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Abstract

Background: Monitoring terrestrial vegetation cover condition is important to evaluate its current condition and to
identify potential vulnerabilities. Due to simplicity and low cost, point intercept method has been widely used in
evaluating grassland surface and quantifying cover conditions. Field-based digital photography method is gaining
popularity for the purpose of cover estimate, as it can reduce field time and enable additional analysis in the future.
However, the caveats and uncertainty among field-based vegetation cover estimation methods is not well known,
especially across a wide range of cover conditions. We compared cover estimates from point intercept and digital
photography methods with varying sampling intensities (25, 49, and 100 points within an image), across 61
transects in typical steppe, forest steppe, and desert steppe in central Mongolia. We classified three photosynthetic
groups of cover important to grassland ecosystem functioning: photosynthetic vegetation, non-photosynthetic
vegetation, and bare soil. We also acquired normalized difference vegetation index from satellite image comparison
with the field-based cover.

Results: Photosynthetic vegetation estimates by point intercept method were correlated with normalized
difference vegetation index, with improvement when non-photosynthetic vegetation was combined. For digital
photography method, photosynthetic and non-photosynthetic vegetation estimates showed no correlation with
normalized difference vegetation index, but combining of both showed moderate and significant correlation, which
slightly increased with greater sampling intensity.

Conclusions: Results imply that varying greenness is playing an important role in classification accuracy confusion.
We suggest adopting measures to reduce observer bias and better distinguishing greenness levels in combination
with multispectral indices to improve estimates on dry matter.
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Background
Defined as “land covered with herbaceous plants with less
than 10% trees and shrub cover” (White et al. 2000), grass-
land is an important ecosystem which dominates much of
the global terrestrial ecosystem. Grasslands provide a wide
range of ecological services across the world, including
critical resources for nomadic livelihood, biodiversity, car-
bon storage, water and nutrient cycling, and soil erosion
protection (Mosier et al. 1991, White et al. 2000).
Unfortunately, grassland has been subject to large-

scale degradation, causing serious ecological and social
problems in various geographical regions. In northeast
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Asia, for example, serious social and ecological damages
are caused by intensive yellow dust phenomena, which
frequently originates from the degraded grassland in
Mongolia (Phadnis and Carmichael 2000, In and Park
2002). In Mongolia, overgrazing and drought conditions
have played a significant role in grassland degradation
(McCarthy 2001). Such conditions make the grassland
ecosystem more vulnerable to dzud, which occurs in the
severe winter following a suboptimal growing season,
resulting in high level of livestock mortality and social
instability (Fernández-Giménez et al. 2015).
Considering the importance of grassland ecosystem to

a wide range of human societies and ecological systems,
accurate monitoring of vegetation status in grasslands is
important. In representing grassland condition, quantify-
ing land cover type is one of the most widely used
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

https://core.ac.uk/display/81859908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s41610-016-0022-z&domain=pdf
mailto:dwko@kookmin.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ko et al. Journal of Ecology and Environment  (2017) 41:5 Page 2 of 11
indicators, through classifying and proportioning the
land cover in several categories such as vegetation, bare
ground, and water (Meyer and Turner 1994). One of the
most popular field methods to quantify land cover type
is the point interception method, due to its simplicity,
unbiasedness, and low cost (Canfield 1941, Ramsey
1979, Sutherland 2006). Point interception method is an
extremely efficient method, but the method is known to
underestimate cover types with uneven or patchy distri-
bution (Buckland et al. 2007). Another alternative is the
quadrats method, which estimates percent ground cover
within a quadrat divided into several cover classes, or
cover abundance scores, such as a Braun-Blanquet
method (Daubenmire 1959). However, the estimated land
cover is often known to be dependent upon the method
utilized, because of their sensitivity to plant size, growth
form, and crown density (Floyd and Anderson 1987).
Analyzing digital images acquired from the field can

be advantageous since the production of permanent im-
ages enables the researcher to reanalyze the data later on
with more advanced methods and softwares (Boyd and
Svejcar 2005). This method can be particularly helpful
since it can drastically reduce time spent in the field and
control surveyor-bias (Booth et al. 2005). A study based
on turf-grass dominated sites indicated that compared
with line intersect, digital photography analysis was able
to generate accurate results in much less time (Richardson
et al. 2001). Another study which compared digital photo
analysis and point intercept method also suggested
that the results between the two methods were simi-
lar when sufficient number of plots were combined
together (Booth et al. 2005).
Remote sensing technology is highly useful for system-

atic and long-term vegetation cover monitoring (Iverson
et al. 1989, Gemmell 1999, Turner et al. 2007, Yim et al.
2010). Through the use of various vegetation indices
(e.g., normalized difference vegetation index (NDVI)), it
can represent vegetation condition based on analyzing
the spectral characteristics of the grassland (Cui et al.
2011). However, the method still requires ground truth
data to validate its results. Moreover, studies have shown
that establishing consistent guidelines and understand-
ing the properties of field survey methods is critical in
improving proper integration of remotely sensed and
field-based data (Reinke et al. 2006). Considering sam-
pling density for the spatial scale of interest, and spatial
heterogeneity of the target vegetation type are some of
the important aspects to consider in deciding which
survey method to use.
Meanwhile, greenness (photosynthetically active com-

ponent) is not the only important factor in grassland
ecosystems. Due to the wide range of seasonal condi-
tions of temperature, precipitation, wind, fire, grazing,
and human management of rangeland, the amount of
dry matter on grasslands can provide valuable information
(Bradley and Mustard 2005, Guerschman et al. 2009). For
example, carbon and nutrient cycling, surface reflection,
soil erosion, land degradation, and phonology assessment
can all benefit from information on non-photosynthetic
biomass, which makes dry matter estimation a very im-
portant factor in evaluating the condition of grassland
ecosystem (Byambakhuu et al. 2010, Stoner et al. 2016).
In light of the information above, what should

researchers expect from a variety of field methods and
survey target components in grasslands under various
conditions? To answer this question, we compared per-
formances of three different grassland cover estimation
methods: field point intercept, digital photography analysis
with varying sampling densities, and NDVI acquired from
a remote sensing platform (MODIS) were compared.
We compared results for three ecosystem functional
components in grassland: photosynthetic vegetation,
non-photosynthetic vegetation, and bare soil. We also
explored the effect of various grassland conditions, by
comparing results across typical steppe, desert steppe,
and forest steppe in central Mongolia.

Methods
Study area
In this study, sites are distributed across the central part
of Mongolia, between the latitude of 48° 48′ 0.72″ to 45°
41′ 3.12″ N and longitude of 96° 50′ 56.88″ to 105° 50′
45.06″ E, within Tov, Arkhangai, Zavkhan, Bayankhon-
gor, and Ovorkhangai aimag (Fig. 1, Table 1). Central
Mongolian steppe zone can be roughly grouped into
typical steppe, forest steppe, desertified steppe, and des-
ert steppe based on the botanico-geographical groups
(Karamysheva and Khramtsov 1995). In this study, based
on the location and environment of the sites, three dif-
ferent steppe types were covered by the site locations:
forest steppe, typical steppe, and desert steppe. Central
Mongolian steppe is characterized by high elevation
(1043–1350 m) and sandy loam with abundant gravels,
with higher number of livestock compared to the eastern
Mongolian steppe (Hirobe and Kondo 2012). The central
Mongolian steppe covers a range of vegetation character-
istics and environmental conditions, dominated by various
grass and sedges (Stipa spp. and Achnatherum spp.), pea-
shrubs (Caragana spp.), and sages (Artemisia spp.).

Field survey
Survey for field data collection was conducted from July
16 to 25, 2013. A total of 61 transects across 28 sites
were surveyed (Table 1). All sites were chosen so that
none were close to a major road and at least several
hundred meters away from minor paths. Each site in-
cluded one to three line transects. Two methods for field
survey were adopted: (1) point intercept and (2) digital



Fig. 1 Map of Mongolia and the location of field survey sites
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photography. For both field surveys, one to three 30-m
parallel line transects were established, at least 30 m
away from each other. Five survey crew carried out the
survey, who were ecologists and botanists who had at
least graduate-level training.
For point intercept cover estimate, cover type was re-

corded at points at 1-m interval (30 points per transect
whenever terrain allows). For digital photography estimate,
digital photos of the surface was taken at 3-m intervals
(Samsung ES95, 16.1MP), total of ten photographs per
transect. Photos were taken at 1.2 m height, with the
photograph plane parallel to ground surface. Later, digital
images were cropped to cover approximately 2 m2 (164 ×
123 cm) of the surface area with the final resolution of
2304 × 1728 pixels. A total of 1529 points and 549 digital
photographs were collected.



Table 1 Site description and location of plots

Site Aimag Number of transects Latitude Longitude Eco-region

TO01 Tov 1 47° 52' 40" 105° 50' 45" Steppe

AR00 Arkhangai 2 47° 15' 43" 103° 19' 46" Forest steppe

OV01 Arkhangai 2 47° 15' 47" 103° 33' 47" Steppe

OV02A Ovorkhangai 3 46° 15' 17" 102° 47' 40" Steppe

OV02B Ovorkhangai 3 46° 15' 00" 102° 47' 00" Steppe

OV03A Ovorkhangai 3 46° 14' 15" 102° 49' 06" Steppe

OV04 Ovorkhangai 2 45° 48' 05" 101° 53' 40" Desert steppe

OV05 Ovorkhangai 2 45° 41' 42" 101° 40' 05" Desert steppe

OV06 Ovorkhangai 3 45° 41' 03" 101° 36' 37" Desert steppe

BA01 Bayankhongor 1 46° 13' 40" 100° 36' 37" Steppe

BA03A Bayankhongor 3 46°43'28" 99°49'21" Steppe

BA03B Bayankhongor 2 46° 43' 00" 99° 49' 00" Steppe

ZA03 Zavkhan 2 47° 10' 26" 97° 16' 59" Steppe

ZA04 Zavkhan 2 47° 19' 37" 96° 58' 20" Steppe

ZA05 Zavkhan 1 47° 22' 38" 96° 55' 37" Forest steppe

UL01 Zavkhan 2 47° 43' 03" 96° 50' 56" Forest steppe

TE01 Zavkhan 3 48° 48' 00" 97° 30' 32" Forest steppe

AR01A Arkhangai 3 47° 56' 25" 100° 38' 29" Forest steppe

AR01B Arkhangai 3 47° 56' 00" 100° 38' 00" Forest steppe

AR02 Arkhangai 2 47° 37' 50" 101° 04' 36" Forest steppe

AR03A Arkhangai 3 47°33'36" 101°00'10" Forest steppe

AR03B Arkhangai 3 47° 33' 00" 101° 00' 00" Forest steppe

AR04A Arkhangai 1 47° 27' 58" 101° 28' 53" Forest steppe

AR04B Arkhangai 2 47° 27' 00" 101° 29' 00" Forest steppe

AR06 Arkhangai 2 47° 29' 27" 102° 09' 05" Steppe

AR07 Arkhangai 2 47° 32' 12" 102° 14' 27" Steppe

AR08A Arkhangai 3 47° 49' 50" 102° 55' 37" Steppe

AR08B Arkhangai 3 47° 49' 00" 102° 55' 00" Steppe
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For both point intercept cover estimate, six major cat-
egories were initially used in the field to record plant
functional types as cover types at each point: grass, forb,
shrub, litter, bare soil, and rock. For the final analysis,
cover types were reclassified into functional groups
based on photosynthetic properties considering their im-
portance in representing a wide range of grassland con-
ditions (sensu Guerschmann et al. 2009). For comparing
cover estimates among field-based methods, photosyn-
thetic vegetation (PV) cover was estimated by combining
grass, forb, and half of shrub, and non-photosynthetic
vegetation (NPV) was estimated by combining litter and
half of shrub. Shrub cover was equally assigned to PV
and NPV, considering that it is a mix of photosynthetic
leaf part and non-photosynthetic woody part. Bare soil
and rock were combined to bare soil (BS). Potential
photosynthetic vegetation (PPV) was also calculated as
the sum of PV and NPV. Since remainder of PPV is BS,
we only estimated and analyzed the cover of PV, NPV,
and PPV based on the total point frequency assigned to
the corresponding cover types.
For the digital photography cover estimate, photo-

graphs were analyzed using the “SamplePoint” software,
which assists classifying individual pixels within a photo-
graph (Booth et al. 2006). We generated regularly
distributed crosshairs over each photographs to classify
the overlapping single pixels (Fig. 2). To consider the ef-
fects of sampling intensity in digital photograph method,
we used a variety of sampling intensities, by generating
25, 49, and 100 regularly spaced crosshairs in each
photography (5 × 5, 7 × 7, and 10 × 10 sampling points,
hereafter mentioned as SP25, SP49, and SP100, respect-
ively). Each pixel under the crosshair was classified into
six cover types following the same classification scheme
used for the field point intercept method and then was
reclassified into PV, NPV, and BS. PPV was also



Fig. 2 Example of crosshairs generated by SamplePoint software for estimating cover by field-based digital photography method
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calculated as the sum of PV and NPV. To ensure
consistency in classification, we adopted the following
measures: (1) all classifications were made on the same
computer-monitor set to maintain the visual characteris-
tics of the images and (2) before actual classification, ob-
servers spent 2 h together training on the same images.

Satellite imagery and NDVI estimates
In arid or semi-arid region, normalized difference
vegetation index (NDVI) is often used for the estima-
tion of green vegetation cover (Pickup et al. 1993,
Chen et al. 2006) and productivity (Chen et al. 2004,
Wang et al. 2004). NDVI is based on the spectral
properties generated by photosynthetic process: it
compares the ratio between visible red light, which is
strongly absorbed, and near-infrared, which is strongly
reflected by green vegetation. A variety of satellite
platforms provides spectral information to calculate
NDVI. In this study, we used MODIS (moderate reso-
lution imaging spectroradiometer) products for its
reliability of image acquirement in Mongolia espe-
cially considering the non-optimal sky conditions that
frequents the growing season (Jang et al. 2010). Spe-
cifically, the 16-day composite products (MOD13Q1,
250 m resolution) based on MODIS Level-2G (daily)
surface reflectance data with the acquisition date of
July 12–27 (2013) were acquired for the NDVI value.
NDVI from the corresponding pixel(s) for the study
sites was extracted from the images and then was
compared with point intercept and digital photog-
raphy cover estimates. For comparing NDVI and
field-based surveys, the field cover estimates of PV,
NPV, and PPV were used to evaluate how different
surface components, especially the dry matter, influ-
enced the fit against the spectral properties of NDVI
(Asner 1998, Booth et al. 2006).
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Statistical analysis
Cover estimates from point intercept and digital photog-
raphy method with varying intensity (SP25, SP49, and
SP100) were compared by calculating summary statistics
(mean, median, minimum, maximum, range, standard
deviation (SD), and coefficient of variation (CV)) and
conducting correlation analysis. Analysis of variance and
Tukey’s HSD test was also conducted to analyze differ-
ences between cover estimates of each method. For fur-
ther insight, field estimates were grouped by steppe
types for comparisons as well. NDVI estimates were
compared among steppe types by calculating summary
statistics, analysis of variance, and Tukey’s HSD test. For
comparison of field-based estimates against MODIS-
Fig. 3 Box plots of a–c PV cover estimates in each steppe type based on field
sites combined. Thick black line within the rectangle indicates median, rectangl
NDVI, correlation analysis was conducted. All statistical
analyses were conducted with R (version 3.2.1).

Results and discussion
Comparison of field-based cover estimates—point
intercept and digital photography
Both field-based mean and median estimates of PV,
NPV, and BS did not differ among field-based methods,
even when steppe types were considered (α = 0.01, Fig. 3,
Table 2). Considering PV estimates, differences were
only noticeable in desert steppe, but not significant
(α = 0.01, Table 2, Fig. 3a). Median of PV cover estimate
in desert steppe was 17.8, 29.6, 26.1, and 23.9% for point
intercept, SP25, SP49, and SP100, respectively, and range
-based methods, and d–e PV, NPV, and bare soil cover estimates of all
es are the interquartile range (IQR), and whiskers indicate 1.5 times IQR



Table 2 Summary statistics of PV, NPV, and BS cover estimates of steppe types and field-based methods

Cover type Steppe type Method Mean Median Min Max Range SD CV

PV Typical steppe PI 35.0 35.6 11.1 63.3 52.2 15.4 0.440

SP25 34.4 34.6 9.5 58.0 48.5 13.5 0.392

SP49 33.9 31.2 7.3 58.6 51.3 13.6 0.401

SP100 33.4 30.6 7.7 57.3 49.6 13.7 0.410

Forest steppe PI 40.3 43.3 15.6 73.3 57.8 18.1 0.449

SP25 39.9 41.6 21.6 56.8 35.2 10.1 0.253

SP49 38.5 40.0 18.4 57.6 39.2 11.6 0.301

SP100 37.5 37.7 18.1 62.9 44.8 12.9 0.344

Desert steppe PI 22.0 17.8 16.7 31.7 15.0 8.4 0.382

SP25 36.6 29.6 23.5 56.8 33.3 17.7 0.484

SP49 34.7 26.1 22.5 55.5 33.0 18.1 0.522

SP100 34.0 23.9 22.9 55.1 32.2 18.3 0.538

NPV Typical steppe PI 28.5 23.4 10.6 80.0 69.4 18.8 0.660

SP25 23.9 21.0 2.3 66.8 64.5 18.2 0.759

SP49 23.7 22.8 1.7 60.8 59.1 17.1 0.723

SP100 24.5 23.1 2.0 60.9 58.9 17.2 0.705

Forest steppe PI 28.2 30.0 0.0 70.0 70.0 23.5 0.833

SP25 21.9 20.3 7.2 39.2 32.0 11.4 0.521

SP49 23.1 19.9 5.1 44.7 39.6 14.0 0.607

SP100 24.5 24.6 4.4 45.4 41.0 13.8 0.563

Desert steppe PI 12.0 14.4 6.7 15.0 8.3 4.6 0.385

SP25 5.2 4.4 4.0 7.2 3.2 1.7 0.335

SP49 5.4 4.5 2.2 9.6 7.4 3.8 0.698

SP100 6.6 3.5 2.3 14.0 11.7 6.4 0.976

BS Typical Steppe PI 36.5 34.4 3.3 60.0 56.7 16.0 0.439

SP25 41.7 38.6 11.2 69.3 58.1 17.6 0.421

SP49 42.3 38.9 13.5 70.0 56.5 16.7 0.394

SP100 42.1 39.0 14.0 69.8 55.8 16.3 0.388

Forest steppe PI 31.5 27.7 8.9 80.0 71.1 19.9 0.632

SP25 38.2 39.2 21.5 59.6 38.1 11.6 0.303

SP49 38.4 37.3 22.1 56.7 34.6 11.0 0.286

SP100 38.0 35.1 23.1 54.6 31.5 10.6 0.280

Desert steppe PI 65.9 67.8 53.3 76.6 23.3 11.8 0.179

SP25 58.2 63.2 38.8 72.5 33.7 17.4 0.299

SP49 59.9 64.3 42.3 73.0 30.7 15.8 0.264

SP100 59.4 62.1 42.6 73.6 31.0 15.7 0.264
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was smaller in point intercept method (15.0%) compared
to digital photograph methods (32.2–33.3%) (Table 2).
This difference likely resulted from the sparse vegetation
conditions in desert steppe, which can penalize cover esti-
mates based on smaller sampling density (Milberg et al.
2008). This is a common issue, particularly for estimating
abundance of rare components in environments with high
level of spatial variability (Bergstedt et al. 2009, Burg et al.
2015). Overall, digital photography method seems to
retain its consistency regardless of sampling density across
most statistics in PV cover estimates.
Mean NPV cover estimates did not differ significantly

among field-based methods (α = 0.01, Table 2, Fig. 3b).
While most statistics were similar to each other in
typical steppe and forest steppe of NPV, the wider range
of point intercept method in forest-steppe sites with
extremely patchy or heterogeneous patterns of cover
conditions is noticeable. For example, site UL01 had very



Fig. 4 Scatterplot matrix and correlation coefficients of estimated
covers between cover types (a-c PV, NPV, and PPV) and field-based
methods. Lower left panels show scatterplots, and upper right panels
show correlation coefficients and significance levels (*p = 0.01;
**p < 0.001; ***p = 0)
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high bare soil cover but moderate PV cover, and none of
the points was able to capture the NPV present at site.
Meanwhile, in site AR04B, dominated by Alium spp.
with extremely fine leaves in both green and desiccated
state, field observations performed poorly in capturing
the fine-textured green cover and classified most of
them as NPV (70%), while detailed observation of digital
photograph method was capable of capturing the nu-
anced greenness and classifying them as PV (57–63%)
rather than NPV (4–14%).
In classifying BS, most estimates showed high agree-

ment, and mean cover estimates were not significantly
different from each other (α = 0.01, Table 2, Fig. 3c). It
seems that point intercept method had a relatively high
level of confusion in forest-steppe types as suggested by
its large range (71%), which occurred in sites with very
low or high level of NPV with finely textured vegetation
(UL01 and AR01A).
When all sites were combined and compared, mean

cover estimates of PV, NPV, and BS did not show signifi-
cant differences among methods (Fig. 3d–f ). Ranges from
point intercept method was relatively larger compared to
digital photography methods, suggesting that digital pho-
tography methods may ensure better consistency in cover
estimates. A number of studies pointed out the issue of
over- or underestimation of grassland cover from field
methods (Dethier et al. 1993, Fensholt et al. 2004). Dethier
et al. (1993) pointed out that point intercept method is
subject to over-estimating cover compared to photo
analysis, which is inherently constrained by the smaller
number of sample points at field. However, this did
not consistently apply to PV or NPV estimates in our
study in any of the steppe types. Moreover, PV esti-
mates from point intercept method in desert-steppe
sites was slightly higher than estimates from digital
photography method (Fig. 3).
Correlation analysis of PV, NPV, and PPV cover estimates

showed that digital photography methods were highly and
significantly correlated with each other (Fig. 4a–c). How-
ever, PV estimates of point intercept method were not cor-
related with estimates of any of the digital photography
methods (Fig. 4a). Interestingly, NPV estimates of point
intercept method were significantly correlated, although
moderately, with estimates of all digital photography
methods (Fig. 4b). These suggest that compared to NPV
classification, there is a higher level of disagreement in PV
classification between point intercept and digital photog-
raphy methods. This mismatch was dramatically reduced
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when correlation of PPV among field methods are consid-
ered, since estimates of PPV cover from all field methods
showed significantly high level of correlation (Fig. 4c). Such
confusion of grassland classification may be due to the leaf
angle distribution of dominant grass and sedge species, ac-
cumulating dry matter, or the overwhelming bare soil in
the background (Beck et al. 1990, Guerschman et al. 2009).

Comparison of field-based cover estimates and NDVI
NDVI estimates ranged from 0.14 to 0.50, with most
sites showing NDVI values between 0.2 and 0.4 (Table 3).
Forest- and typical-steppe NDVI estimates were signifi-
cantly higher than the desert-steppe NDVI (p < 0.01,
Table 3). Correlation analysis results indicate that PV
estimates of point intercept method had moderate and
significant correlation with NDVI (Fig. 4a). However,
none of the PV estimates from digital photography
methods were correlated with NDVI, and none of the
field-based NPV estimates were correlated with NDVI
(Fig. 4b).
When cover estimates of PPV (combination of PV and

NPV) were considered, all methods had moderate and
significant correlation with NDVI (p < 0.01, Fig. 4c). In
addition, for the point intercept method, correlation of
PPV estimates with NDVI slightly improved, compared
to the correlation of PV estimate with NDVI (Fig. 4a, c).
Results suggest that part of the NDVI-related spectral
signal can be traced back to PPV component identified
in the field-based methods.
Correlation between field methods and NDVI suggest

some important insights. General consensus among ob-
servers was that classifications of point intercept method
in the field were subject to greater confusion, because of
various field conditions experienced, such as time of day,
weather, livestock trampling and droppings, and obser-
ver conditions. However, results show that detailed
classification of digital photography method may have
underestimated PV component by limiting it to distinct-
ively green vegetation, while excluding partly green vege-
tation, and NPV included vegetation with a wide range
of greenness, from slightly desiccated plant materials to
very dry materials. In contrast, it is possible that point
intercept method included widely varying green compo-
nents, which was likely the reason why PV estimate
alone had significant and moderately high level of correl-
ation with NDVI. Theoretically, NDVI is intended to
Table 3 Summary statistics and comparisons of NDVI of each
steppe types (α = 0.01)

Steppe type Mean Median Min Max Range SD CV

Typical steppe 0.33 (a) 0.30 0.24 0.50 0.26 0.08 0.24

Forest steppe 0.35 (a) 0.34 0.30 0.44 0.14 0.05 0.14

Desert steppe 0.15 (b) 0.15 0.14 0.16 0.02 0.01 0.07
represent the photosynthetically active component in
the image by considering its characteristics in differential
absorption of red and near-infrared spectrum (Beck
et al. 1990). However, grassland ecosystems are subject
to a widely varying condition of greenness as influenced
by phenology and inter- and intra-annual variability
(Bradley and Mustard 2005). Therefore, identifying the
varying condition and abundance of green and dry mat-
ter is very important for evaluating the functional condi-
tion of grasslands which often cannot be decisively
classified as green or dry. For this reason, researchers
suggest that the use of cellulose absorption index (CAI)
in addition to vegetation indices (e.g., NDVI) for improv-
ing and enriching how surface vegetation components is
represented (Guerschman et al. 2009). Our study con-
firms that point intercept method at field alone can be
prone to errors since PV and NPV could not be easily
distinguished, and varying levels of greenness were likely
classified as PV. Therefore, evaluating how accurately
any of the field methods can distinguish dry matter is
subject to further studies by utilizing multispectral im-
ages to compare with the estimated CAI and ideally with
field method that can differentiate a more detailed grade
of greenness.
Moreover, scale and resolution of the data can be im-

portant factors when characterizing surface properties
(Turner et al. 1989). Although we carefully considered
homogeneity of surface properties as site selection
criteria, a single pixel from MODIS imagery (250 m
resolution) covered a spatial extent that is significantly
larger compared to field survey samples, including
greater heterogeneity to be represented in the NDVI
than we expected. This probably contributed to weaker
fit with the field-based cover estimates (Moody and
Woodcock 1995). Time scale can also be important,
considering the short growing season and the rapidly
shifting phenology of Mongolian grasslands (Boone et al.
2005). Since the 16-day composite NDVI was selected
for this study, such a time frame may include time-
driven phonological difference that may have influenced
the results.
Another important factor that may have confounded

the results is the observer’s bias. Two types of observer’s
bias are acknowledged: (1) bias caused by less-trained ob-
server, which can amplify within-observer variation and
(2) bias caused by inter-observer differences (Dethier et al.
1993, Bergstedt et al. 2009). For the field-based point
intercept method, in particular, we noted that mis-
recognition could be a significant factor, even with train-
ing sessions before each survey. This is especially true for
spatially heterogeneous surface or sites with very sparse
green vegetation against extensive bare soil background
during mid-day. Ultimately, bias-control is another factor
that a researcher must carefully examine as trade-offs



Ko et al. Journal of Ecology and Environment  (2017) 41:5 Page 10 of 11
among survey methods, in terms of time and labor cost,
scale-dependency, and vegetation characteristics. We sug-
gest a variety of measures to control the bias of observers
such as field training and consistency check among ob-
servers before the actual survey begins and for digital pho-
tography methods, ensuring the quality and consistency of
color and texture representation of visual devices (use
identical graphic card and monitor, with color specifica-
tions and resolution matched), co-training session for ob-
servers to ensure classification consistency, and diversified
greenness-levels for classification.
In our study, we suspect that the mismatch between

point intercept and digital photography method is a re-
sult of how varying range of greenness was treated, as
PPV of both methods showed meaningful relationship
with NDVI. Aside from this issue, it is notable that
greater sampling density in digital photography methods
of PPV estimates showed a slightly better fit against
NDVI (Fig. 4c). Fit of SP100 and SP49 was slightly better
compared to SP25, and there was no difference between
SP100 and SP49. Considering the trade-offs between
effort and performance, we propose that SP49 has the
potential advantage among all methods, given that the
confusion of greenness is alleviated, because of the
additional virtues of digital photography method:
quicker application in the field compared to point
intercept method, possibility of re-analysis in the fu-
ture when the need arises, and control over observers’
bias (Floyd and Anderson 1987, Boyd and Svejcar
2005, Booth et al. 2006).
Our study suggests the potential of digital photography

method to estimate vegetation cover. Digital photog-
raphy method showed potential for application to other
terrestrial ecosystems, such as forest or wetlands, and to
evaluate rapid changes due to disturbances such as
drought, grazing, or fire. This is especially relevant with
the advent of unmanned aerial vehicle (UAV)-based
digital photography for surveying and monitoring terres-
trial ecosystems that can further reduce field cost and time
(Rango et al. 2009, Cunliffe et al. 2016). While there are
numerous sophisticated methods to analyze massive
amount of images acquired from UAVs (Hervouet et al.
2011, Bollard-Breen et al. 2015), simple analysis of UAV-
acquired images that share common grounds with trad-
itional field survey methods, such as point intercept
method, proves to be useful in reconstructing and evaluat-
ing landscape change in the past and future.

Conclusions
Our study showed that when both PV and NPV were
combined, estimates from point intercept method (simul-
taneous field data and classification) and digital photog-
raphy method (photo taken from field and classification
later in the lab) showed moderate agreement against the
satellite-derived NDVI (R2 = 0.43 to 0.48, p = <0.01). Point
intercept method was more inclusive for a wider range of
greenness compared to digital photography method.
Greater sampling intensity of digital photography method
slightly increased its agreement with NDVI; therefore,
considering the efforts required, we suggest 49 points over
2 m2 is sufficient. Our study confirms the merits of point
intercept method, the simplicity and low cost, but also
suggests the potential of the digital photography
method because of the possibility of future re-analysis.
We suggest that incorporating a more explicit classifi-
cation scheme to differentiate greenness may improve
cover estimation results for both point intercept and
digital photography methods.

Abbreviations
BS: Bare soil; CAI: Cellulose absorption index; MODIS: Moderate resolution
imaging spectroradiometer; NDVI: Normalized difference vegetation index;
NPV: Non-photosynthetic vegetation; PPV: Potential photosynthetic
vegetation; PV: Photosynthetic vegetation; UAV: Unmanned aerial vehicle

Acknowledgements
This work was supported by the research grants from the Korea Forest
Service (S121414L090110) and the National Research Foundation of Korea
(NRF-201100009423). The authors wish to thank Dowon Lee, Reverend
Sungil, Jaebum Kim, and Wanhyuk Park for their assistance in field survey
and laboratory work. The field survey was completed under the permission
of the Mongolian Academy of Sciences.

Funding
This work was supported by the research grants from the Korea Forest
Service (S121414L090110) and the National Research Foundation of Korea
(NRF-201100009423). The role of the fund from Korea Forest Service was in
remote sensing data analysis and manuscript preparation. The role of the
fund from the National Research Foundation of Korea was in the field data
collection and initial analysis.

Availability of data materials
The data that support the findings of this study are available from the
corresponding author (DWK) upon reasonable request. The data are not
publicly available due to sensitive information regarding surface
information of the study area.

Authors’ contributions
DWK conceived of the study, led its design and coordination, drafted the
manuscript, collected and analyzed data and prepared results. DK participated
in data collection, classification and remote sensing analysis. AN designed and
guided the field survey and analysis methods. SK took part in the analysis and
drafting the discussions. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Forest Environmental System, Kookmin University, Seoul,
Republic of Korea. 2Institute of General and Experimental Biology, Mongolian
Academy of Sciences, Ulaanbaatar, Mongolia. 3Department of Environmental
Science, Kangwon National University, Kangwon, Republic of Korea.

Received: 7 October 2016 Accepted: 6 December 2016



Ko et al. Journal of Ecology and Environment  (2017) 41:5 Page 11 of 11
References
Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy

reflectance. Remote Sensing of Environment, 64, 234–253.
Beck, L. R., Hutchinson, C. F., & Zauderer, J. (1990). A comparison of greenness

measures in two semi-arid grasslands. Climatic Change, 17, 287–303.
Bergstedt, J., Westerberg, L., & Milberg, P. (2009). In the eye of the beholder: bias

and stochastic variation in cover estimates. Plant Ecology, 204, 271–283.
Bollard-Breen, B., Brooks, J. D., Jones, M. R. L., Robertson, J., Betschart, S., Kung, O.,

Craig Cary, S., Lee, C. K., & Pointing, S. B. (2015). Application of an unmanned
aerial vehicle in spatial mapping of terrestrial biology and human disturbance in
the McMurdo Dry Valleys, East Antarctica. Polar Biology, 38, 573–578.

Boone, R. B., BurnSilver, S. B., Thornton, P. K., Worden, J. S., & Galvin, K. A. (2005).
Quantifying declines in livestock due to land subdivision. Rangeland Ecology
& Management, 58, 523–532.

Booth, D. T., Cox, S. E., Fifield, C., Phillips, M., & Williamson, N. (2005). Image
analysis compared with other methods for measuring ground cover. Arid
Land Research Management, 19, 91–100.

Booth, D. T., Cox, S. E., & Berryman, R. D. (2006). Point sampling digital imagery
with “Samplepoint.”. Environmental Monitoring and Assessment, 123, 97–108.

Boyd, C. S., & Svejcar, T. J. (2005). A visual obstruction technique for photo
monitoring of willow clumps. Rangeland Ecology & Management, 58, 434–438.

Bradley, B. A., & Mustard, J. F. (2005). Identifying land cover variability distinct
from land cover change: cheatgrass in the Great Basin. Remote Sensing of
Environment, 94, 204–213.

Buckland, S. T., Borchers, D. L., Johnston, A., Henrys, P. A., & Marques, T. A. (2007).
Line transect methods for plant surveys. Biometrics, 63, 989–998.

Burg, S., Rixen, C., Stöckli, V., & Wipf, S. (2015). Observation bias and its causes in
botanical surveys on high-alpine summits. Journal of Vegetation Science, 26,
191–200.

Byambakhuu, I., Sugita, M., & Matsushima, D. (2010). Remote sensing of
environment spectral unmixing model to assess land cover fractions in
Mongolian steppe regions. Remote Sensing of Environment, 114, 2361–2372.

Canfield, R. H. (1941). Application of the line interception method in sampling
range vegetation. Journal of Forestry, 39, 388–394.

Chen, Z. M., Babiker, I. S., Chen, Z. X., Komaki, K., Mohamed, M. A. A., & Kato, K. (2004).
Estimation of interannual variation in productivity of global vegetation using
NDVI data. International Journal of Remote Sensing, 25, 3139–3159.

Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based
analysis of the relationship between urban heat island and land use/cover
changes. Remote Sensing of Environment, 104, 133–146.

Cui, G., Lee, W.-K., Kwak, D.-A., Choi, S., Park, T., & Lee, J. (2011). Desertification
monitoring by LANDSAT TM satellite imagery. Forest Science and Technology,
7, 110–116.

Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale
quantification of dryland vegetation structure with drone-acquired structure-
from-motion photogrammetry. Remote Sensing of Environment, 183, 129–143.

Daubenmire, R. (1959). A canopy-coverage method of vegetational analysis.
Northwest Science, 33, 43–64.

Dethier, M. N., Graham, E. S., Cohen, S., & Tear, L. M. (1993). Visual versus random-
point percent cover estimations: “objective” is not always better. Marine
Ecology Progress Series, 96, 93–100.

Fensholt, R., Sandholt, I., & Rasmussen, M. S. (2004). Evaluation of MODIS LAI,
fAPAR and the relation between fAPAR and NDVI in a semi-arid
environment using in situ measurements. Remote Sensing of Environment,
91, 490–507.

Fernández-Giménez, M. E., Batkhishig, B., Batbuyan, B., & Ulambayar, T. (2015).
Lessons from the dzud: community-based rangeland management increases
the adaptive capacity of Mongolian herders to winter disasters. World
Development, 68, 48–65.

Floyd, D. A., & Anderson, J. E. (1987). A comparison of three methods for
estimating plant cover. Journal of Ecology, 75, 221–228.

Gemmell, F. (1999). Estimating conifer forest cover with Thematic Mapper data using
reflectance model inversion and two spectral indices in a site with variable
background characteristics. Remote Sensing of Environment, 69, 105–121.

Guerschman, J. P., Hill, M. J., Renzullo, L. J., Barrett, D. J., Marks, A. S., & Botha, E. J.
(2009). Estimating fractional cover of photosynthetic vegetation, non-
photosynthetic vegetation and bare soil in the Australian tropical savanna
region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sensing of
Environment, 113, 928–945.

Hervouet, A., Dunford, R., Piégay, H., Belletti, B., & Trémélo, M.-L. (2011). Analysis of
post-flood recruitment patterns in braided-channel rivers at multiple scales
based on an image series collected by unmanned aerial vehicles, ultra-light
aerial vehicles, and satellites. GIScience & Remote Sensing, 48, 50–73.

Hirobe, M., & Kondo, J. (2012). Effects of climate and grazing on surface soil in
grassland. In N. Yamamura, N. Fujita, & A. Maekawa (Eds.), The Mongolian
Ecosystem Network: Environmental Issues Under Climate and Social Changes
(pp. 105–114). Japan: Springer.

In, H.-J., & Park, S.-U. (2002). A simulation of long-range transport of Yellow Sand
observed in April 1998 in Korea. Atmospheric Environment, 36, 4173–4187.

Iverson, L. R., Cook, E. A., & Graham, R. L. (1989). A technique for extrapolating
and validating forest cover across large regions calibrating AVHRR data with
TM data. International Journal of Remote Sensing, 10, 1805–1812.

Jang, K., Kang, S., Kim, J., Lee, C. B., Kim, T., Kim, J., Hirata, R., & Saigusa, N. (2010).
Mapping evapotranspiration using MODIS and MM5 four-dimensional data
assimilation. Remote Sensing of Environment, 114, 657–673.

Karamysheva, Z. V., & Khramtsov, V. N. (1995). The steppes of Mongolia. Braun-
Blanquetia, 17, 5–79.

McCarthy, J. J. (2001). Climate change 2001: impacts, adaptation, and
vulnerability: contribution of working group II to the Third Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge:
Cambridge University Press.

Meyer, W. B., Turner II, B. L. (1994). Changes in land use and land cover: a global
perspective. Cambridge: Cambridge University Press.

Milberg, P., Bergstedt, J., Fridman, J., Odell, G., & Westerberg, L. (2008). Observer
bias and random variation in vegetation monitoring data. Journal of
Vegetation Science, 19, 633–644.

Moody, A., & Woodcock, C. E. (1995). The influence of scale and the spatial
characteristics of landscapes on land-cover mapping using remote sensing.
Landscape Ecology, 10, 363–379.

Mosier, A., Schimel, D., Valentine, D., Bronson, K., & Parton, W. (1991). Methane
and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature,
350, 330–332.

Phadnis, M. J., & Carmichael, G. R. (2000). Numerical investigation of the influence
of mineral dust on the tropospheric chemistry of East Asia. Journal of
Atmospheric Chemistry, 36, 285–323.

Pickup, G., Chewings, V. H., & Nelson, D. J. (1993). Estimating changes in
vegetation cover over time in arid rangelands using Landsat MSS data.
Remote Sensing of Environment, 43, 243–263.

Ramsey, F. L. (1979). Parametric models for line transect surveys. Biometrika, 66,
505–512.

Rango, A., Laliberte, A., Herrick, J. E., Winters, C., Havstad, K., Steele, C., & Browning,
D. (2009). Unmanned aerial vehicle-based remote sensing for rangeland
assessment, monitoring, and management. Journal of Applied Remote
Sensing, 3, 33542.

Reinke, K., Reinke, K., Jones, S., & Jones, S. (2006). Integrating vegetation field
surveys with remotely sensed data. Ecological Management and Restoration,
7, S18–S23.

Richardson, M. D., Karcher, D. E., & Purcell, L. C. (2001). Quantifying turfgrass cover
using digital image analysis. Crop Science, 41, 1884–1888.

Stoner, D. C., Sexton, J. O., Nagol, J., Bernales, H. H., & Edwards, T. C. (2016).
Ungulate reproductive parameters track satellite observations of plant
phenology across latitude and climatological regimes. PloS One, 11,
e0148780.

Sutherland, W. J. (2006). Ecological census techniques: a handbook. Cambridge:
Cambridge University Press.

Turner, M. G., Dale, V. H., & Gardner, R. H. (1989). Predicitng across scales: theory
development and testing. Landscape Ecology, 3, 245–252.

Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change
science for global environmental change and sustainability. Proceedings of
the National Academy of Sciences, 104, 20666–20671.

Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2004). Relations between NDVI
and tree productivity in the central Great Plains. International Journal of
Remote Sensing, 25, 3127–3138.

White, R. P., Murray, S., Rohweder, M., Prince, S. D., & Thompson, K. M. (2000).
Grassland ecosystems. Washington DC: World Resources Institute.

Yim, J., Kleinn, C., Cho, H., & Shin, M. (2010). Integration of digital satellite data
and forest inventory data for forest cover mapping in Korea. Forest Science
and Technology, 6, 87–96.


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Study area
	Field survey
	Satellite imagery and NDVI estimates
	Statistical analysis

	Results and discussion
	Comparison of field-based cover estimates—point �intercept and digital photography
	Comparison of field-based cover estimates and NDVI

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

