
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Fig. 4. Inflow (black arrows), outflow (white arrows) and bi-directional flow (grey arrows)
of Taihu. Bi-directional flow of rivers means seasonally dependent alternating in- and out-
flow of river water (after Li et al., 2011a).
heterogeneity and internal connectivity to the spatial variability and de-
velopment of large shallow lakes.

Development in the Taihu Basin

Taihu is China's third largest freshwater lake (2338 km2) situated in
the Yangtze River delta, approximately 100 km west of Shanghai (Qin
et al., 2007). The lake is very shallow compared to its size with only
1.9 m average depth to a maximum of 2.6 m and is polymictic (Shen
et al., 2011). More than 200 tributaries form a complex network that
connects the lake with its own catchment. In the north, the catchment
borders the Yangtze River. Since the 1980s, the lake has been plagued
by algal blooms. The seriousness of the situation became particularly
clear at the end of May to early June 2007 when more than 1 million
people in the nearby city of Wuxi were without drinking water for up
to a month due to large cyanobacterial scums at the water plant inlet
(Guo, 2007; Qin et al., 2010). The current lake water quality with its
cyanobacterial toxins is a direct health risk for the 40 million people
that live in the Taihu Basin and depend on the lake ecosystem (Qin
et al., 2010). The problem is of national significance since 10.3% of
China's GDP (as determined in 2000) is produced in the watershed of
Taihu (Duan et al., 2009). Up until now, measures to reduce the algal
blooms in Taihu have had little effect (Chen et al., 2009, 2012a; Hu
et al., 2008; Li et al., 2013).

Pristine situation

Prior to 6500 BC, farming societies established in the region of
Lake Taihu (Smith, 1995). The fertile soils and the regular supply of
nutrients and water by the Yangtze River were important conditions
for the early agricultural development (Ellis and Wang, 1997). An-
thropogenic pressures seem to have been low at that time (An and
Wang, 2008). Information on the pristine state of the lake is sparse,
however a Chinese song “Beautiful Taihu” (太湖美, Long-Fei) written
in 1978 tells that the water was beautiful with flourishing fish
swirling in the lake, with a mysterious water and green reeds along
the shore. According to macrophyte records taken in the 1960s
(Fig. 5), macrophytes were indeed present at the shores and bays
with the east of the lake being most vegetated (Qin et al., 2007).
However, it is likely that the lake has never been totally vegetated
as a result of strong winds that act as a destructive force on the lake's
centre. Remnants of long-term wind forcing can also be seen in the
absence of fine sediments in the lake (Shen et al., 2011). Therefore
it is arguable that the lake centre has always lacked macrophytes
and appeared turbid on days of strong wind. Phytoplankton concen-
trations were thought to be low during this time (Zheng et al., 2009).

Anthropogenic pressure

Increasing anthropogenic pressure caused a change to this pristine
situation. After the end of the Taiping rebellion (1850–1864) population
grew exponentially, demanding a higher food production (Ellis and
Wang, 1997). However, agricultural land in the Taihu Basin became
limited, requiring a means to increase productivity (e.g. fertilisers,
pesticides and higher irrigation efficiency) to meet the food demand
(Ellis and Wang, 1997). In the end, agricultural innovation allowed for
more than a tripling of population in 150 years to more than 40million
people at the start of the 21st century (An et al., 1996; Ellis and Wang,
1997; Tian et al., 2011; Zhang et al., 2008). Small villages and cities in
the Taihu basin grew rapidly andmerged into one of the world's largest
“megalopolitan regions” (based on population) (Tian et al., 2011). Due
to this urbanisation, waste water production has locally intensified
and exceeded the increment in wastewater treatment capacity (Gao
and Zhang, 2010). Cesspits that used to be emptied on the fields for
fertilisation were replaced by flush toilets, resulting in better hygiene,
but negatively impacting the nutrient cycle (Ellis and Wang, 1997;



Fig. 5.Development of the ecosystem in Lake Taihu. Compilation of differentmaps with phytoplankton, macrophytes andmacroinvertebrates data as available over time. Source formac-
rophyte data 1960s and 1980s from Qin et al. (2007) and 2002–2007 from Zhao et al. (2012b). Phytoplankton data originates from Ma et al. (2008) and Duan et al. (2009). Macroinver-
tebrates data of 2007 originates from Cai et al. (2012).
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Gao and Zhang, 2010). In 2009, domestic wastes contributed more
than 40% of the total waste input (Liu et al., 2013). Eutrophication
has been further amplified by industries and the world's largest
aquacultural fish production (Guo, 2007; Liu and Diamond, 2005;
Qin et al., 2007). The construction of concrete embankment around
most of the lake in 1991 as a response to flood events, destroyed
the connection between the lake and its surrounding wetlands
(Yang and Liu, 2010). Sluices are now regulating water levels within
the lake which means a loss of the natural water level fluctuations
(Yang and Liu, 2010).

Nutrients

Increasing amounts of nutrients have been discharged to the lake as
a result of the anthropogenic pressure (Fig. 6). Fortunately, strict regu-
lations for industrial waste loads (“zero-point-action”) starting from
1998 seemed to pay off, as could be seen from a decline in both nitrogen
and phosphorus load between 1999 and 2001 in Fig. 6 (Li et al., 2011a;
Liu et al., 2013). However, these regulations could not prevent the
nutrient load from increasing further after 2001. Most allochthonous
nutrient input comes from the north and west of the Taihu Basin
where most cities and the major inflow rivers are situated (Li et al.,
2011a; Yu et al., 2007) (Fig. 4, black dots). As a result, high nutrient con-
centrations in the lake water can be found at the north and west side of
Taihu. These nutrient concentrations decrease in a south-easterly direc-
tion from the input sources, through the lake centre towards the outlet
rivers in the east (Fig. 4, white dots) (Chen et al., 2003a; Kelderman
et al., 2005; Li et al., 2011a; Otten et al., 2012; Paerl et al., 2011b). The
spatial decline in nutrient concentrations can be mainly explained by
a loss of nutrients to the sediments and atmosphere. Nitrogen is re-
moved mainly during summer by the large phytoplankton bloom pop-
ulations and by denitrification (Paerl et al., 2011b; Xu et al., 2010).
Phosphorus is immobilised in the sediments mainly during winter
when pH levels are low (Xu et al., 2010). As a result, nitrogen and phos-
phorus are alternately limiting phytoplankton production in Lake Taihu
(Paerl et al., 2011b). The removal of nutrients ‘en route’ is important to
prevent algal blooms in the east of the lake, but has a drawback as well.
Years of intensive nutrient input have led to accumulation of mainly



Fig. 6. Total nitrogen (black) and total phosphorus (grey) load from tributaries in Taihu.
The dashed lines show the limits for different trophic states which are based on the input–
output model of Vollenweider (1975) for phosphorus: Lp = [P]/(10 + qs) with Lp the areal
nutrient load, [P] the lake water phosphorus concentration (with upper limits for oligotro-
phic and mesotrophic respectively [P] = 0.01 mg · l−1 and [P] = 0.02 mg · l−1) and qs
the hydraulic loading rate (average depth z divided by the residence time τw) which is
2.24 m · yr−1 for Taihu. The limits for nitrogen are set with the ratio N:P = 15:1. Data
1987–2003 from Zhang (2007) and 2009 from Yan et al. (2011).
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phosphorus in the lake sediments, forming a potential for internal
nutrient loading once the external nutrient load has been reduced
(Qin et al., 2006; Zhu et al., 2013).

Macrophytes

Until the 1980s, macrophyte coverage was around 25% of the lake
surface (Fig. 5, excluding East Taihu Bay) but that decreased tremen-
dously to approximately 5% at the end of the 1980s (Fig. 7). The disap-
pearance of macrophytes can be mainly assigned to the massive
mortality along the western shores and northern bays (Fig. 5).
Meanwhile, macrophytes in the eastern part of the lake changed little,
which could be explained by the lower nutrient concentrations, wind-
shading and the shallowness providing more light for macrophytes (Li
et al., 2011a; Zhao et al., 2012b). Despite the increasing eutrophication,
the vegetated area in Taihu seems to have slowly increased since its
minimum coverage in the late 1980s (Fig. 7), mainly due to increased
macrophyte coverage in East Taihu (Zhao et al., 2013). Instead of
being a sign of recovery, the increase of macrophyte coverage has
been interpreted as a sign of an upcoming shift to the phytoplankton
dominated state (Zhao et al., 2012b). This interpretation is based on
the theory of alternative stable states that assumes macrophytes to re-
spond non-linearly to eutrophication, showing first an increase due to
higher fertility, prior to the collapse of the macrophyte stands (Janse
et al., 2008; Timms andMoss, 1984). Another indication of an upcoming
shift in this region can be found in the increasing dominance of floating
macrophytes at the expense of the submerged macrophytes (Scheffer
Fig. 7.Macrophyte coverage in Lake Taihu. East Taihu Bay is not included in the calculation
since data was not available for all years, see Fig. 5. Grey area corresponds with the
timespan of the increasing loads in Fig. 6.
et al., 2003; Zhao et al., 2012b). Floating macrophytes are able to better
cope with lower light conditions than submergedmacrophytes because
they grow at the water surface. When light conditions deteriorate close
to the shifting point, floating macrophytes will therefore predominate
submerged macrophytes (Scheffer et al., 2003).

Phytoplankton

While macrophytes disappeared, the total primary production of
Taihu increased more than twofold from 1960 (5.46 t · km−2 yr−1) to
1990 (11.66 t · km−2 yr−1) owing to the increasing phytoplankton bio-
mass that bloomed due to the excessive nutrient input (Li et al., 2010).
The first algal blooms occurred in 1987 in Meiliang Bay (Fig. 5, 1980s).
Subsequently, algal blooms dominated by non-N2 fixing cyanobacteria
(Microcystis) increased in coverage and frequency, and appeared earlier
in the season (Chen et al., 2003b; Duan et al., 2009; Paerl et al., 2011b).
The presence of mainly non-N2 fixing cyanobacteria indicates that ex-
ternal and internally-supplied nitrogen are sufficient tomaintain prolif-
eration over N2-fixers (Paerl et al., 2011b). The early blooms in the
northern bays and western shores occurred right where enrichment
was most severe and easterly winds drove algae to form thick scums
(Chen et al., 2003b; Li et al., 2011a). At that time, high concentrations
of suspended solids in the lake centre due to wind action (Fig. 8)
might have prevented algal growth by light limitation (Li et al., 2011a;
Sun et al., 2010). Despite this mechanism, blooms also emerged in the
lake centre from 2002 onwards (Duan et al., 2009). Finally, in 2007
the problemswith drinkingwater became so severe that it was not pos-
sible to ignore the blooms anymore (Qin et al., 2010).

Food web

The effects of excessive nutrient loads go beyond the shift in primary
producers alone and appear also higher in the foodweb. As the biomass
of primary producers and zooplankton grew over time, the biomass of
higher trophic levels shrank and several species disappeared (Guan
et al., 2011; Li et al., 2010). There are indications that in the presence
of Microcystis, the zooplankton shifted their diet to the detritus-
bacteria pathway rather than grazing on living phytoplankton (de
Kluijver et al., 2012). A macroinvertebrate survey in 2007 by Cai et al.
(2012) showed that small individuals (e.g. Tubificidae) appear in large
numbers in the algal blooming zone (Fig. 5, 2007). The appearance of
mainly small macroinvertebrate speciesmight be related to the absence
of refuges to prevent predation (e.g. macrophytes) (Cai et al., 2012) and
the relatively low food quality due to the presence of toxic Microcystis
(Chen et al., 2003b; De Bernardi and Giussani, 1990; Otten et al.,
2012). In contrast, in East Taihu, where water quality is still relatively
good, large individuals (e.g. Gastropoda) live in relatively low numbers
as these species can hide from predators between macrophytes and
have access to a relatively high food quality (e.g. periphyton and high-
quality detritus) (Cai et al., 2012). Also fish are affected by the anthropo-
genic pressures. Large fish species almost disappeared fromTaihumain-
ly due to overexploitation by fisheries, which is amplified by
construction of flood protection dams and the destruction of spawning
grounds by land reclamation (Guan et al., 2011; Li, 1999; Li et al.,
2010). Also the exposure to different pollutants (e.g. DDT, POP and
heavy metals) and the resulting bioaccumulation could have forced a
decline in fish stocks (Feng et al., 2003; Rose et al., 2004; Wang et al.,
2003).

Obviously, the safe operating space (cf. Rockström et al., 2009) with
respect to e.g. nutrient cycles, land use and freshwater use needed for a
healthy ecosystem in Taihu has been transgressed. While at first, water
quality was negatively affected by the anthropogenic pressures, now
human development is hampered by low water quality (Guo, 2007).
According to the Chinese standards, which are based on physical and
chemical parameters, acceptable drinking water has a total phosphorus
concentration lower than 0.1 mg/l and total nitrogen concentration



Fig. 8. Yearly average suspended solids concentration at Meiliang Bay (northeastern Lake Taihu) and the lake centre for 1992–2006 (Sun et al., 2010).
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lower than 0.5 mg/l. Standards for biological parameters are not includ-
ed in the Chinese classification; but, according to the European Water
Framework Directive, the chlorophyll-a concentration (depending on
the lake type) should not exceed ~30 μg/L in order to ensure acceptable
drinking water quality (Altenburg et al., 2007). At present, all
these standards are exceeded at least some months during the year
(TBA, 2014).

Insights from Taihu

Today, Taihu can be roughly divided into three zones: the wind-
shaded phytoplankton blooming zone (north and west of the lake),
the wind-disturbed phytoplankton blooming zone (lake centre), and
the shallow wind-shaded macrophyte dominated zone (south-eastern
part of the lake) (Cai et al., 2012; Zhao et al., 2012b). The development
of Taihu reveals how the size effect, spatial heterogeneity and internal
connectivity had its effect upon this spatial zonation.

The water quality model PCLake (Janse et al., 2010) is used
forbifurcation analyses for different values of depth and fetch, to illus-
trate the possibility of alternative stable states in lakes (see Electronic
SupplementaryMaterials ESM Appendix S1). In Fig. 9, themodel gener-
ated grey domain indicates the possible existence of alternative stable
states for a hypothetical set of lakes using the general PCLake settings
(omitting horizontal exchange between lake compartments). Of course
thesemodel results depend onmore factors than fetch and depth alone,
but a full sensitivity analysis of the model for the setting of Taihu is be-
yond the scope of this study. However, a sensitivity analysis of the
model for the default settings is available in Janse et al. (2008). For the
purposes of this review, the output should be seen as an indication of
what is possible rather than an exact prediction.

Combining the model output with Taihu's average depth and fetch
(for details on fetch determination see ESMAppendix S2), the size effect
seems to be too excessive for anymacrophyte growth (Fig. 9A, red dot).
However, this contradicts the observations showing macrophyte
growth in parts of the lake. By using average values for fetch and
depth and thereby ignoring the spatial heterogeneity, important explan-
atory information for macrophyte presence is neglected. Indeed, large
parts of the lake do not behave according to the average. The frequency
distribution shown on Fig. 9B accounts for the spatial heterogeneity con-
sidering the presence of shallow and wind shaded versus relative
deeper windy regions. By including spatial heterogeneity, the presence
of macrophytes in the bays in the north and east can be better under-
stood because these regions are less prone to wind forces as result of a
shorter fetch (Fig. 2B, process 5) or are relatively shallow (Fig. 2B, pro-
cess 3). A comparison between themodel simulations and the frequen-
cy distribution that depicts the spatial heterogeneity in depth and fetch
of Taihu, suggests that nearly 40% of the lake has the potential for mac-
rophyte growth and 15% may potentially have alternative stable states
(Fig. 9B).

To examine whether the macrophyte-suitable area has indeed been
macrophyte-dominated in the past, the frequency distribution is split
(according to the distribution data of the 1980s) into frequency distri-
butions for macrophyte-dominated (Fig. 9C) and macrophyte-lacking
(Fig. 9D) areas. Although themodel results are onlymeant as indicative,
this analysis imply that more than 75% of the vegetated area coincides
with the potential suitable areas for macrophyte growth as indicated
by themodel output, ofwhichmore than 15%has thepossibility of alter-
native stable states (Fig. 9C). The latter areas can be mainly found in
near-shore areas around the lake, in Ghonghu Bay and southeast
Taihu. Most northeasterly macrophyte stands have nowadays disap-
peared as result of spatially heterogeneous nutrient input (Fig. 2B, pro-
cess 4). In contrast, macrophyte sites far away from the inlets were
only moderately affected. The areas that lack macrophytes (Fig. 9D)
are usually deeper and have a longer fetch. The areas where size effects
prevail, are mainly restricted to the lake's centre where fetch length ex-
ceeds more than 20 km (Cai et al., 2012). This long fetch prohibits mac-
rophyte growth due to the wind-driven waves that cause high
concentrations of suspended solids and that would damage anymacro-
phyte (Fig. 2A, process 1) (Cai et al., 2012; Pang et al., 2006; Zhao et al.,
2012b). Additionally, the lake centre is deeper than other parts of the
lake and has a mineral soil due to the ongoing resuspension (Fig. 8)
whichhas prevented the development of an organic-rich lacustrine sed-
iment (Shen et al., 2011). Due to unsuitability of the lake centre formac-
rophyte growth, alternative stable states are most likely not present
here.

The large variation in nutrients and suspended solids indicate a low
internal connectivity in Taihu, especially between the east and the rest of
the lake (Li et al., 2011a). Likely, the variation in concentrations is the
result of the long residence time of 300 days. The positive effect of
low connectivity on water quality in East Taihu is enhanced by the pre-
vailing winds that blow floating algae away from the east (Li et al.,
2011b; Qin et al., 2010). If the flushing rate in the lake would be
higher, nutrient concentrations would most likely be more equally
distributed and macrophytes in the east would be more affected by
eutrophication (Fig. 2C, process 6). A whole-lake flushing measure
to reduce water age in Taihu (Li et al., 2011b) revealed the effect of
internal connectivity on Taihu's water quality. The water age reduc-
tion was meant to flush out nuisance algae. However, the water
age could not be shortened enough to overcome cyanobacterial
growth (Qin et al., 2010). At the same time the most eutrophic bay
(Meiliang) did not significantly improve in water quality as a result
of flushing because local prevailing currents prevented inflow of the
water into the bay (Li et al., 2013; Qin et al., 2010). In the past, the
internal connectivity of this bay has been decreased by land reclama-
tion; some islands became peninsula and thereby separated bays
that where connected before (Hu et al., 2004; Li, 1999). Hence, the
low internal connectivity prevents exchange between bays and
restricts propagation of the phytoplankton towards the east where
at present macrophytes still prevail. Consequently, Taihu has a
modular response to eutrophication leading to different states side
by side, some states conceivably alternatively stable, others
probably not.



Fig. 9. A first estimation of alternative stable states (grey area) using a bifurcation analysis with PCLake, depending on fetch and depth (Janse et al., 2010). A) Expectation based on mean
depth and fetch of different shallow lakes (black dots, with numbered items referring to Table 1) and for Taihu specific (red dot, number 74). B) Frequency distribution of the combination
fetch-depth of areaswithin Taihu. C) Frequency distribution of fetch-depth restricted to only themacrophyte dominated areas in Taihu (according to the 1980s). D) Frequency distribution
restricted to only the macrophyte-lacking areas in Taihu (according to the 1980s). The percentages denote the relative surface area that belongs to either the domain with possibility of
alternative stable states or to the domain where only one of the two states are possible. Depth data from Liu (2013).
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Other large shallow lakes

It is interesting to know whether lake size, spatial heterogeneity and
internal connectivity acting in Taihu are exemplary for the existence
and patterning of alternative stable states in other large shallow lakes.
Based on a number of large shallow lakes listed in Table 1, the generality
of these mechanisms will be discussed.

The estimated probability of other large shallow lakes to have
macrophyte domination, and, if so, whether these have a potentially
alternative stable state is shown in Fig. 9A. A comparison with the
model outcomes indicate that 8 lakes might have alternative stable
states (Table 1) including Lake Apopka (USA) where literature
previously presumed alternative stable states (Bachmann et al., 1999;
Lowe et al., 2001). The majority of the other lakes that are indicated
by the model to potentially have alternative stable states are reported
to support macrophytes, which in some lakes became too excessive,
resulting in problems with boating access and flooding as in
Lake Guiers (Senegal) (Cogels et al., 1997; Hellsten et al., 1999) and
Loktak (India) (Singh and Khundrakpam, 2011). Other lakes are
largely turbid such as the Boraphed Reservoir in Thailand (Mizuno
and Mori, 1970). Whether these lakes indeed show alternative
stable states has not been proven by this review and would require
further research.
Model results also indicated 3 lakes to have habitats that are
particularly suitable for macrophyte growth mainly because of their
shallowness. These are Lake Upemba (Congo), Lake Istokpoga (USA)
and Lake Tathlina (Canada). Indeed, macrophytes are abundantly pres-
ent in LakeUpemba. Also in Lake Istokpogamacrophytes areflourishing.
Despite great effort, removal of excess macrophytes from this lake had
only a temporary effect (O'Brien and Hapgood, 2012) indicating that
Lake Istokpoga has conceivably only one stable state which is macro-
phyte dominated. Whether Lake Tathlina (Canada) is also macrophyte
dominated is not clear because data are not available.

Themajority of the lakes fall outside the suggested domain with the
possibility of havingmacrophytes. These large shallow lakes are expect-
ed to be prone to the size effect. This is not surprising, since they have a
large fetch or depth reducing the window of opportunity for macro-
phytes (Fig. 2A, process 1). However, this contrasts to observations in
the literature showing that in most of the lakes macrophytes had a
chance to grow at least some time in history (Table 1). In some of the
lakes this can be explained by natural water fluctuations. A drop in
water level restricts the surface areawhere size effects prevail. For exam-
ple, the water fluctuations in Lake Chad make the lake switch from a
great large inland ‘sea’ in wet periods to a marshy macrophyte-rich
area in dry periods (Leblanc et al., 2011). Additionally, in Lake Beyşehir
and Lake Uluabat (both in Turkey) receding water levels made large



Table 1
Selected large shallow lakes of theworld. A is surface area of lake in km2, Zmean and Zmax aremean andmaximumdepth inm, Fmean and Fmax aremean andmaximum fetch in km andM is
model outcomes as YES (macrophytes present) or ASS (alternative stable states).

Lake Country Coordinates A Zmean Zmax Fmean Fmax M

1 Istokpoga USA 27°22′N, 81°17′W 113 1.2 3.0 3.9 15.3 YES Although the lake is eutrophic, water level stabilisation
caused excessive dense macrophyte stands in the
large shallow littoral zone (Bunch et al., 2010)
(O'Dell et al., 1995). Herbicide treatments led the
macrophytes only temporally decline
(O'Dell et al., 1995).

2 Tathlina Canada 63° 32′N, 117° 35′W 573 1.0 11.0 83.8 YES –

3 Upemba Congo 8°37′S, 26°23′E 530 1.0 4.0 9.3 38.3 YES Swampy-lake. Floating-mats of emergent macrophytes
generally dominated by papyrus (Azza et al., 2006;
Thompson et al., 1979).

4 Apopka USA 28°37′N, 81°37′W 125 1.7 4.6 15.7 ASS The entire lake shifted frommacrophyte to phytoplankton
dominance triggered by a hurricane, after long-term
eutrophication (Bachmann et al., 1999, 2001; Lowe et al.,
1999, 2001).

5 Boraphed Thailand 15°42′N, 100°14′E 106 2.0 5.8 1.4 9.5 ASS Southeast part of the lake is macrophyte rich. Here the
lake is shallow. The rest of the lake is turbid (Mizuno
and Mori, 1970).

6 Claire Canada 58°35′N, 112°04′W 1410 1.2 2.0 12.5 86.6 ASS –

7 Cross Canada 54°59′N, 97°48′W 591 1.3 12.0 5.8 78.7 ASS –

8 Guiers Senegal 16°10′N, 15°52′W 228 1.3 2.5 2.9 43.3 ASS Macrophytes have overgrown the shallow zone in the
south completely after the construction of a dam
causing problems for boating (Cogels et al., 1997;
Hellsten et al., 1999; Thiam et al., 2013).

9 Hongze China 33°20′N, 118°40′E 1960 1.8 8.7 60.6 ASS Phytoplankton dominated lake (Hu et al., 2014)
10 Loktak India 24°33′N, 93°47′E 289 2.1 4.6 2.5 13.1 ASS Over 50% of the lake is overgrown by macrophytes,

which proliferate after the construction of a dam
(Singh and Khundrakpam, 2011).

11 Tisza (Kisköre) Hungary 47°36′N, 20°40′E 127 1.3 17.0 3.7 24.1 ASS Reservoir is covered with macrophytes
(Kiss et al., 2003).

12 Abaya Ethiopia 6°07′N, 37°38′E 1160 7.0 13.0 9.4 60.2 – –

13 Abert USA 42°37′N, 120°14′W 148 2.2 3.4 4.8 20.0 – –

14 Abitibi Canada 48°38′N, 79°48′W 904 3.0 10.0 6.2 66.3 – –

15 Alexandrina Australia 35°25′S, 139°07′E 570 2.8 5.0 7.8 45.7 – Macrophytes where present before 2008, but a severe
drought that went along with increasing salinity
resulted in the disappearance of macrophytes
(Skinner et al., 2014).

16 Balaton Hungary 46°50′N, 17°42′E 593 3.3 12.2 6.7 72.2 – Waves limit the distribution of macrophytes in the
offshore and southern part of the lake. At the lee side in
the north vegetation is present (Istvánovics et al., 2008).

17 Bangweulu Zambia 11°05′S, 29°45′E 1510 4.0 10.0 12.8 72.2 – –

18 Beloye Ozero Russia 60°10′N, 37°38′E 1120 4.0 20.0 18.8 85.5 – –

19 Beyşehir Turkey 37°47′N, 31°33′E 650 5.0 9.0 8.5 48.6 – b10% coverage when water level was high (before 1982)
to 35% when water table had dropped in 1997 (Beklioglu
et al., 2006).

20 Bositeng China 42°0′N, 87°03′E 1010 7.7 16.0 10.2 67.0 – Reeds present (Jun et al., 2001).
21 Buir China 47°48′N, 117°40′E 610 8.0 11.0 12.1 42.6 – –

22 Cedar Canada 53°10′N, 99°60′W 1320 4.2 10.0 13.7 99.5 – –

23 Chad Cameroon 13°20′N, 14°10′E 1540 4.1 10.5 12.1 64.1 – Chad is sensitive to water fluctuations. When water
table is low, almost the entire lake is covered with
macrophytes (Leblanc et al., 2011).

24 Chao Hu China 31°30′N, 117°34′E 760 2.5 5.0 9.4 49.3 – Around 30% of the lake has been covered by
macrophytes in 1950 but after dam construction and
increasing nutrient loading, there is less than 1% left
(Kong et al., 2013; Zhang et al., 2014)

25 Chapala Mexico 20°15′N, 103°0′W 1100 4.5 10.5 11.0 80.5 – Submerged macrophytes are suppressed by high
turbidity, however floating macrophyte species survive
(Villamagna et al., 2010).

26 Churchill Canada 55°58′N, 108°20′W 559 9.0 24.0 11.0 45.5 – –

27 Colhué Huapi Argentina 45°30′S, 68°45′W 810 2.0 5.5 7.6 43.0 – –

28 Dauphin Canada 51°16′N, 99°45′W 521 2.4 3.4 10.5 50.5 – –

29 Derg Ireland 53°00′N, 8°20′W 118 7.6 36.0 2.2 22.1 – –

30 Deschambault Canada 54°40′N, 103°33′W 542 6.2 22.4 5.0 37.1 – –

31 Dongting China 29°13′N, 112°55′E 2740 6.7 30.8 6.5 56.1 – Inundation frequency determines macrophyte
abundance (Deng et al., 2014)

32 Eğirdir Turkey 38°01′N, 30°51′E 590 9.0 14.0 6.9 39.5 – Marsh and reeds at the shores (Arslan, 2006).
33 Evans Canada 50°51′N, 77°02′W 474 5.0 13.0 3.9 33.0 – –

34 Frobisher Canada 56°22′N, 108°14′W 516 5.5 19.0 2.6 25.9 – –

35 Gaoyou China 32°50′N, 119°15′E 663 7.9 8.0 57.7 – ‘Transitional’, macrophytes and phytoplankton present
(Hu et al., 2014)

36 George Uganda 0°00′N, 30°10′E 250 2.4 4.5 6.1 22.9 – Surrounded by swamp macrophytes. Floating
macrophytes are abundant but submerged
macrophytes are absent in the center of the lake where
phytoplankton dominate (Lock, 1973).

(continued on next page)
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Table 1 (continued)

Lake Country Coordinates A Zmean Zmax Fmean Fmax M

37 Hjälmaren Sweden 59°13′N, 15°46′E 478 6.1 22.0 6.4 76.0 – Before lowering the water surface, macrophytes where
rare. After lowering the water table, macrophytes
became more abundant. The northern shores and
western basins have nowadays extensive macrophyte
growth (Andersson, 2001).

38 Hulun China 48°55′N, 117°22′E 1731 5.0 7.0 18.3 95.0 – Macrophytes absent, phytoplankton dominates
(Chen et al., 2012b).

39 IJsselmeer The Netherlands 52°49′N, 5°15′E 1100 5.5 8.0 11.2 73.1 – Diking with steep slopes and managed water levels
reduced macrophyte growth (Sollie et al., 2008a).

40 Ilmen Russia 58°16′N, 31°17′E 982 5.7 11.0 12.9 88.2 – –

41 Kairakkumskoye Tajikistan 40°17′N, 70°00′E 513 6.2 25.0 7.5 50.0 – –

42 Kakhovskoye Ukraine 47°30′N, 34°20′E 2150 8.5 24.0 10.4 121.9 – –

43 Kasumigaura Japan 36°00′N, 140°25′E 220 4.0 7.0 3.4 29.6 – Construction of concrete levees has harmed littoral
macrophytes with totally disappearance of submerged
macrophytes (Nishihiro and Washitani, 2009).

44 Khanka China 44°55′N, 132°25′E 4190 4.5 6.5 28.3 92.5 – –

45 Khar China 48°04′N, 93°11′E 575 4.2 7.0 11.3 49.8 – Macrophyte stands in the littoral zone (Krylov, 2012)
46 Khar us China 48°02′N, 92°17′E 1578 2.2 4.5 10.5 62.9 – –

47 Koka Ethiopia 8°23′N, 39°05′E 250 9.1 13.0 4.1 23.0 – –

48 Krementchugskoye Ukraine 49°20′N, 32°35′E 2250 6.0 20.0 14.3 146.4 – –

49 Kujbyshevskoe Russia 54°30′N, 48°40′E 5900 9.8 41.0 10.0 123.3 – –

50 Kyoga Uganda 1°30′N, 33°0′E 1720 5.7 8.0 6.6 100.5 – Macrophyte rich, except for the deeper areas.
(Ogutu-Ohwayo et al., 2013).

51 Leopold II
(Mai-Ndombe)

Congo 2°00′S, 18°20′E 2070 5.0 12.0 7.9 86.2 – –

52 Lough Neagh UK 54°36′N, 6°25′W 385 8.9 34.0 8.4 45.1 – Due to depth, turbidity and exposure, macrophytes are
restricted small sheltered areas close to the shore
(Winfield and Winfield, 1994).

53 Louch Ree Ireland 53°30′N, 7°57′W 105 6.2 35.0 2.6 22.1 – –

54 Mangueira Brazil 33°5′S, 52°45′W 817 2.6 6.7 82.3 – Macrophytes mainly in the Taim wetland in the north
northeast (Fragoso et al., 2008).

55 Manitoba Canada 51°00′N, 98°50′W 4625 7.0 28.0 17.3 114.3 – –

56 Markermeer The Netherlands 52°34′N, 5°13′E 700 3.2 5.0 11.2 52.9 – Almost no vegetation due to turbidity and depth
(Kelderman et al., 2012a,b).

57 Moose Canada 53°57′N, 100°09′W 1340 4.1 19.8 13.0 45.1 – –

58 Mweru Congo 9°00′S, 28°45′E 4350 7.0 37.0 26.1 124.3 – –

59 Nipissing Canada 46°14′N, 79°49′W 855 4.5 69.0 8.4 80.5 – –

60 Okeechobee USA 26°56′N, 80°48′W 1900 2.7 6.0 14.1 53.3 – Vegetation mainly at the south and eastern shore.
Water levels as well as sheltering are important for the
macrophyte distribution (Carrick et al., 1994; Havens
et al., 2005; Rodusky et al., 2013).

61 Oulujärvi Finland 64°20′N, 027°15′E 900 7.0 38.0 7.2 83.4 – –

62 Ozero Evoron Russia 51°27′N, 136°30′E 590 3.0 5.9 22.8 – –

63 Pátzcuaro Mexico 19°38′N, 101°38′W 130 4.9 15.0 2.5 16.3 – Around 42% of the lake used to be covered by
macrophytes, mainly in the south of the lake growing
at sheltered and shallow conditions (Torres A et al.,
1989; Torres, 1993).

64 Peipsi Estonia
Russia

58°41′N, 27°29′E 3555 7.1 15.3 27.3 105.9 – The water table of Lake Peipsi is unregulated with,
despite the eutrophication, still macrophytes at the
shores, mainly where till is present instead of
sandstone. Lake center is dominated by algae
(Mäemets et al., 2010).

65 Pielinen Finland 63°13′N, 29°40′E 867 9.9 60.0 6.6 101.1 – –

66 Playgreen Canada 54°0′N, 97°55′W 653 4.0 18.0 5.7 51.3 – –

67 Poyang China 29°05′N, 116°17′E 3210 8.4 25.0 9.6 81.1 – Rich in vegetation especially the shallow parts (Hui
et al., 2008; Liao et al., 2013).

68 Pyasino Russia 69°50′N, 87°40′E 735 4.0 10.0 11.7 78.5 – –

69 Rio Hondo Argentina 27°32′S, 64°57′W 330 5.3 4.2 24.1 – –

70 Rybinsk Russia 58°20′N, 38°40′E 4550 5.6 28.0 21.4 156.8 – –

71 Tonlé Sap Cambodia 12°53′N, 104°04′E 13000 – 12.0 15.8 115.6 – Submerged macrophytes are uncommon due to
turbidity and large water level fluctuations. The
shallow shoreline of the lake consist of dense emergent
and floating mat macrophytes (Campbell et al., 2006).

72 Skadar Albania 42°10′N, 19°20′E 372 5.0 8.3 6.2 45.3 – –

73 Saint Clair USA
Canada

42°28′N, 82°40′W 1113 3.0 6.0 12.4 58.4 – Macrophytes dominate over phytoplankton except for
the lake center (Schloesser and Manny, 1986;
Schloesser et al., 1985).

74 Taihu China 31°15′N, 120°15′E 2428 1.9 2.6 16.5 68.3 – Macrophyte growth at the shores (in the past) and in
the southeast (Zhao et al., 2012a,b, 2013)

75 Taimyr Russia 74°35′N, 103°00′E 4560 2.8 26.0 15.2 326.5 – No vegetation (Timm, 1996).
76 Tana Ethiopia 11°59′N, 37°20′E 3600 9.0 14.0 20.4 76.5 – –

77 Tsimlyanskoye Russia 48°15′N, 43°05′E 2702 8.8 35.0 10.2 108.5 – –

78 Tumba Congo 0°50′S, 18°0′E 500 4.0 6.0 7.5 48.1 – –

79 Uluabat Turkey 40°10′N, 28°35′E 240 2.5 3.0 3.7 25.7 Submerged macrophytes where sparse during high
water level but expanded to 55% of the lake’s surface
area during low water level (Beklioglu et al., 2006).
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Table 1 (continued)

Lake Country Coordinates A Zmean Zmax Fmean Fmax M

80 Võrtsjärv Estonia 58°15′N, 26°3′E 271 2.8 6.0 8.3 34.0 – In the south macrophytes grow in a sheltered
condition (Feldmann and Nõges, 2007).

81 Vygozero Russia 63°37′N, 34°38′E 1250 6.2 18.0 9.7 110.1 – –

82 Winnebago USA 44°01′N, 88°25′W 557 4.7 7.0 10.5 45.2 – –

83 Winnipegosis Canada 52°36′N, 99°50′W 5150 4.2 18.3 16.3 146.8 – –

84 Yuqiao R. China 40°2′N, 117°32′E 250 4.6 12.0 3.2 19.2 – –

85 Ziway Ethiopia 7°58′N, 38°50′E 485 2.5 9.0 7.9 31.4 – Extensive vegetated shoreline (mainly emergent).
Around 12% of the lake area is covered by macrophytes
(Tamire and Mengistou, 2013).
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areas suitable for macrophyte growth, whereas higher water levels
prevented macrophytes to grow (Beklioglu et al., 2006). Water level
fluctuations can thus lead to alternating behaviour of lakes to eutrophi-
cation, which will be showing a turbid state during high water levels, a
macrophyte dominated state during extreme lowwater levels and pos-
sibly alternative stable states in between (Blindow et al., 1993; Van
Geest et al., 2005). However, fluctuatingwater levels are not the sole ex-
planation of macrophyte presence in all lakes.

So far, the effects of spatial heterogeneity have been ignored. If spatial
heterogeneity is accounted for, as with the data of Taihu, there may
well be compartments within large shallow lakes that are more shel-
tered or shallower and thereby being suitable for macrophyte growth.
The size effect is then often restricted to the lake centre as has been re-
ported for many lakes including Lake George (Uganda) (Lock, 1973)
and Saint Clair (USA and Canada) (Schloesser and Manny, 1986;
Schloesser et al., 1985). Lake shores are excellent examples of sheltered
and often shallow areas that support macrophyte growth like in Lake
Eğirdir (Turkey), Lough Neagh (UK) Tonlé Sap (Cambodia), Peipsi
(Estonia, Russia) and Ziway (Ethiopia). However, not all shores are suit-
able for macrophyte growth. For example, in Lake Balaton (Hungary)
prevailing northern winds cause high waves in the south, preventing
macrophyte growth in this part of the lake while macrophytes are
growing at the sheltered northern shores (Istvánovics et al., 2008).
The same holds for Okeechobee (USA) where vegetation is restricted
to the lee side in the south and west (Carrick et al., 1994; Havens
et al., 2005; Rodusky et al., 2013) and Lake Võrtsjärv (Estonia) where
mostmacrophytes growat the lee side in the south of the lake. The shel-
tered conditions in Lake Võrtsjärv are enhanced by the natural
narrowing of the lake's shores in the south (Feldmann and Nõges,
2007). Other lakes have unsuitable littoral regions for macrophyte
growth due to the construction of firm dikes around the lake such as
in Lake IJsselmeer (The Netherlands) and Lake Kasumigaura (Japan).
Some lakes lack macrophytes because the general conditions are too
harsh, as in Lake Alexandrina where a severe drought caused salinity
to increase too high for macrophytes (Skinner et al., 2014), Lake Taimyr
which is frozenmost of the year (Timm, 1996) or the artificially created
LakeMarkermeer (The Netherlands) where the size effect is presumably
too high, resulting in continuous resuspension of the soft sediment
(Kelderman et al., 2012a; Kelderman et al., 2012b; Vijverberg et al.,
2011).

The question remains whether the macrophyte-rich areas in large
shallow lakes could be alternatively stable showing hysteresis between
the processes of eutrophication and oligotrophication. As Fig. 9A illus-
trates, locations having the right characteristics for alternative stable
statesmay exist. Of course, themodel sensitivity to other factors besides
fetch and depth has been omitted causing uncertainty in the exact posi-
tioning of the domain of alternative stable states. These uncertainties
may lead to either extension (e.g. presence of a marsh zone) or reduc-
tion (e.g. more resuspension sensitive sediment) of the alternative
stable state's domain (Janse et al., 2008). Additionally, the internal con-
nectivity has been neglected so far. The internal connectivity is ignored in
the analysis of Fig. 9, though its effect can be logically deduced. Take, for
example, those lake compartments within the domain of alternative
stable states of Fig. 1. If these compartments are part of a homogeneous
lake, connectivity will lead to local resistance to perturbations because
other compartments will continuously supply inputs corresponding to
the prevalent state, which leads to rehabilitation of the perturbed
areas. Only when the entire lake has lost its resilience to perturbations,
will a shift abruptly propagate through the lake like a ‘domino effect’
(Scheffer et al., 2012). This might be the case for Apopka (Florida), a
lake that is rather homogeneous with respect to its depth; and several
perturbations did not lead to a lake wide shift. However after persistent
eutrophication a single hurricane event led to a whole lake shift from
macrophyte to phytoplankton domination (Schelske et al., 2010).

Heterogeneous lakes, however, have most likely regions that only
appear in a single stable state besides these potentially alternative
stable compartments. These single stable state compartments will
destabilise the alternatively stable compartments that appear in a con-
trasting state, but stabilise those that have the same state. Therefore,
the regions that could potentially show alternative stable states tend
to appear in the same state as their neighbouring compartments that
only have a single state. As a consequence, high internal connectivity
will enhance synchrony throughout the lake, through which edges of
the grey domain in Fig. 9A will move towards each other, making the
domain of alternative stable states more confined. In Lake Markermeer
for example, the high turbidity in most of the lake can easily affect
the more shallow parts and thereby prevent macrophyte growth
(Kelderman et al., 2012b). In Lake Pátzcuaro (Mexico), however,
which is highly heterogeneous with respect to depth, main water flow
direction to the north prevents the turbidwater of thenorth fromaffect-
ing the macrophytes in the south (Torres, 1993). This low connectivity
between the lake compartments leads to asynchronous responsewithin
the lake to eutrophication. Low connectivity may allow for alternative
stable states to occur within certain lake compartments and not within
others. Because shifts in such a lakewill occur at different times, the lake
as a whole will probably show a gradual response to eutrophication
stresses (Scheffer et al., 2012). In Lake Balaton, for example, a natural
narrowing in the lake prevents connectivity between the west and east
side of the lake. Though alternative stable states are unlikely to occur
in this lake, this narrowing leads to different eutrophic levels in different
compartments of the lake (Pálffy et al., 2013).
Conclusion

The unique combination of lake size, spatial heterogeneity and
internal connectivity determines the spatial extent of stable states in
large shallow lakes. At locations where size effects prevail, macrophytes
are generally absent and alternative stable states are unlikely to occur.
However, the occurrence of macrophytes is inexplicable when only
size effect is taken into account. By including spatial heterogeneity in
the analysis, the presence of macrophytes and alternative stable states
in large shallow lakes is better understood. Taking into account the in-
ternal connectivity is important in the evaluation whether the effect of
spatial heterogeneity is either offset (high internal connectivity) or pro-
moted (low internal connectivity).
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