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Abstract

We study the 2-adic properties for the numbers of involutions in the alter-
native groups, and give an affirmative answer to a conjecture of D. Kim and J.
S. Kim [14]. Some analogous and general results are also presented.

1 Introduction

Let Sn be the symmetric group of degree n, and let An be the alternating group
of degree n. Let ϵ be the identity of a group. Given a positive integer m, we denote
by an(m) the number of permutations σ ∈ Sn such that σm = ϵ. Let p be a prime.
By definition and Wilson’s theorem, ap(p) = 1 + (p − 1)! ≡ 0 (mod p). Moreover,
an(m) ≡ 0 (mod gcd(m,n!)) by a theorem of Frobenius (see, e.g., [10]).

Let u be a positive integer. There exist remarkable p-adic properties of an(p
u) (cf.

Theorems 4.2–4.4). The beginning of them is due to H. Ochiai [16] and K. Conrad
[4]. For each integer a, ordp(a) denotes the exponent of p in the decomposition of a
into prime factors. As a pioneer work, the formula

ordp(an(p)) ≥
[
n

p

]
−
[
n

p2

]
(cf. Corollary 4.5) was given in [6, 7, 9], which was also shown by various methods (cf.
[4, 11, 13, 14]); moreover, the equality holds for all n such that n− [n/p2]p2 ≤ p− 1
(see, e.g., [6, 11, 13]). When p = 2, this formula was found by S. Chowla, I. N.

∗This work was supported by JSPS KAKENHI Grant number 22540004
∗E-mail: yugen@mmm.muroran-it.ac.jp
2000 Mathematics Subject Classification. Primary 05A15; Secondary 11S80, 20B30, 20E22.
Keyword. symmetric group, alternating group, Artin-Hasse exponential, p-adic analytic function,
wreath product.
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Herstein, and W. K. Moore [2]. The precise formula for ord2(an(2)) is known as

ord2(an(2)) =


[
n

2

]
−
[
n

4

]
+ 1 if n ≡ 3 (mod 4),[

n

2

]
−
[
n

4

]
otherwise

(cf. Example 4.6). The value of ord2(an(4)) is also determined (cf. Proposition 4.7).
We denote by tn(m) the number of even permutations σ ∈ An such that σm = ϵ.

Recently, D. Kim and J. S. Kim [14] proved that for any nonnegative integer y,

ord2(t4y(2)) = y + χo(y), ord2(t4y+2(2)) = ord2(t4y+3(2)) = y,

where χo(y) = 1 if y is odd, and χo(y) = 0 if y is even. They also conjectured that
for any nonnegative integer y, there exists a 2-adic integer α satisfying

ord2(t4y+1(2)) = y + χo(y) · (ord2(y + α) + 1)

(see [14, Conjecture 5.6]). According to [14], α = 1+2+23+28+210+ · · · satisfies
the condition for all y ≤ 1000. In this paper, we solve affirmatively their conjecture
(cf. Theorem 5.1), and present some analogous and general results, including the
result for ord2(tn(4)) (cf. Theorems 5.4). We adapt K. Conrad’s methods presented
in [4] to the case of tn(2

u).
Sections 2–5 are devoted to the study of ordp(an(p

u)) and ord2(tn(2
u)). In

addition to the above results, we also show that, if r = 0 or r = 1, then there exists
a 2-adic integer αr such that

ord2(t2u+1y+r(2
u)) = (2u+1 − u− 2)y + χo(y) · (ord2(y + αr) + u)

for any nonnegative integer y (cf. Theorem 5.6).
Let Cp ≀ Sn be the wreath product of Cp by Sn, where Cp is a cyclic group of

order p, and let C2 ≀An be the wreath product of C2 by An. We are also interested
in the number of elements x of these wreath products such that xm = ϵ. Let bn(p

u)
be the number of elements x of Cp ≀ Sn such that xp

u
= ϵ, and let qn(2

u) be the
number of elements x of C2 ≀An such that x2

u
= ϵ. In Sections 6–8, we focus on the

p-adic properties of bn(p
u) and the 2-adic properties of qn(2

u). When u = 1, we are
successful in finding the fact that

ordp(bn(p)) = n−
[
n

p

]
and ord2(qn(2)) =

[
n+ 1

2

]
+ χo

([
n

2

])
(cf. Examples 7.4 and 8.2). The former fact with p = 2 is due to T. Yoshida [20].
The results for ordp(bn(p

u)) and ord2(qn(2
u)) with u ≥ 2 are similar to those for

ordp(an(p
u−1)) and ord2(tn(2

u−1)), while there are slight differences between the
proofs (cf. Example 7.5, Proposition 7.6, Theorems 8.3, 8.5, and 8.7).
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2 Generating functions

For each σ ∈ Sn, σ
pu = ϵ if and only if the cycle type of σ is of the form

(1j0 , pj1 , . . . , (pu)ju),

where j0, j1, . . . , ju are nonnegative integers satisfying
∑

k jkp
k = n. Since the

number of such a permutations is n!/
∏u

k=0 p
kjkjk! (see, e.g., [12, Lemma 1.2.15] or

[18, Chap. 4 §2]), it follows that

an(p
u) =

∑
j0+j1p+···+jupu=n

n!∏u
k=0 p

kjkjk!
. (1)

Set a0n(p
u) = an(p

u), and define

a1n(p
u) =

∑
j0+j1p+···+jupu=n

(−1)j0+j1+···+jun!∏u
k=0 p

kjkjk!
. (2)

Then we have

tn(p
u) =

a0n(p
u) + (−1)na1n(p

u)

2
. (3)

(Obviously, an(p
u) = tn(p

u) if p ̸= 2.) Let ♮ denotes both 0 and 1. We always

assume that a♮0(p
u) = 1. By Eqs. (1)–(3), we have

∞∑
n=0

a♮n(pu)

n!
Xn = exp

(
(−1)♮

u∑
k=0

1

pk
Xpk

)
(4)

and
∞∑
n=0

tn(2
u)

n!
Xn =

1

2
exp

(
u∑

k=0

1

2k
X2k

)
+

1

2
exp

(
X −

u∑
k=1

1

2k
X2k

)

(see also [3] and [18, Chap. 4, Problem 22]). Let {c♮n}∞n=0 be a sequence given by

∞∑
n=0

c♮nX
n = exp

(
(−1)♮

∞∑
k=0

1

pk
Xpk

)
. (5)

Then by [5, Proposition 1] (see also [15, p. 97, Exercise 18]), c♮n ∈ Zp ∩ Q, where
Zp is the ring of p-adic integers. When ♮ = 0, this formal power series is called the
Artin-Hasse exponential (cf. [5], [15, Chap. IV §2], [19, §48]). We write cn = c0n for
the sake of simplicity. By definition, cr = ar(p

u)/r! for any nonnegative integer r
less than pu+1. According to Mathematica, we have the following lemma.
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Lemma 2.1 If p = 2, then the values of c♮r for integers r with 0 ≤ r ≤ 17 are as
follows :

r 0 1 2 3 4 5 6 7 8 9 10 11

c0r 1 1 1 2
3

2
3

7
15

16
45

67
315

88
315

617
2835

2626
14175

18176
155925

c1r 1 −1 0 1
3 −1

3
1
5

1
45 − 5

63 − 8
105

43
405 − 74

14175 − 559
17325

r 12 13 14 15 16 17

c0r
6949
66825

423271
6081075

2172172
42567525

19151162
638512875

58438907
638512875

899510224
10854718875

c1r
697

18711 − 13232
552825 − 30727

14189175
450991

49116375 − 5519014
91216125

8250311
144729585

For any nonnegative integer r less than pu+1, we set

H♮
u,r(X) =

∞∑
y=0

a♮
pu+1y+r

(pu)

(pu+1y + r)!
(−(−1)♮pu+1)yXy,

and define a sequence {d♮n,r}∞n=0 by

∞∑
n=0

d♮n,rX
n =

 ∞∑
j=0

c♮
pu+1j+r

(−(−1)♮pu+1)jXj

 exp

( ∞∑
i=1

ε♮pp
i(u+1)

pu+i+1
Xpi

)
,

where ε♮ = −1 if p = 2 and ♮ = 0, and ε♮ = +1 otherwise.

Lemma 2.2 Let r be a nonnegative integer less than pu+1. Then

H♮
u,r(X) = exp(X)

∞∑
n=0

d♮n,rX
n.

Proof. Using Eqs. (4) and (5), we have

∞∑
n=0

a♮n(pu)

n!
Xn =

( ∞∑
n=0

c♮nX
n

)
exp

(
−(−1)♮

∞∑
k=u+1

1

pk
Xpk

)
.

This formula yields

∞∑
y=0

a♮
pu+1y+r

(pu)

(pu+1y + r)!
Xpu+1y+r =

 ∞∑
j=0

c♮
pu+1j+r

Xpu+1j+r


× exp

(
−(−1)♮

∞∑
i=0

1

pu+i+1
Xpu+i+1

)
.
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Omit Xr and substitute (−(−1)♮pu+1)X for Xpu+1
. Then we have

∞∑
y=0

a♮
pu+1y+r

(pu)

(pu+1y + r)!
(−(−1)♮pu+1)yXy =

 ∞∑
j=0

c♮
pu+1j+r

(−(−1)♮pu+1)jXj


× exp

(
−(−1)♮

∞∑
i=0

(−(−1)♮pu+1)p
i

pu+i+1
Xpi

)
.

This completes the proof. □

Remark 2.3 In [4], Conrad has given the equation in Lemma 2.2 with ♮ = 0.

3 Fundamental facts

In this section, we provide four fundamental facts for the study of ordp(a
♮
n(pu))

and ordp(tn(p
u)). The next lemma is well-known (cf. [8, Problems 164 and 165],

[15, p. 7, Exercise 14], [19, Lemma 25.5]).

Lemma 3.1 Suppose that n = n0 + n1p + n2p
2 + · · · ≠ 0, where ni, i = 0, 1, . . . ,

are nonnegative integers less than p. Then

ordp(n!) =

∞∑
j=1

[
n

pj

]
=

n− n0 − n1 − n2 − · · ·
p− 1

≤ n− 1

p− 1
.

For each non-zero p-adic integer x =
∑∞

i=0 xip
i with 0 ≤ xi ≤ p − 1, we denote

by ordp(x) the first index i such that xi ̸= 0. The p-adic absolute vale of a p-adic
integer x is given by

|x|p =
{

p−ordp(x) if x ̸= 0,
0 if x = 0.

We define a subring Zp⟨X⟩ of Zp[[X]] by

Zp⟨X⟩ =

{ ∞∑
n=0

mnX
n ∈ Zp[[X]]

∣∣∣∣∣ lim
n→∞

|mn|p = 0

}
.

For each g(X) =
∑∞

n=0 gnX
n ∈ Zp[[X]], g(X) + pk1Xk2Zp⟨X⟩ denotes the set of all

formal power series f(X) =
∑∞

n=0 fnX
n such that f(X) − g(X) ∈ pk1Xk2Zp⟨X⟩,

where k1 and k2 are nonnegative integers.

Lemma 3.2 Let k be a positive integer, and let a be a p-adic integer such that
ordp(a) = k. Excepting the case where p = 2 and k = 1,

exp(aX) ∈ 1 + aX +
a2

2
X2 +

a3

6
X3 + p2k+1X4Zp⟨X⟩.
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Proof. Observe that

exp(aX)− 1− aX − a2

2
X2 − a3

6
X3 = p2kX3

∞∑
n=1

p−2k an+3

(n+ 3)!
Xn.

Then it follows from Lemma 3.1 that

ordp

(
p−2k an+3

(n+ 3)!

)
≥ k(n+ 1)− n+ 2

p− 1
=

(
k − 1

p− 1

)
n+

(
k − 2

p− 1

)
.

This completes the proof. □

The next lemma is essentially due to K. Conrad [4] (see also [19, Theorem 54.4]).

Lemma 3.3 Let
∑ℓ

n=0mnX
n be a polynomial of degree ℓ with coefficients in Zp,

and let
∑∞

n=1wnX
n ∈ pkXZp⟨X⟩, k a nonnegative integer. Define a sequence

{dn}∞n=0 by d0 = m0 and dn = mn + wn for n = 1, 2, . . . . Then there exists a
p-adic analytic function g(X) ∈ Zp⟨X⟩ such that

∞∑
n=0

g(n)

n!
Xn = exp(X)

∞∑
n=0

dnX
n and g(X) ∈

ℓ∑
i=0

mii!

(
X

i

)
+ pkXZp⟨X⟩,

where (
X

i

)
=

X(X − 1) · · · (X − i+ 1)

i!
, i = 1, 2, . . . , and

(
X

0

)
= 1.

Proof. Define a formal series

f(X) =

∞∑
i=0

dii!

(
X

i

)
.

For any nonnegative integer i, we have

∞∑
n=0

i!
(
n
i

)
n!

Xn = exp(X) ·Xi,

which is extended to the formula

∞∑
n=0

f(n)

n!
Xn = exp(X)

∞∑
n=0

dnX
n

by Zp-linearly. For each positive integer i, let {kin}∞n=1 be a sequence given by

∞∑
n=1

kinX
n = i!

(
X

i

)
.
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Then kin ∈ Z, and kin = 0 if n ≥ i+ 1. Since limn→∞ |wn|p = 0, it follows that

f(x)−
ℓ∑

i=0

mii!
(x
i

)
=

∞∑
i=1

wii!
(x
i

)
=

∞∑
i=1

i∑
n=1

wikinx
n =

∞∑
n=1

( ∞∑
i=n

wikin

)
xn

for any x ∈ Zp. In particular,
∑∞

i=nwikin ∈ pkZp for any positive integer n. More-
over, limn→∞ |

∑∞
i=nwikin|p = 0. Now define a formal power series

g(X) =
ℓ∑

i=0

mii!

(
X

i

)
+

∞∑
n=1

( ∞∑
i=n

wikin

)
Xn.

Then f(n) = g(n) for n = 0, 1, 2, . . . . This completes the proof. □

The following theorem is part of [8, Theorem 6.2.6] (see also [15, Chap. IV
Theorem 14]).

Theorem 3.4 (p-adic Weierstrass Preparation Theorem) Let

f(X) =
∑

fnX
n

be a power series with coefficients in the field Qp of p-adic numbers such that
limn→∞ |fn|p = 0. Let N be the number defined by

|fN |p = max |fn|p and |fn|p < |fN |p for all n > N.

Then there exists a polynomial

k0 + k1X + k2X
2 + · · ·+ kNXN

of degree N with coefficients in Qp, and a formal power series

1 +m1X +m2X
2 + · · ·

with coefficients in Qp, satisfying

(i) f(X) = (k0 + k1X + k2X
2 + · · ·+ kNXN )(1 +m1X +m2X

2 + · · · ),

(ii) |kN |p = max |kn|p,

(iii) lim
n→∞

|mn|p = 0,

(iv) |mn|p < 1 for all n ≥ 1.
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4 p-adic properties of an(p
u)

We define a sequence {e♮n}∞n=0 by

∞∑
n=0

e♮nX
n = exp

( ∞∑
i=2

ε♮pp
i(u+1)

pu+i+1
Xpi

)
,

so that for any nonnegative integer r less than pu+1,

∞∑
n=0

d♮n,rX
n =

 ∞∑
j=0

c♮
pu+1j+r

(−(−1)♮pu+1)jXj

 exp

(
ε♮pp(u+1)

pu+2
Xp

) ∞∑
n=0

e♮nX
n.

To give p-adic properties of an(p
u), we need the following.

Lemma 4.1

∞∑
n=0

e♮nX
n ∈ 1 + p3u+1XZp⟨X⟩.

Proof. If i ≥ 2, then pi = (1 + p− 1)i ≥ i(p− 1) + p ≥ i+ 2 ≥ 4, and thereby,

ordp

(
pp

i(u+1)

pu+i+1

)
= pi(u+ 1)− (u+ i+ 1)

= piu+ pi − (u+ i+ 1)

≥ 4u+ (i+ 2)− (u+ i+ 1)

= 3u+ 1.

Hence the assertion follows from Lemma 3.2. This completes the proof. □

The results are divided into three theorems, which generalize part of the results
proved by K. Conrad [4] (see also [11, 16]).

Theorem 4.2 Suppose that p ≥ 3. Let r be a nonnegative integer less than pu+1.
Then there exists a p-adic analytic function gr(X) ∈ Zp⟨X⟩ such that

gr(y) =
apu+1y+r(p

u)

(pu+1y + r)!
(−pu+1)yy!

for any nonnegative integer y and

gr(X) ∈ cr − cpu+1+rp
u+1X + p2u+1XZp⟨X⟩.

Proof. Using Lemmas 3.2 and 4.1, we have

∞∑
n=0

d0n,rX
n =

 ∞∑
j=0

cpu+1j+r(−pu+1)jXj

 exp

(
pp(u+1)

pu+2
Xp

) ∞∑
n=0

e0nX
n

∈ cr − cpu+1+rp
u+1X + p2u+1XZp⟨X⟩.

Hence the assertion follows from Lemmas 2.2 and 3.3. This completes the proof. □
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Theorem 4.3 Suppose that p = 2 and u ≥ 2. Let r be a nonnegative integer less
than 2u+1. Then there exists a 2-adic analytic function g♮r(X) ∈ Z2⟨X⟩ such that

g♮r(y) =
a♮
2u+1y+r

(2u)

(2u+1y + r)!
(−(−1)♮2u+1)yy!

for any nonnegative integer y and

g♮r(X) ∈ c♮r(1− (−1)♮2uX(X − 1) + 22u−1X(X − 1)(X − 2)(X − 3))

−(−1)♮c♮
2u+1+r

2u+1X + 22u+1XZ2⟨X⟩.

Proof. By definition,

∞∑
n=0

d♮n,rX
n =

 ∞∑
j=0

c♮
2u+1j+r

(−(−1)♮2u+1)jXj

 exp(−(−1)♮2uX2)
∞∑
n=0

e♮nX
n.

(Note that ε♮ = −(−1)♮ if p = 2.) Using Lemma 3.2, we have

exp(−(−1)♮2uX2) ∈ 1− (−1)♮2uX2 + 22u−1X4 + 22u+1X6Z2⟨X⟩.

Moreover, it follows from Lemma 4.1 that

∞∑
i=0

d♮n,rX
n ∈ c♮r(1− (−1)♮2uX2 + 22u−1X4)

−(−1)♮c♮
2u+1+r

2u+1X + 22u+1XZ2⟨X⟩.

Hence the assertion follows from Lemmas 2.2 and 3.3. This completes the proof. □

Theorem 4.4 Suppose that p = 2 and u = 1. Let r be a nonnegative integer less
than 4. Then there exists a 2-adic analytic function g♮r(X) ∈ Z2⟨X⟩ such that

g♮r(y) =
a♮4y+r(2)

(4y + r)!
((−1)♮4)yy!

for any nonnegative integer y and

g♮r(X) ∈ c♮r(1− 2X + 4δ♮1X(X − 1)− 4X(X − 1)(X − 2)(X − 3))

+(−1)♮4c♮4+rX + 8XZ2⟨X⟩,

where δ is the Kronecker delta.
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Proof. Substituting −X for X in Lemma 2.2, we have

∞∑
y=0

a♮4y+r(2)

(4y + r)!
((−1)♮4)yXy = exp(X) exp(−2X − (−1)♮2X2)

×

 ∞∑
j=0

c♮4j+r((−1)♮4)jXj

 ∞∑
n=0

e♮n(−1)nXn.

(6)

Moreover, it follows from Eq. (4) with p = 2 and u = 2 that

exp(−2X − (−1)♮2X2) = exp(−2X + 2X2 + 4X4) exp(−4δ♮0X
2 − 4X4)

=

( ∞∑
n=0

an(4)

n!
(−2X)n

)
exp(−4δ♮0X

2 − 4X4).

By Lemma 3.1 and Theorem 4.3,

ord2

(
an(4)

n!
(−2)n

)
= ord2(an(4)) + ord2

(
(−2)n

n!

)
≥
[
n

2

]
+

[
n

4

]
− 2

[
n

8

]
+ 1

if n ≥ 1 (see also Proposition 4.7). Observe that

ord2

(
an(4)

n!
(−2)n

)
≥ 4

if n ≥ 4. Then, since a0(4) = a1(4) = 1, a2(4) = 2, and a3(4) = 4, we have

∞∑
n=0

an(4)

n!
(−2X)n ∈ 1− 2X + 4X2 + 16XZ2⟨X⟩.

This, combined with Lemma 3.2, yields

exp(−2X − (−1)♮2X2) ∈ (1− 2X + 4X2)(1− 4δ♮0X
2 − 4X4) + 8XZ2⟨X⟩.

Hence it follows from Lemma 4.1 that

exp(−2X − (−1)♮2X2)

 ∞∑
j=0

c♮4j+r((−1)♮4)jXj

 ∞∑
n=0

e♮n(−1)nXn

∈ c♮r(1− 2X + 4δ♮1X
2 − 4X4) + (−1)♮4c♮4+rX + 8XZ2⟨X⟩.

The assertion now follows from Lemma 3.3 and Eq. (6). □

Let r be a nonnegative integer less than pu+1. By Lemma 3.1,

ordp

(
(pu+1y + r)!

p(u+1)yy!

)
=

u∑
j=1

[
pu+1y + r

pj

]
− uy =

{
pu+1 − 1

p− 1
− (u+ 1)

}
y + ordp(r!)

for any nonnegative integer y. Combining this fact with Theorems 4.2, 4.3, and 4.4,
we obtain the following.
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Corollary 4.5 ([13]) Let r be a nonnegative integer less than pu+1. Then

ordp
(
apu+1y+r(p

u)
)

≥
u∑

j=1

[
pu+1y + r

pj

]
− uy

=

{
pu+1 − 1

p− 1
− (u+ 1)

}
y + ordp(r!)

for any nonnegative integer y. Moreover, if ordp(cr) ≤ u, then

ordp(apu+1y+r(p
u)) =

u∑
j=1

[
pu+1y + r

pj

]
− uy + ordp(cr)

=

{
pu+1 − 1

p− 1
− (u+ 1)

}
y + ordp(r!) + ordp(cr)

for any nonnegative integer y.

Example 4.6 ([6, 13, 14, 16]) Suppose that p = 2 and u = 1. By Lemma 2.1
and Corollary 4.5,

ord2(an(2)) =


[
n

2

]
−
[
n

4

]
+ 1 if n ≡ 3 (mod 4),[

n

2

]
−
[
n

4

]
otherwise.

Proposition 4.7 Suppose that p = 2 and u = 2, and let r be a nonnegative integer
less than 8. For any nonnegative integer y,

ord2(a8y+r(4)) =

[
8y + r

2

]
+

[
8y + r

4

]
− 2y + ord2(cr)

= 4y + ord2(r!) + ord2(cr),

that is, the values of ord2(a8y+r(4))− 4y, 0 ≤ r ≤ 7, are as follows :

r 0 1 2 3 4 5 6 7

ord2(a8y+r(4))− 4y 0 0 1 2 4 3 8 4

Proof. If r ̸= 6, then the proposition follows from Lemma 2.1 and Corollary 4.5. By
Theorem 4.3, there exists a 2-adic analytic function g06(X) ∈ Z2⟨X⟩ such that

g06(y) =
a8y+6(4)

(8y + 6)!
(−8)yy!

for any nonnegative integer y and

g06(X) ∈ c6(1− 4X(X − 1) + 8X(X − 1)(X − 2)(X − 3))− 8c14X + 25XZ2⟨X⟩.

Let y be a nonnegative integer. We have ord2(a8y+6(4)) = 4y + 4 + ord2(g
0
6(y)).

Since c6 = 16/45 and c14 = 2172172/42567525, it follows that ord2(g
0
6(y)) = 4.

Hence ord2(a8y+6(4)) = 4y + 8. This completes the proof. □
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5 2-adic properties of tn(2
u)

The first statement of the following theorem is due to D. Kim and J. S. Kim
[14], and the second one is an affirmative answer to a conjecture of them.

Theorem 5.1 Suppose that p = 2 and u = 1. Then the following statements hold
for any nonnegative integer y.

(a) ord2(t4y(2)) = y + χo(y), ord2(t4y+2(2)) = ord2(t4y+3(2)) = y.

(b) There exists a 2-adic integer α such that

ord2(t4y+1(2)) = y + χo(y) · (ord2(y + α) + 1).

Proof. Keep the notation of Theorem 4.4, and let y be a nonnegative integer. Then
by Eq. (3), we have

t4y+r(2) =
(4y + r)!

4y · y!
· g

0
r (y) + (−1)r+yg1r (y)

2
.

Now set Lr,y(X) = (g0r (X) + (−1)r+yg1r (X))/2. Then there exists a 2-adic analytic
function Mr,y(X) ∈ Z2⟨X⟩ such that

Lr,y(X) = c0r
1− 2X − 4X(X − 1)(X − 2)(X − 3)

2

+(−1)r+yc1r
1− 2X + 4X(X − 1)− 4X(X − 1)(X − 2)(X − 3)

2

+2(c04+r − (−1)r+yc14+r)X + 4XMr,y(X).

Moreover, it follows from Lemma 2.1 that

L0,y(y) ≡ L1,y(y) ≡ 1 (mod 4),

L2,y(y) ≡
1

2
(mod 2), L3,y(y) ≡

1

6
(mod 2)

if y is even, and

L0,y(y) ≡ −2y2 (mod 4), L1,y(y) ≡
38

15
y − 2y2 (mod 4),

L2,y(y) ≡
1

2
− y (mod 2), L3,y(y) ≡

1

2
− y (mod 4)

if y is odd. Since ord2((4y + r)!/4y · y!) = y + ord2(r!), it follows that

ord2(t4y+r(2)) =


y + χo(y) if r = 0,

y if r = 1 and y is even,

y if r = 2 or r = 3.
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Assume that y is odd. Then by Lemma 2.1,

L1,y(X) = −2X(X − 1) +
8

15
X + 4XM1,y(X) =

38

15
X − 2X2 + 4XM1,y(X).

Hence it follows from Theorem 3.4 that there exists a polynomial

k0 + k1X + k2X
2

of degree 2 with coefficients in Q2, and a power series

1 +m1X +m2X
2 + · · ·

with coefficients in Q2, satisfying the conditions (i)–(iv) with f(X) = L1,y(X),
N = 2, and p = 2. We have k0 = 0, k1 ≡ 38/15 (mod 4), and k2 ≡ −2 − k1m1

(mod 4). Now set λ = 2−1k2. Then ord2(λ) = 0, because ord2(m1) > 0. Observe
that α := 2−1k1λ

−1 ∈ Z2 and

L1,y(X) = 2λX(X + α)(1 +m1X +m2X
2 + · · · ).

Then we have
ord2(t4y+1) = y + 1 + ord2(y + α).

This completes the proof. □

Remark 5.2 According to Mathematica,

α ≡ 1 + 2 + 23 + 28 + 210 + 212 (mod 214).

The following lemma is an immediate consequence of Eq. (3) and Theorem 4.3.

Lemma 5.3 Suppose that p = 2 and u ≥ 2. Let r be a nonnegative integer less
than 2u+1, and let y be a nonnegative integer. Then there exists a 2-adic analytic
function Mr,y(X) ∈ Z2⟨X⟩ such that

t2u+1y+r(2
u) =

(2u+1y + r)!

2(u+1)y · y!
· Lr,y(y)

with

Lr,y(X) = (−1)yc0r
1− 2uX(X − 1) + 22u−1X(X − 1)(X − 2)(X − 3)

2

+(−1)rc1r
1 + 2uX(X − 1) + 22u−1X(X − 1)(X − 2)(X − 3)

2
+2u(−(−1)yc02u+1+r + (−1)rc12u+1+r)X + 22uXMr,y(X).

Moreover, ord2(t2u+1y+r(2
u)) = (2u+1 − u− 2)y + ord2(r!) + ord2(Lr,y(y)).
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We set χe(y) = 1− χo(y) for any nonnegative integer y.

Theorem 5.4 Suppose that p = 2 and u = 2. Then the following statements hold
for any nonnegative integer y.

(a) ord2(t8y+2(4)) = ord2(t8y+3(4)) = 4y, ord2(t8y+4(4)) = 4y + 2,

ord2(t8y+5(4)) = 4y + 3 + χe(y), ord2(t8y+6(4)) = 4y + 3,

ord2(t8y+7(4)) = 4y + 4 + χe(y).

(b) If r = 0 or r = 1, then there exists a 2-adic integer αr such that

ord2(t8y+r(4)) = 4y + χo(y) · (ord2(y + αr) + 2).

Proof. Keep the notation of Lemma 5.3 with u = 2. Then by Lemma 2.1,

L0,y(y) ≡ L1,y(y) ≡ 1 (mod 8), L2,y(y) ≡
1

2
(mod 4),

L3,y(y) ≡ L4,y(y) ≡
1

6
(mod 4), L5,y(y) ≡

2

15
(mod 8),

L6,y(y) ≡
17

90
(mod 4), L7,y(y) ≡

46

315
(mod 8)

if y is even, and

L0,y(y) ≡ 4y

(
y − 251

315

)
(mod 16), L1,y ≡ 4y

(
y − 2519

2835

)
(mod 16),

L2,y(y) ≡ L3,y(y) ≡ L4,y(y) ≡ −1

2
(mod 4), L5,y(y) ≡ −1

3
(mod 4),

L6,y(y) ≡ −1

6
(mod 4), L7,y(y) ≡ − 1

15
(mod 4)

if y is odd. This, combined with Lemma 5.3, yields the statement (a). The proof
of the statement (b) is analogous to that of Theorem 5.1, while the assertion is a
special case of Theorem 5.6. This completes the proof. □

Remark 5.5 According to Mathematica,

α0 ≡ 1 + 2 + 22 + 23 + 24 + 25 + 27 + 29 + 210 + 212 + 213 + 214 + 215 (mod 217)

and
α1 ≡ 1 + 2 + 24 + 27 + 28 (mod 212).

The statement (b) of Theorem 5.4 is extended to a result for ord2(t2u+1y+r(2
u))

with u ≥ 3 and r = 0 or r = 1.
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Theorem 5.6 Suppose that p = 2 and u ≥ 2. Let y be a nonnegative integer. If
r = 0 or r = 1, then there exists a 2-adic integer αr such that

ord2(t2u+1y+r(2
u)) = (2u+1 − u− 2)y + χo(y) · (ord2(y + αr) + u).

Moreover, if ord2(c
0
2u+1+r + (−1)rc12u+1+r) = 0 with r = 0 or r = 1, then

ord2(t2u+1y+r(2
u)) = (2u+1 − u− 2)y + χo(y) · u.

Proof. Keep the notation of Lemma 5.3. Since c00 = c10 = c01 = 1 and c11 = −1 by
Lemma 2.1, it follows from Lemma 5.3 that the assertion holds if y is even. Assume
that y is odd. Then

Lr,y(X) = 2u(−1 + ĉ2u+1+r)X + 2uX2 + 22uXMr,y(X),

where ĉ2u+1+r = c02u+1+r+(−1)rc12u+1+r. In each of the cases where r = 0 and r = 1,
it follows from Theorem 3.4 that there exists a polynomial

k0 + k1X + k2X
2

of degree 2 with coefficients in Q2, and a power series

1 +m1X +m2X
2 + · · ·

with coefficients in Q2, satisfying the conditions (i)–(iv) with f(X) = Lr,y(X),
N = 2, and p = 2. We have k0 = 0, k1 ≡ 2u(−1 + ĉ2u+1+r) (mod 22u), and
k2 ≡ 2u − k1m1 (mod 22u). Now set λr = 2−uk2. Then ord2(λr) = 0, because
ord2(m1) > 0. Observe that αr := 2−uk1λ

−1
r ∈ Z2 and

Lr,y(X) = 2uλrX(X + αr)(1 +m1X +m2X
2 + · · · ).

Combining this fact with Lemma 5.3, we conclude that

ord2(t2u+1y+r(2
u)) = (2u+1 − u− 2)y + ord2(y + αr) + u

Moreover, if ord2(ĉ2u+1+r) = 0, then ord2(αr) > 0, and thereby, ord2(y + αr) = 0.
This completes the proof. □

6 Wreath products

Let G be a finite group, and let K be a subgroup of Sn. The wreath product
G ≀K of G by K is defined to be the set

G ≀K = {(g1, . . . , gn)σ | (g1, . . . , gn) ∈ G(n) and σ ∈ K},

where G(n) is the direct product of n copies of G, with multiplication given by

(g1, . . . , gn)σ(h1, . . . , hn)τ = (g1hσ−1(1), . . . , gnhσ−1(n))στ.

Let m be a positive integer. We set

a(G ≀K,m) = ♯{(g1, . . . , gn)σ ∈ G ≀K | ((g1, . . . , gn)σ)m = ϵ}.
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Lemma 6.1 Let τ ∈ Sn be a cycle of length ℓ. Then ((g1, . . . , gn)τ)
m = ϵ if and

only if ℓ divides m and (gigτ−1(i) · · · gτ−ℓ+1(i))
m/ℓ = ϵ for all i = 1, 2, . . . , n.

Proof. The proof is straightforward. □

Let {ℓ0, ℓ1, . . . , ℓs} be the set of divisors of a positive integer m. We quote the
following (cf. [12, Lemma 4.2.10]).

Lemma 6.2 The number of elements (g1, . . . , gn)σ of G ≀ Sn such that the cycle
type of σ is (ℓj00 , ℓj11 , . . . , ℓjss ) and ((g1, . . . , gn)σ)

m = ϵ is

n!

s∏
k=0

|G|(ℓk−1)jka(G,m/ℓk)
jk

ℓk
jkjk!

,

where a(G,m/ℓk) = ♯{g ∈ G | gm/ℓk = ϵ}.

Proof. Let k be a nonnegative integer less than or equal to s, and let τ = (i1 · · · iℓk)
be a cycle of length ℓk. Then it follows from Lemma 6.1 that the number of elements
(g1, . . . , gn) of G

(n) such that ((g1, . . . , gn)τ)
m = ϵ and gi = ϵ for all i ̸= i1, . . . , iℓk

is |G|ℓk−1a(G,m/ℓk). Thus the lemma holds. □

By Lemma 6.2, we have

bn(p
u) = a(Cp ≀ Sn, p

u) =
∑

j0+j1p+···+jupu=n

n!

(
u∏

k=0

pp
kjk

pkjkjk!

)
1

pju
. (7)

Set b0n(p
u) = bn(p

u), and define

b1n(p
u) =

∑
j0+j1p+···+jupu=n

(−1)j0+j1+···+jun!

(
u∏

k=0

pp
kjk

pkjkjk!

)
1

pju
. (8)

Then by Lemma 6.2, we have

qn(p
u) = a(Cp ≀An, p

u) =
b0n(p

u) + (−1)nb1n(p
u)

2
. (9)

(Obviously, bn(p
u) = qn(p

u) if p ̸= 2.) Let ♮ denotes both 0 and 1. We always

assume that b♮0(p
u) = 1. By Eqs. (7)–(9), we have

∞∑
n=0

b♮n(pu)

n!
Xn = exp

(
(−1)♮

u−1∑
k=0

pp
k

pk
Xpk + (−1)♮

pp
u

pu+1
Xpu

)
, (10)

∞∑
n=0

qn(2
u)

n!
Xn =

1

2
exp

(
u−1∑
k=0

22
k

2k
X2k +

22
u

2u+1
X2u

)

+
1

2
exp

(
2X −

u−1∑
k=1

22
k

2k
X2k − 22

u

2u+1
X2u

)
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(cf. [1], [17, Proposition 3.4]). Moreover, by Eq. (5), we have

∞∑
n=0

c♮n(pX)n = exp

(
(−1)♮

∞∑
k=0

pp
k

pk
Xpk

)
. (11)

Recall that ε♮ = −1 if p = 2 and ♮ = 0, and ε♮ = +1 otherwise. For any
nonnegative integer r less than pu, we set

H̃♮
u,r(X) =

∞∑
y=0

b♮puy+r(p
u)

(puy + r)!

(
−(−1)♮

pu+1

ppu(p− 1)
X

)y

,

and define a sequence {d̃♮n,r}∞n=0 by

∞∑
n=0

d̃♮n,rX
n =

 ∞∑
j=0

c♮puj+rp
r

(
−(−1)♮

pu+1

p− 1
X

)j
 exp

( ∞∑
i=1

ε♮pp
i(u+1)

pu+i(p− 1)pi
Xpi

)
.

Lemma 6.3 Let r be a nonnegative integer less than pu. Then

H̃♮
u,r(X) = exp(X)

∞∑
n=0

d̃♮n,rX
n.

Proof. Using Eqs. (10) and (11), we have

∞∑
n=0

b♮n(pu)

n!
Xn =

( ∞∑
n=0

c♮n(pX)n

)
exp

(
−(−1)♮

pp
u

pu
Xpu

)

× exp

(
(−1)♮

pp
u

pu+1
Xpu

)
exp

(
−(−1)♮

∞∑
k=u+1

pp
k

pk
Xpk

)
.

This formula yields

∞∑
y=0

b♮puy+r(p
u)

(puy + r)!
Xpuy+r =

 ∞∑
j=0

c♮puj+rp
puj+rXpuj+r

 exp

(
−(−1)♮

pp
u

pu
Xpu

)

× exp

(
(−1)♮

pp
u

pu+1
Xpu

)
exp

(
−(−1)♮

∞∑
i=1

pp
u+i

pu+i
Xpu+i

)
.

Omit Xr and substitute (−(−1)♮pu+1X/pp
u
(p− 1))1/p

u
for X. Then we have

∞∑
y=0

b♮puy+r(p
u)

(puy + r)!

(
−(−1)♮

pu+1

ppu(p− 1)
X

)y

=

 ∞∑
j=0

c♮puj+rp
r

(
−(−1)♮

pu+1

p− 1
X

)j


× exp(X) exp

( ∞∑
i=1

−(−1)♮ · (−(−1)♮)p
i
pp

i(u+1)

pu+i(p− 1)pi
Xpi

)
.

This completes the proof. □
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7 p-adic properties of bn(p
u)

In order to analyze
∑∞

n=0 d̃
♮
n,rXn, we define a sequence {ẽ♮n}∞n=0 by

∞∑
n=0

ẽ♮nX
n = exp

( ∞∑
i=2

ε♮pp
i(u+1)

pu+i(p− 1)pi
Xpi

)
.

The proof of the following lemma is analogous to that of Lemma 4.1.

Lemma 7.1
∞∑
n=0

ẽ♮nX
n ∈ 1 + p3u+2XZp⟨X⟩.

We are now in position to state a p-adic property of bn(p
u).

Theorem 7.2 Let r be a nonnegative integer less than pu. Then there exists a
p-adic analytic function g♮r(X) ∈ Zp⟨X⟩ such that

g♮r(y) =
b♮puy+r(p

u)

(puy + r)!

(
−(−1)♮

pu+1

ppu(p− 1)

)y

y!

for any nonnegative integer y and

g♮r(X) ∈ c♮rp
r

{
1 + ε♮

p(u+1)(p−1)

(p− 1)p
X(X − 1)(X − 2) · · · (X − p+ 1)

}

−(−1)♮c♮pu+r

pu+1+r

p− 1
X + p2u+1+r XZp⟨X⟩.

Proof. Using Lemmas 3.2 and 7.1, we have

∞∑
n=0

d̃♮n,rX
n =

 ∞∑
j=0

c♮puj+rp
r

(
−(−1)♮

pu+1

p− 1
X

)j


× exp

(
ε♮pp(u+1)

pu+1(p− 1)p
Xp

) ∞∑
n=0

ẽ♮nX
n

∈ c♮rp
r

{
1 + ε♮

p(u+1)(p−1)

(p− 1)p
Xp

}

−(−1)♮c♮pu+r

pu+1+r

p− 1
X + p2u+1+rXZp⟨X⟩.

Hence the assertion follows from Lemmas 3.3 and 6.3. This completes the proof. □

This theorem, together with Lemma 3.1, yields the following.
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Corollary 7.3 Let r be a nonnegative integer less than pu. Then

ordp (bpuy+r(p
u)) ≥

u−1∑
j=0

[
puy + r

pj

]
− uy

=

{
pu − 1

p− 1
+ pu − (u+ 1)

}
y + r + ordp(r!)

for any nonnegative integer y. If ordp(cr) ≤ u, then

ordp(bpuy+r(p
u)) =

u−1∑
j=0

[
puy + r

pj

]
− uy + ordp(cr)

=

{
pu − 1

p− 1
+ pu − (u+ 1)

}
y + r + ordp(r!) + ordp(cr)

for any nonnegative integer y.

Example 7.4 Suppose that u = 1. Then for any nonnegative integer r less than p,
we have ordp(cr) = 0. Hence

ordp(bn(p)) = n−
[
n

p

]
and ord2(bn(2)) =

[
n+ 1

2

]
.

Example 7.5 Suppose that p = 2 and u = 2. By Lemma 2.1 and Corollary 7.3,

ord2(bn(4)) =


n+

[
n

2

]
− 2

[
n

4

]
+ 1 if n ≡ 3 (mod 4),

n+

[
n

2

]
− 2

[
n

4

]
otherwise.

Proposition 7.6 Suppose that p = 2 and u = 3, and let r be a nonnegative integer
less than 8. For any nonnegative integer y,

ord2(b8y+r(8)) = 8y + r +

[
8y + r

2

]
+

[
8y + r

4

]
− 3y + ord2(cr)

= 11y + r + ord2(r!) + ord2(cr),

that is, the values of ord2(b8y+r(8))− 11y − r, 0 ≤ r ≤ 7, are the following :

r 0 1 2 3 4 5 6 7

ord2(b8y+r(8))− 11y − r 0 0 1 2 4 3 8 4

Proof. If r ̸= 6, then the theorem follows from Lemma 2.1 and Corollary 7.3. By
Lemma 2.1 and Theorem 7.2, there exists a 2-adic analytic function g06(X) ∈ Z2⟨X⟩
such that

g06(y) =
b8y+6(8)

(8y + 6)!

(
− 1

16

)y

y!
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for any nonnegative integer y and

g06(X) ∈ 26 · 16
45

(1− 16X(X − 1))− 210 · 2172172

42567525
X + 213XZ2⟨X⟩.

Hence Lemma 3.1 implies that ord2(b8y+6(8)) = 11y + 4 + ord2(g
0
6(y)) = 11y + 14

for any nonnegative integer y. This completes the proof. □

8 2-adic properties of qn(2
u)

The following lemma is an immediate consequence of Eq. (9) and Theorem 7.2.

Lemma 8.1 Suppose that p = 2. Let r be a nonnegative integer less than 2u,
and let y be a nonnegative integer. Then there exists a 2-adic analytic function
Mr,y(X) ∈ Z2⟨X⟩ such that

q2uy+r(2
u) =

(2uy + r)!

2uy · y!
· 2(2u−1)y · Lr,y(y)

with

Lr,y(X) = (−1)y2rc0r
1− 2u+1X(X − 1)

2
+ (−2)rc1r

1 + 2u+1X(X − 1)

2
+2u+r(−(−1)yc02u+r + (−1)rc12u+r)X + 22u+rXMr,y(X).

Moreover, ord2(q2uy+r(2
u)) = (2u+1 − u− 2)y + ord2(r!) + ord2(Lr,y(y)).

Example 8.2 Suppose that p = 2 and u = 1. Let r be a nonnegative integer less
than 2, and let y be a nonnegative integer. By Lemma 2.1 and Lemma 8.1, we have

ord2(q2y+r(2)) = y +

[
r + 1

2

]
+ χo(y) =


y if y is even and if r = 0,

y + 1 if y is even and if r = 1,

y + 1 if y is odd and if r = 0,

y + 2 if y is odd and if r = 1.

We conclude this paper with the following three results for ord2(qn(2
u)).

Theorem 8.3 Suppose that p = 2 and u = 2. Then the following statements hold
for any nonnegative integer y.

(a) ord2(q4y(4)) = 4y + 2χo(y), ord2(q4y+2(4)) = 4y + 2, ord2(q4y+3(4)) = 4y + 3.

(b) There exists a 2-adic integer β such that

ord2(q4y+1(4)) = 4y + 1 + χo(y) · (ord2(y + β) + 3).
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Proof. Keep the notation of Lemma 8.1 with u = 2. Set hr,y = ord2(Lr,y(y)). Then
by Lemma 2.1,

h0,y(y) = 0, h1,y = h2,y = 1, h3,y = 2

if y is even, and

h0,y = 2, L1,y(y) ≡ 16y

(
y − 13

15

)
(mod 32), h2,y = 1, h3,y = 2

if y is odd. Thus the statement (a) follows from Lemma 8.1. The proof of the
statement (b) is analogous to that of Theorem 5.1(b), while the assertion is a special
case of Theorem 8.7. This completes the proof. □

Remark 8.4 According to Mathematica,

β ≡ 1 + 22 + 23 + 24 + 26 + 27 + 28 (mod 213).

Theorem 8.5 Suppose that p = 2 and u = 3. Then the following statements hold
for any nonnegative integer y.

(a) ord2(q8y+2(8)) = 11y+2, ord2(q8y+3(8)) = 11y+3, ord2(q8y+4(8)) = 11y+6,

ord2(q8y+5(8)) = 11y + 8 + χe(y), ord2(q8y+6(8)) = 11y + 9,

ord2(q8y+7(8)) = 11y + 11 + χe(y).

(b) If r = 0 or r = 1, then there exists a 2-adic integer βr such that

ord2(q8y+r(8)) = 11y + r + χo(y) · (ord2(y + βr) + 4).

Proof. Keep the notation of Lemma 8.1 with u = 3. Set hr,y = ord2(Lr,y(y)). Then
by Lemma 2.1,

h0,y = 0, h1,y = h2,y = 1, h3,y = 2, h4,y = 3, h5,y = 6, h6,y = 5, h7,y = 8

if y is even, and

L0,y(y) ≡ 16y

(
y − 283

315

)
(mod 64), L1,y(y) ≡ 32y

(
y − 2677

2835

)
(mod 128),

h2,y = 1, h3,y = 2, h4,y = 3, h5,y = h6,y = 5, h7,y = 7

if y is odd. Thus the statement (a) follows from Lemma 8.1. The proof of the
statement (b) is analogous to that of Theorem 5.1(b), while the assertion is a special
case of Theorem 8.7. This completes the proof. □

Remark 8.6 According to Mathematica,

β0 ≡ 1 + 2 + 22 + 23 + 24 + 26 + 28 + 29 (mod 212)

and
β1 ≡ 1 + 23 + 24 + 25 + 26 + 28 + 210 + 211 + 212 (mod 214).
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The statement (b) both of Theorems 8.3 and 8.5 is extended to a result for
ord2(q2uy+r(2

u)) with u ≥ 4 and r = 0 or r = 1.

Theorem 8.7 Suppose that p = 2 and u ≥ 2. Let y be a nonnegative integer. If
r = 0 or r = 1, then there exists a 2-adic integer βr such that

ord2(q2uy+r(2
u)) = (2u+1 − u− 2)y + r + χo(y) · (ord2(y + βr) + u+ 1).

Moreover, if ord2(c
0
2u+r + (−1)rc12u+r) = 0 with r = 0 or r = 1, then

ord2(q2uy+r(2
u)) = (2u+1 − u− 2)y + r + χo(y) · u.

Proof. Keep the notation of Lemma 8.1. Since c00 = c10 = c01 = 1 and c11 = −1 by
Lemma 2.1, it follows from Lemma 8.1 that the assertion holds if y is even. Assume
that y is odd. Then

L0,y(X) = 2u+1X(X − 1) + 2u(c02u + c12u)X + 22uXM0,y(X),

L1,y(X) = 2u+2X(X − 1) + 2u+1(c02u+1 − c12u+1)X + 22u+1XM1,y(X).

Hence, if ord2(c
0
2u+r + (−1)rc12u+r) = 0, then the assertion follows from Lemma 8.1.

Suppose that ord2(c
0
2u+r + (−1)rc12u+r) > 0. Then by an argument analogous to

that in the proof of Theorem 5.6, we have

ord2(Lr,y(y)) = r + ord2(y + βr) + u+ 1

for some βr ∈ Z2. Hence the assertion follows from Lemma 8.1. This completes the
proof. □
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8. F. Q. Gouvêa, p-adic Numbers, 2nd ed., Universitext, Springer-Verlag, New
York, 1997.

9. M. Grady and M. Newman, Residue periodicity in subgroup counting functions;
in :“The Rademacher Legacy to Mathematics,” Contemp. Math. 166 (1994),
265–273.

10. M. Hall Jr., The Theory of Groups, 2nd edition, Chelsea, New York, 1976.

11. H. Ishihara, H. Ochiai, Y. Takegahara, and T. Yoshida, p-divisibility of the
number of solutions of xp = 1 in a symmetric group, Ann. Comb. 5 (2001),
197–210.

12. G. D. James and A. Kerber, The Representation Theory of the Symmetric
Group, Encyclopedia of mathematics and its applications, Vol. 16, Addison-
Wesley, Reading, MA, 1981.

13. H. Katsurada, Y. Takegahara, and T. Yoshida, The number of homomorphisms
from a finite abelian group to a symmetric group, Comm. Algebra 28 (2000),
2271–2290.

14. D. Kim and J. S. Kim, A combinatorial approach to the power of 2 in the
number of involutions, J. Combin. Theory Ser. A 117 (2010), 1082–1094.

15. N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed.,
Springer-Verlag, New York, 1984.

16. H. Ochiai, A p-adic property of the Taylor series of exp(x + xp/p), Hokkaido
Math. J. 28 (1999), 71–85.

17. S. Okada, Wreath products by the symmetric groups and product posets of
Young’s lattices, J. Combin. Theory Ser. A 55 (1990), 14–32.

18. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

19. W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge,
1984.

20. T. Yoshida, Private discussions.


