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Statistics of cone responses to natural images:
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We gathered hyperspectral images of natural, foliage-dominated scenes and converted them to human cone
quantal catches to characterize the second-order redundancy present within the retinal photoreceptor array
under natural conditions. The data are expressed most simply in a logarithmic response space, wherein an
orthogonal decorrelation robustly produces three principal axes, one corresponding to simple changes in radi-
ance and two that are reminiscent of the blue–yellow and red–green chromatic-opponent mechanisms found in
the primate visual system. Further inclusion of spatial stimulus dimensions demonstrates a complete spatial
decorrelation of these three cone-space axes in natural cone responses. © 1998 Optical Society of America
[S0740-3232(98)02408-9]
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1. BACKGROUND
Theories of efficient coding in the visual system are of
much current interest.1–5 They all include the notion
that the visual system is optimally designed to process a
certain class of images—those that are found in the natu-
ral environment. The study of natural images has thus
ensued,6–11 with the ultimate goal of relating their prop-
erties to the function of the visual system. In the present
study we focus our attention on natural images as repre-
sented in the first stage of retinal processing, the photo-
receptor layer.

In this work we measure the spectral distributions of
light present in natural images by using a hyperspectral
camera,12–15 which provides a complete spectrum at each
pixel. We derive human cone responses at each spatial
location from the spectra, and from these we gather cone
response statistics for analysis. This approach is related
to that of Webster and Mollon,14 with the key difference
that whereas they contrast the differences between vari-
ous images, we study the ensemble statistics as averaged
over images.

Our results are qualitatively similar to those of Buchs-
baum and Gottschalk,16 who sought to understand theo-
retically, by using model stimuli, how the visual system
might decorrelate natural cone signals through an or-
thogonal linear transformation. They found that under
certain conditions this can be achieved through a trans-
formation to a luminancelike channel and a pair of blue–
yellow and red–green opponent channels. We will pro-
vide a related treatment that demonstrates decorrelation
by chromatic-opponent processing through the analysis of
data from the natural image itself rather than data from
a model.

In the present work we primarily focus on characteriz-
ing the cone response statistics themselves and not on
0740-3232/98/082036-10$15.00 ©
predicting how higher levels in visual systems might best
encode images. Although our results apply to other the-
oretical treatments of visual system function that include
the important limitations caused by noise (e.g., Refs. 4, 8,
and 17), we here consider primarily the redundancies
present within the photoreceptor array and how they
might be eliminated.

2. METHODS
Spectral images were captured by using an Electrim
EDC-1000TE camera with a resolution of 192 3 165
(horizontal 3 vertical) 8-bit pixels. Light reaching the
imaging CCD array was passed through an Optical Coat-
ing Laboratory, Inc., semicircular, variable-interference
filter with a wavelength range of 400–740 nm and a half-
bandpass typically of 15 nm at each wavelength. Wave-
lengths were selected under control of a portable com-
puter by using a stepping motor. In each scanned image
43 successive images were taken of each scene at 7–8-nm
intervals from 403 to 719 nm. A 16-mm lens (typically
operated at f/4 plus or minus one stop) was used to image
the scene onto the CCD, producing an angular resolution
of 0.047 deg 3 0.055 deg per pixel (horizontal
3 vertical). Comparisons among images collected at
different wavelengths showed no evidence of systematic
magnification or registration errors within the resolution
of the system. No corrections for optical or CCD-element
spatial filtering were made.

We attempted to select a diversity of typical foliage-
dominated scenes. Therefore images were collected in
several locations, including the vicinity of Baltimore,
Maryland (temperate woodland), and Brisbane, Australia
(sclerophyll forest, subtropical rain forest, and mangrove
swamp). Selected scenes contained numerous natural
1998 Optical Society of America
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objects, including leaf foliage, bark, rocks, herbs, streams,
bare soil, etc. In one corner of each imaged scene, a pair
of small, square reflectance standards was placed. Spec-
tralon 100% diffuse reflectance material (Labsphere) was
used as the white standard, and a nominally 3% spec-
trally flat diffuse reflector (MacBeth) was used as the
black standard. The actual reflectances of these objects
may have varied somewhat from that of the scene as a
whole, depending on their local illumination, but they
served as comparisons for the overall range of reflec-
tances in the scene itself.

In each imaged scene, exposure was individually deter-
mined at each wavelength to adjust the brightness of the
white standard to a level of 220–235 (of a possible 255).
In other words, the computer noted the value of the stan-
dard’s brightness and adjusted the exposure time accord-
ingly to the correct level. Exposures were typically 250–
5000 ms in length, and the time required for a complete
scan was typically approximately 3–5 min. As each data
frame was collected, the brightness levels of the white
standard and the black standard, as well as the exposure
time for each frame, were stored in a separate status file.

Once the series of 43 images was collected, a completely
opaque aperture was automatically placed in front of the
camera, and a series of images was collected with no illu-
mination to determine the level of dark noise for each ex-
posure series under the conditions of each individual data
set. The image series was then corrected by subtracting
each dark frame from each corresponding data frame in
succession. Each of the images was calibrated by using
the values of the small black and white standards mea-
sured therein. In the event of negative resulting inten-
sity values, the minimum uncalibrated image pixel was
used in place of the dark standard. The result is a series
of 43 images, each containing a reflectance map of the
scene at a given wavelength. A uniform-illumination
spectrum throughout the image is assumed in these mea-
surements. In fact, the images that we gathered did not,
in general, contain deep shadows, and no attempt was
made to correct for local variations in illumination.

We collected images of 12 such natural scenes and fur-
ther analyzed the central 128 3 128-pixel region. Each
of the (128 3 128 3 12 5 196,608) pixels was converted
to three theoretical cone responses as (lQ(l)R(l)I(l),
where Q(l) is the Stockman–MacLeod–Johnson cone
fundamental18 for the given cone type, R(l) is the mea-
sured image reflectance data, I(l) is the standard illumi-
nant D65 (which is meant to mimic a daylight
spectrum19), and the sum is over wavelengths repre-
sented in the spectrum. Our results depend only very
weakly on the choice of illuminant, so long as it is broad-
band. This procedure provides the cone response data
L(x), M(x), and S(x), proportional to the number of
quanta absorbed in an L, M, or S cone at spatial location
x within the image. The raw reflectance data for the 12
images are available through anonymous ftp at ftp://
ftp.sloan.salk.edu/pub/ruderman/hyperspectral/.

3. PHOTORECEPTOR RESPONSES AT ONE
POINT
Each of our image pixels contains three numbers: L, M,
and S. Two scatterplots of the data as projected onto the
L –M plane and the L –S plane are illustrated in Fig. 1
(data in the M –S plane look similar to those in the L –S
plane because of the large correlations present between L
and M signals).

The data show two expected trends. First, signals be-
tween all pairs of cone type are strongly correlated: The
data lie near the diagonals. This occurs because overall
fluctuations in light intensity will tend to increase all
cone responses simultaneously. Second, the correlation
between the L and M photoreceptors is much larger than
that between the L and S photoreceptors. This is prima-
rily due to the large overlap of the L- and M-cone spectral
sensitivities.

More surprising is the great deal of skew evident in the
receptor response distributions. Since the mean of each
response has been normalized to unity, the average of the
distributions is at the coordinates (1, 1), which appears
toward the lower left corner of the data clouds. The dis-
tributions are thus highly asymmetrical. Essentially, an
identical amount of information to that present through-
out the upper right area of the plots is compressed into
the restricted space at the lower left.

A. Choosing a Coordinate System
Before proceeding with the analysis, we considered two
compelling reasons for expressing our data in an im-

Fig. 1. Scatterplots of (top) L-versus-M and (bottom) L-versus-
S data from 1000 pixels chosen at random from the image data
set. The distributions show a high degree of correlation and
asymmetry. Values are scaled so that the mean along each axis
is 1.
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proved space. First, the data show marked lack of sym-
metry. In other words, the intrinsic scale of a small vol-
ume of space changes systematically with location; many
more data points occupy a given area near the origin than
the same area further from it. Spreading out the data
near the origin and compressing those away from the ori-
gin would tend to reduce this effect. Second, the space of
relative photon catches necessarily includes only positive
numbers, restricting the data to one octant of the space.
Negative-going fluctuations from the mean thus have fi-
nite extent, whereas positive-going ones can have infinite
extent. This lack of symmetry is inherent in the space
rather than in the data.

A logarithmic transform will serve to improve greatly
the coordinate space. First, the data will no longer be
confined to only positive values. Second, the squeezing of
data near the origin and its long-tailed extension at large
values will both be remedied. We soon show that this im-
provement in symmetry is quite dramatic. Although a
logarithmic transformation can be justified solely on the
basis of an improvement of the data’s appearance, it can
also be related to results from psychophysics. The
Weber–Fechner law states that uniform logarithmic
changes in stimulus intensity tend to be equally detect-
able (see, for example, Ref. 20). Thus in a logarithmic
space the perceptual noise level is uniform throughout.
This law, however, does not hold universally (especially
for small stimuli), so its role as a motivating factor for a
logarithmic transformation is somewhat less than that of
simply improving the data’s symmetry.

The coordinate transformation is as follows. Each of
the three quantal catches of a given image is converted to
a logarithmic signal (base 10), whose mean is subtracted
away:

L 5 log L 2 ^log L&,

M 5 log M 2 ^log M&,

S 5 log S 2 ^log S&. (1)

Here L is the new logarithmic signal for L, and ^log L& is
the mean of log L over the image. By subtracting the
mean, we are able to assess the responses without regard
to an overall illumination level. This is analogous to a
von Kries adaptation procedure, where each cone’s set of
responses is normalized independently.19 Statistics of
log-transformed natural images have been previously
analyzed,9,10 and are known to have second-order statis-
tics similar to those of linear images.21

B. Rotation to Decorrelated Axes
In fixing the axes of the new logarithmic space, we con-
sidered only orthogonal transformations, rather than a
more general linear transformation. This preserves the
space’s metric, which now has a fundamental meaning in
terms of Weber thresholds. In a space whose axes have
arbitrary scales, a more general transformation could
equally well be applied.

Specifically, we took advantage of the benefits of de-
correlation, which roughly means that an oblong data set
is aligned along the coordinate system’s axes. Data that
are spherically distributed or that contain complicated
structure are not so simply described, and decorrelation
implies merely that there is no linear trend present in the
data as plotted against any pair of axes. That is, if xi is
the ith coordinate of a data point where the axes are not
correlated, then

^xixj& 5 s i
2d ij , (2)

where ^•& is an ensemble average and s i is the standard
deviation of the data as projected onto the ith axis. Such
an orthogonal transformation is a standard data analysis
technique known as principal-components analysis.22

This analysis also offers us some conceptual advan-
tages. For instance, if the data occupy a compact cloud,
without holes, then it may be reasonable to model them
as a linear combination of uncorrelated sources. So in
the original space whose axes are yi , we can express any
data point as

yi 5 (
j51

N

Ai jxj , (3)

where A is the mixing matrix and N is the dimensionality
of the space. The columns of the A matrix then have
meaning as the basic directions of fluctuation within the
data. If the data instead occupy the space sparsely, then
higher-order correlations are implied between the x ’s,
making the intuition less complete. Our data are of the
former character, as we show in Subsection 3.C.

The analysis is straightforward and gives approxi-
mately the following three orthonormal principal axes:

l̂ 5
1

A3
~L̂ 1 M̂ 1 Ŝ!,

â 5
1

A6
~L̂ 1 M̂ 2 2Ŝ!,

b̂ 5
1

A2
~L̂ 2 M̂!, (4)

where L̂, M̂, and Ŝ are the unit direction vectors in the
logarithmic cone response space. The actual coefficient
values correspond very closely to these integer values and
are shown in Table 1. Note that these axes are precisely
those suggested as a convenient set by Flanagan et al.23

(in an appendix). The standard deviations of the data
along each of the three axes are s l 5 0.353, s a

5 0.0732, and s b 5 0.00745, a ratio of 47:9.8:1. These
resulting principal axes and standard deviation ratios are
largely insensitive to image rescaling, as has been found
previously for other statistics of natural images.10,14

C. Interpretation of the Result
The three axes that we find have surprisingly simple
forms: They sample the axes in the original cone space
in integer ratios. Furthermore, their particular direc-
tions have easily interpreted meanings. The l axis, for
instance, measures equal logarithmic fluctuations in all
three cone catches, such as would occur when the scene’s
radiance changes solely in magnitude. This direction is
commonly referred to as achromatic and is the type of
fluctuation that dominates natural images: The light
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level can vary widely from areas of bright illumination to
those in shadow. Not surprisingly, it is the direction of
largest variance.

The two other axes are also interesting. Both combine
the cone signals in an opponent fashion. The a direction,
with the larger variance, opposes an average of the L and
M signals against S. This is reminiscent of the blue–
yellow opponent mechanism well known in both the
physiology24–27 and the psychophysics23,28–30 literature,
where short-wavelength signals are opposed to long-
wavelength ones. However, these chromatic mecha-
nisms are not uniquely defined and often depend on the
type of experiment performed; see Refs. 31 and 32 for re-
views. Finally, the b direction simply opposes the L- and
M-cone signals, acting as a red–green channel, which is
the other fundamental primate chromatic mechanism.
Projecting these principal axes onto the isoluminant
plane (L 1 M constant) gives the principal axes S and
(L 2 M)/A2, showing that isoluminant fluctuations in
S-cone responses are decorrelated with red–green fluc-
tuations. Note that the standard deviation of the red–
green axis is only 0.00745 log units, which corresponds to
a rms fluctuation of approximately 1.7%. L- and M-cone
responses are very highly correlated indeed.

These measurements are all relative to the mean val-
ues subtracted from the cone responses at the start [see
Eqs. (1)]. Means corresponding to the chromatic chan-
nels take average values over the 12 images of ^^a&&
5 0.342 and ^^b&& 5 0.044. A uniformly reflecting patch
under illuminant D65 gives corresponding values of a
5 0.178 and b 5 0.041. Thus our average foliage

scenes are, not surprisingly, much more yellowish and
somewhat more greenish than this nominally gray reflec-
tor. Of more importance, however, are their standard de-
viations, which are s ^a& 5 0.059 and s ^b& 5 0.0059.
These are comparable with the size of fluctuations within
individual images. Under our fixed but artificial illumi-
nant, the ‘‘gray-world’’ hypothesis—in which the average
chromaticity of scenes is expected to be nearly constant—
appears to fail. The von Kries type of adaptation that we
have employed has thus been important to our compari-
son of chromatic fluctuations between different images.

The data are shown plotted in the logarithmic space in
Fig. 2. Note first that the distributions are both highly
elongated and compact in each of the three scatterplots.
The orthogonal transformation has aligned the data’s
long dimensions with the coordinate axes. Also, since
the data are compact and dense, considering them a lin-
ear superposition of independent—rather than just
decorrelated—sources is not a bad approximation (this

Table 1. Three Principal Axes for Image Pixels
Expressed in the (L,M, S) Basis and the

Standard Deviations of the Data As Projected
onto These Three Axes

Vector a L M S s

A3l 1.004 1.005 0.991 0.353
A6a 1.014 0.968 22.009 0.0732
A2b 0.993 21.007 0.016 0.00745

a These vectors correspond very closely to those of Eqs. (4).
will not apply to some other statistics of natural images,
which are known not to be produced through linear super-
position).

Note that the data are distributed far more symmetri-
cally in this new space than in the original, linear cone
response space. One implication of this symmetry is that
the choice of logarithmic coordinates has allowed us to
achieve a degree of independence higher than the second
order that we originally demanded. To demonstrate this,
we have plotted the data in the original linear space in
Fig. 3. Here again an orthogonal decorrelation results in
an achromatic axis and two chromatic-opponent axes that
are very nearly those of Eqs. (4), except acting on L, M,
and S of the original space. The figure shows a scatter-
plot of the data in the l –a plane. Although the data are
aligned to these axes, a symmetry along the l axis is en-

Fig. 2. Scatterplot of 1000 data points randomly selected as pro-
jected onto principal-axis pairs: (top) a versus l, (middle) b ver-
sus l, (bottom) a versus b. Note that the axes within each plot
have the same scale, but the scales may change between plots.
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tirely lacking. As l gets larger, so does the variance, or
spread, of the data along the a axis. This higher-order
dependence—between the variance of one variable and
the value of another (a third-order correlation)—is absent
in the logarithmic data. Since the logarithmic coordinate
system seems naturally symmetrical, in a simple sense
these coordinates are more fundamental than the origi-
nals. In Fig. 4 we further show the marginal distribu-
tions of the data as plotted along the l, a, and b axes in
the logarithmic and original linear spaces. The figure
demonstrates the much more nearly Gaussian and sym-
metrical distributions found in the logarithmic space.

In summary, orthogonally decorrelating our cone re-
sponse data in a logarithmic space provides the following:

1. A set of three principal axes that encode fluctua-
tions along an achromatic dimension, a yellow–blue oppo-
nent direction, and a red–green opponent direction.

2. A representation of the data that is compact and
symmetrical.

3. An automatic decorrelation to higher than second
order, unlike what we find in the original linear space.

4. INCLUSION OF SPATIAL DIMENSIONS
The preceding development has given us insight into the
statistical structure of cone responses when viewing one
location within an image. To extend our understanding
to the spatial structure of cone responses across the
retina, we now consider cone responses at different spa-
tial locations in our statistics.

In such an analysis the dimensionality of the signal
space increases as three times the number of pixels. A
high-dimensional space requires vast amounts of data for
statistical validity, so we limit ourselves to the relatively
modest 27 dimensions of a 3 3 3-pixel lattice. By way of
analysis we simply find the principal axes of such patches
in our data set (nearly 2 3 105 of them) in the logarith-
mic coordinate system.

Fig. 3. 1000 datapoints selected at random as decorrelated in
the linear (L, M, S) space, projected along the l and a axes
(roughly equal to those of the logarithmic space). The standard
deviation along the a axis is approximately proportional to l
(data not shown), representing a third-order correlation in the
data. These data have been normalized to unit variance along
both axes.
A. Orthogonal Decorrelation of Spatiochromatic
Signals
As in Section 3, the result of the decorrelation is an or-
thogonal set of axes and the associated variances of the
data along each of these axes. It is impossible to visual-
ize fully either the data or the axes in this 27-dimensional
space, so the presentation represents the principal axes
as color-coded 3 3 3 image patches. They are shown in
Fig. 5, where gray levels denote fluctuations in the achro-
matic, or l, direction, blue–yellow coloration denotes the
a direction, and red–green coloration denotes the b direc-

Fig. 4. Marginal distributions of our data along the three prin-
cipal axes: (top) l axis, (middle) a axis, (bottom) b axis. Loga-
rithmic space data (solid curves) and linear space data (dotted
curves) are shown together for comparison. The dashed curves
are unit-variance Gaussian distributions (all data have been re-
scaled to unit variance).
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tion (see the figure caption for details). The 27 principal
axes are presented from left to right and top to bottom in
order of decreasing projected signal variance.

These axes show striking regularities. First, although
nothing in the analytical approach prevented it, no pixels
within these patches appear as anything other than the
primary gray, blue–yellow, or red–green colors described
above. Purple or orange do not appear at any location,
for instance. In other words, in these new principal axes
no mixing of the previous l, a, and b axes is found. Fur-
thermore, within any one patch there are only colors cor-
responding to a single one of these axes (or medium gray,
which represents the origin). This is emphasized in Fig.
6, which shows the squares (variances) of the projections
of each of the axes along the three principal directions.
In each case nearly all of the projection is along a single
cone-space axis. Thus the result for single pixels holds
even when the space is greatly expanded to include 27 to-
tal dimensions. The l, a, and b axes remain fundamen-
tal.

The overall structure of the principal axes can be sum-
marized as follows. For each of the principal directions
in cone space, there are nine associated spatial dimen-
sions. These dimensions are decorrelated through a
nearly stereotypical set of principal axes, which are re-
peated for each cone-space direction. The spatial axes
are largely symmetrical, and as the eigenvalue (variance)

Fig. 5. Principal axes of 3 3 3-pixel chromatic patches ar-
ranged in order of decreasing eigenvalue from left to right and
top to bottom. The color values (R, G, and B) for each pixel in
this image were determined from the L,M, and S coordinates of
each element through a direct linear correspondence [e.g., R
5 b128(L 1 1) c, giving a range of 0–255]. For instance, a com-
ponent that extracts only L-cone responses would contain pixels
that range from reddish (R 5 255; G,B 5 128) to cyan (R 5 0;
G,B 5 128).
falls within any one class (i.e., l, a, or b), the spatial pat-
terns take on more high-frequency detail. This is in fact
what we expect from a translation-invariant ensemble
such as natural images: Principal-components analysis
is achieved through a Fourier transform. (Since we have
a finite number of pixels, this statement is only approxi-
mate.) The fact that higher-spatial-frequency components
have smaller variances corresponds well with the ubiqui-
tous finding that power spectra of natural image en-
sembles are decreasing functions of spatial frequency
(e.g., Refs. 7–9 and 11). Note also that, in general, the
overall order of the variances decreases from l to a to b,
just as in the single-pixel case.

B. Understanding the Result
What does this statistical structure reveal? Simply put,
the three spatial signals l(x), a(x), and b(x), with x the
spatial position, are entirely decorrelated with one an-
other. This is true not only at a single pixel but at neigh-
boring and presumably distant pixels as well. When
moving from three to 27 dimensions, any spatial struc-
ture could have arisen, but in fact the simplest possible

Fig. 6. Histograms showing the fraction of energy within each
principal component, which represents each of the three princi-
pal axes (l at left, a at center, b at right). Each bar can range
from 0 to 1 in value, a value of 1 meaning that all the energy re-
sides along that single principal axis. The histograms show that
all of the 27 components essentially lie along only a single axis.
The numbers below the histograms are the component number
and its eigenvalue (variance) in parentheses.
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one did. Natural cone responses can be thought of (at
least to second order) as arising from three uncorrelated
spatial processes that are superposed. This lack of cor-
relation between spatial and chromatic dimensions has
been previously indicated by van Hateren33 (in the appen-
dix) and Webster and Mollon.14 It can be illustrated by
presenting a natural image that has been dissected into
these three fundamental components.

Figure 7 shows an image patch from one of our scenes
together with its threshold projections onto the l, a, and b
axes. For simplicity they are shown in white–black,
yellow–blue, and red–green, respectively, where the
threshold for each has been set to zero and the first
named color of each pair corresponds to positive fluctua-
tions. That these signals are decorrelated is reflected in
the fact that the color in any one of the three thresholded
images does not predict the color at the same location in
either of the two others. Even though many of the most
distinct changes occur across such well-defined locations
as branch borders, the direction of the achromatic or
brightness change, for instance, does not tell us how ei-
ther blue–yellow or red–green will change at the same
border. Note also that the structure in the chromatic
channels seems to better betray the locations of object
borders than does the achromatic image; changes in the
latter are often dominated by variations in the illuminant
rather than in reflectivity.

Finally, it should be noted that although the image val-
ues in the (l, a, b) axes are uncorrelated, this does not
mean that they are entirely independent. They simply
do not linearly predict one another. Clearly, object bor-
ders locate large absolute changes in all three values but
not in predictable directions. A simple nonlinear trans-
formation, such as squaring the differences across object
borders, will show much more marked correlations.

Fig. 7. Image from our data set (upper left) and its thresholded
projection onto the three principal axes: l (upper right), a
(lower left), b (lower right). The spatial patterns in each of
these three projections are completely uncorrelated with one an-
other.
Large changes in one coordinate across location may pre-
dict large changes in the other coordinates, but this does
not imply that they are linearly correlated.

C. Three Spatial Processes
A close inspection of Fig. 5 reveals that within any one
cone-space class the sequence of spatial patterns of the
principal axes in order of decreasing eigenvalue is identi-
cal. This suggests a very simple mechanism at work:
Each principal axis is the product of a cone-space vector
and a spatial vector. As such, each would take the form

pmn~a, i ! 5 cm~a !sn~i !, (5)

where pmn(a, i) is the principal axis associated with in-
dices m and n (m ranging from 1 to 3 and n ranging from
1 to 9). The variables a and i are cone-space and spatial
dimensions, respectively. Finally, the vectors cm and sn
are the principal cone-space axes (l, a, or b) and the spa-
tial frequency (Fourier-like) patterns, respectively. This
form represents the overall spatiochromatic signal as the
product of two uncorrelated signals, one spatial and the
other chromatic.

If the above is true, then the variances associated with
each axis should also take the form of a product:

s mn
2 5 s c

2~m !s s
2~n !, (6)

where s mn
2 is the variance along the principal axis in-

dexed by m and n, s c
2(m) is the variance along the mth

principal axis of the cone-space process, and s s
2(n) is the

variance along the nth principal axis of the spatial pro-
cess.

We have strong reason to believe the form of Eq. (6). It
can be shown that scale invariance of the image data set
combined with translation invariance requires it.34 To
test the hypothesis, we examined the variances of the
three cone-space channels as a function of the spatial pat-
tern number (from 1 to 9). Figure 8 displays these on a
semilogarithmic scale, so that for the hypothesis to be
true the curves should be shiftable vertically into one an-
other. The a and b chromatic axes obey the relationship

Fig. 8. Normalized variances along the principal axes in each of
the three principal cone-space directions: l (solid curve), a
(dashed curve), b (dotted curve). The order of the nine axes is as
they appear in Fig. 5. The a- and b-eigenvalue spectra are
nearly identical. The spectrum of l eigenvalues, which does not
compare relative photon catches, differs significantly.
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very well. But this is not so for the l axis, which shows a
greater falloff with pattern number (spatial frequency).
A similar circumstance is seen from the spatial power
spectra of our images as projected onto the three principal
cone-space axes (data not shown), where the two chro-
matic axes have an identical spectral shape and the l-axis
spectrum decreases more steeply at high spatial fre-
quency (they are more alike at the lower frequencies not
represented in our 3 3 3 patches).35 We suspect this to
be a consequence of spatial filtering within the optical
system, which manages to cancel out when logarithmic
images are differenced (as in the chromatic axes).

5. DISCUSSION
Our main result is that there are three special directions
in logarithmic cone response space along which natural
response data are robustly decorrelated. Interestingly,
these directions have a simple meaning: One varies in
response to illumination changes (such as when leaves on
a tree all face slightly different orientations relative to the
incident sunlight), and the two others embody a blue–
yellow and a red–green opponency. A further examina-
tion of spatial dimensions reveals that these three cone-
space directions are entirely spatially uncorrelated with
one another in natural, foliage-dominated scenes such as
ours.

Could these results follow directly from the spectral
tuning curves of the photoreceptors, with little or no in-
fluence of the spectra of natural images? To find out, we
followed the approach of Buchsbaum and Gottschalk,16

assuming an average radiance spectrum I(l) that is flat
(i.e., equal power per unit wavelength) and that has un-
correlated fluctuations [i.e., ^dI(l)dI(l8)& 5 Ad (l
2 l8), with A being some constant]. Thus all the corre-
lations present in the resulting cone responses will be due
solely to their spectral overlaps. If the signal is taken as
the fractional changes in cone response relative to its
mean, then an orthogonal decorrelation yields the three
channels and variances shown in Table 2. These are
qualitatively similar to the principal axes found for loga-
rithmically transformed data from real images. One axis
responds to same-sign fluctuations in all cone types, one
opposes the S cone to the average of the L and M cones,
and one opposes L and M cones with little S-cone influ-
ence. Thus, in a qualitative sense, the three principal di-
rections that we find can be predicted from the spectral
tunings of the receptors (assuming well-behaved statistics
for the incident spectrum), consistent with the general
findings of Buchsbaum and Gottschalk.16

Nevertheless, the two sets of results have significant
quantitative differences. First, the coefficients of Table 2
are not as nearly integer; the deviations are now larger.
More importantly, the relative variances of the three
channels are quite different; in particular, the two largest
have nearly equal standard deviation (Table 2, last col-
umn), in contrast to the fivefold ratio obtained by using
natural images. Furthermore, none of the higher-order
statistics, such as skew and the marginal histograms of
Fig. 4, are available in this simple approach. The use of
natural images is necessary both to understand how each
channel may contribute to the overall spectral informa-
tion in the scene and to learn how spatial and spectral
distributions are organized in the visual world.

Although it is tempting to take these results as predic-
tions of how neurons in the visual pathway should opti-
mally respond to images, we do not advocate so basic a
task as orthogonal decorrelation for any stage of visual
processing. Rather, we have set out simply to character-
ize the correlational relationships present in the signal
responses themselves. A direct comparison with visual
processing is made difficult. Most current models of op-
ponent processing are linear, and there is little evidence
for a truly logarithmic transformation within the visual
pathway.

Furthermore, chromatic and spatial processing in pri-
mate vision does not neatly separate information into mu-
tually decorrelated pathways. Although the primate vi-
sual pathway is roughly divided into a luminance, or
magnocellular, pathway and a color, or parvocellular,
pathway containing chromatic opponent neurons, they
are not completely segregated. For example, parvocellu-
lar lateral geniculate nucleus neurons that are red–green
opponent at low spatial frequencies show marked lumi-
nance responses at high spatial frequencies.32 This basic
character of result has been predicted by the theory of
Atick et al.,36 who include the effects of noise and the de-
sire for equalized channel variance among neurons (see
also the approach of Derrico and Buchsbaum37). Al-
though our data are not meant to be predictive of neural
function in and of themselves, they may be straightfor-
wardly applied to theories of visual system design requir-
ing second-order statistics of natural images.

In comparing our results with those of Buchsbaum and
Gottschalk,16 note first that ours derive from natural im-
age data rather than the spectral white-noise model that
they employed (although the later results of Moorhead
showed that their transformation is similar to those de-
rived from actual data38). Buchsbaum and Gottschalk
showed that one generically expects to find chromatic op-
ponency when orthogonally decorrelating cone responses.
Moorhead38 and Webster and Mollon14 demonstrated that
the precise form of the result depends strongly on which
particular image is analyzed. Ours, applied to an entire
ensemble of logarithmic data, is a simple transformation
with near-integer values and two chromatic-opponent di-
rections.

It is not entirely clear why one should be restricted to
an orthogonal, rather than a more general, linear trans-

Table 2. Three Principal Axes in Linear Cone
Response Space Assuming a Spectral

Distribution That Is Equal Energy on Average
and Has White-Noise Fluctuations That Are

Independent at Each Wavelengtha

Vector L M S s

A3l 0.999 1.111 0.876 1.10
A6a 0.902 0.854 22.111 0.965
A2b 1.032 20.966 0.050 0.0218

a Each cone-space axis (L, M, and S) has first been rescaled by its
mean before decorrelation. Note the similarity to Table 1, the result for
natural image data in a logarithmic space.
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formation. In our case logarithmic space has a specific
meaning in terms of fractional signal fluctuations. Fur-
ther, maintaining this space’s metric through the trans-
formation requires it to be orthogonal. Buchsbaum and
Gottschalk’s restriction seems arbitrary, unless the par-
ticular gains used in their L-, M-, and S-cone spectral
sensitivities have some special physiological meaning.
In fact, their receptor primaries are those of Vos and
Walraven,39 where the gain factors are chosen to repre-
sent relative contributions to the psychophysical lumi-
nance function. Although this is relevant from the psy-
chological viewpoint, it is not necessarily fundamental to
the cone responses themselves. It would be interesting
to see the result of a more general linear decorrelation,
which would have a continuum of solutions rather than
just one. We take this as a broader lesson: When ap-
plying principal-components analysis to a data set, one
should have sufficient reason (such as a desire to preserve
the metric) for excluding the larger class of nonorthonor-
mal solutions.

In the logarithmic space it is also unclear whether uni-
form axis scaling is appropriate. It is known, for in-
stance, that the Weber fraction for S cones is larger than
that for L and M cones.40 It might be sensible, therefore,
to squeeze the S axis to reflect its ability to encode fewer
levels of information, a refinement that would no doubt
alter our results. This approach is taken by Webster and
Mollon,14 who scale their axes relative to the detection
thresholds. We deliberately avoided consideration of
noise as an undue complication to our treatment, since in
estimating noise levels it is necessary to assume a par-
ticular receptoral integration time. Furthermore, the
space that we used has a basic meaning in terms of frac-
tional fluctuations in photon capture, which offers an in-
tuitive and physical understanding. A more physiologi-
cal approach to the data would include an accurate
treatment of photoreceptor noise. In any case the princi-
pal axes that we find depend crucially on our choice of
uniform logarithmic axis scaling.

Another limitation of our approach is an unrealistic
spatial model of photoreception. For example, the retina
does not have equal numbers of the different cone types,
with the L and M cones far outweighing the S cones, es-
pecially in the fovea.41 Also, chromatic aberration pre-
vents the short-wavelength signals from achieving the
same contrast as that of long-wavelength ones. This will
tend to reduce the contrast of the signals along our a axis,
possibly altering the resulting principal axes. These are
obvious directions for further exploration.

Webster and Mollon14 found a large variation in cone
response distributions to different images. We present
only a single distribution, which is an average over many
images, similar to Webster and Mollon’s Fig. 3. Our in-
dividual images also show significant variability in their
distributions as well (data not shown), but, when aver-
aged, they produce one that is localized and continuous
(Fig. 2). Two differences in the approaches limit our abil-
ity to make a comparison. First, we plot data in a loga-
rithmic space, which is not linearly related to theirs; thus
a straightforward comparison does not have a simple in-
terpretation. Second, and perhaps more important, the
two image ensembles studied are quite different.
Whereas theirs includes panoramic scenes including sky,
ours concentrates on foliage. We have replicated their
finding that the largest chromatic fluctuations are along a
blue–yellow axis. We expect this effect to be even more
dominant in their images, as they include blue sky, which
we have avoided. Although the question of which scene
type to select for analysis remains open, it is clear that
various choices will have much larger effects on chromatic
statistics than on spatial ones, which seem to be nearly
universal.21

Finally, these data inform us about typical cone re-
sponse fluctuations. The L and M cones, for instance,
differ in their photon capture rates by only a couple of
percent over the spatial scales that we sampled (up to ap-
proximately 0.05 deg). Thus visual judgments based on
this cone difference signal will be reliable only under con-
ditions of high photoreceptor signal-to-noise ratios or with
considerable spatiotemporal averaging. Nevertheless,
these small L –M signals may be critically significant to
foraging primates,42 which suggests why these cones have
substantially lower Weber fractions than that of the
S-cone class.40
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