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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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REVIEW Open Access

The macrophage in HIV-1 infection: From
activation to deactivation?
Georges Herbein1*, Audrey Varin1,2

Abstract

Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an

important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has

been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-g display a pro-

inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as

IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the proto-

typic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support

productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macro-

phage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation

status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated

formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively acti-

vated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10

deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

Introduction
Macrophages (Ms) are the first line of defence of

the organism against pathogens and, in response to the

microenvironment, become differentially activated. The

classical pathway of interferon-g-dependent activation of

macrophages (M1) by T helper 1 (Th1)-type responses

is a well-established feature of cellular immunity to

infection with HIV-1. In the presence of cytokines that

are produced in a Th-2 type response, such as IL-4 and

IL-13, macrophages become differentially activated (M2)

and play an important role in HIV-1 pathogenesis.

Although it is superficially similar to a Th2-type cyto-

kine and is often co-induced with Th2 cytokines in the

course of an immune response, it is not appropriate to

classify IL-10 together with IL-4 and IL-13 as an alter-

native activator of macrophages. IL-10 acts on a distinct

plasma membrane receptor to those for IL-4 and IL-13

[1], and its effects on macrophage gene expression are

different, involving a more profound inhibition of a

range of antigen-presenting and effector functions, lead-

ing to a deactivation stage of macrophages [2]. Follow-

ing this line of reasoning, it seems appropriate to

classify macrophages in IFN-g classically activated

macrophages (M1), IL-4/IL-13 alternatively activated

macrophages (M2), and IL-10 deactivated macrophages

(dM). In addition, T cells themselves are more heteroge-

neous than was thought originally [3,4], including not

only Th0, Th1 and Th2 type cells, but also among other

regulatory (Treg) and Th17 cells [5]. In addition, a wide

variety of stimuli, both endogenous and exogenous,

influence the susceptibility of macrophages to infection

by HIV-1. The differentiation stage of monocytes/

macrophages also modulates permissiveness to HIV-1:

primary monocytes are less susceptible to the virus than

differentiated macrophages [6-9]. The localization of

macrophages in different tissues results in cells with dis-

tinct activation status and susceptibility to HIV-1 infec-

tion. Addressing the effects of macrophage differentiation

and/or activation on HIV-1 replication provides some

insight into the impact of specific microenvironments on

macrophage infection in vivo. Modulation of HIV-1 repli-

cation induced by diverse stimuli have however been

addressed using monocytic cell lines, primary monocytes

or macrophages differentiated in vitro from primary

monocytes. Keeping these data in mind, the present

review will focus on the distinctive patterns of macro-

phage activation (classically activated M1, alternatively
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activated M2, and deactivated dM) in HIV-1

pathogenesis.

Classical Activation of Macrophages and HIV-1
Infection
Classically activated or type 1 macrophages induced in

particular by IFN-g [10], display a pro-inflammatory

profile (Figure 1). In addition pro-inflammatory cyto-

kines modulate HIV-1 replication in macrophages and

could depend on the maturation and/or activation stages

of monocytes/macrophages [7,8]. High levels of proin-

flammatory cytokines, such as tumor necrosis factor a

(TNFa), interleukin (IL)-1b and IL-6 in both plasma

and lymph nodes are observed from the early stages of

HIV-1 infection [11-15]. The secretion of chemokines

such as macrophage inflammatory protein (MIP)-1a,

MIP-1b and RANTES (CCL3, CCL4 and CCL5 respec-

tively) is increased in these patients [16,17]. Immune

activation also reflects the mounting of antiviral immu-

nity with enhanced Th1 activity and increased levels of

IFNg, IL-12, IL-2 and IL-18, especially in lymph nodes

of HIV-infected subjects [18]. In addition these cyto-

kines and their receptors have validated the importance

of this pathway in cellular immunity, immunodeficiency

syndromes, delayed hypersensitivity responses and tissue

damage [2]. In classically activated macrophages, the fol-

lowing steps of the HIV-1 life cycle are modulated

(Table 1).

Entry

HIV-1 infects monocytes/macrophages via interaction of

gp120 with CD4 and either coreceptor CXCR4 or CCR5

which determines the cellular tropism [19-31]. HIV-1

envelope glycoprotein gp120 down-regulates CD4

expression in primary human macrophages through

induction of endogenous TNFa [32-37]. TNFa, IL-1b

and IFN-g down-regulate both surface and total CD4

expression in primary human macrophages at the level

of transcription [36,38-41]. TNFa, IFN-b, and IFN-g

inhibit R5 and R5/X4 HIV-1 entry into primary macro-

phages via down-regulation of both cell surface CD4

and CCR5 and via enhanced secretion of C-C chemo-

kines, MIP-1a, MIP-1b, and RANTES [37,38,40,42-46].

An iterative pre-treatment of primary macrophages with

TNFa prior to HIV infection inhibits HIV-1 replication

[43]. The inhibition of HIV-1 entry into primary macro-

phages by TNFa involves the 75-kDa TNFR2 [43].

Another explain could be that TNFa triggers the release

Figure 1 Classical activation (M1), alternative activation (M2) and deactivation of macrophages. Classical activation is mediated by the

priming stimulus IFN-g, followed by a microbial trigger (lipopolysaccharide, LPS). Alternative activation is mediated by IL-4 and IL-13, acting

through a common receptor chain (IL-4Ra). Deactivation can be innate or acquired in origin. The uptake of apoptotic cells or lysosomal storage

of host molecules generates anti-inflammatory responses. Cytokines (IL-10, TGF-b, M-CSF, IFNa/b) and glucocorticoids are potent modulators of

activation. Pathogens can deactivate macrophages by various mechanisms.

Herbein and Varin Retrovirology 2010, 7:33

http://www.retrovirology.com/content/7/1/33

Page 2 of 15



of granulocyte-macrophage colony-stimulating factor

(GM-CSF) that has been reported to down-regulate

CCR5 and subsequently block entry of R5 HIV into

macrophages [47]. Interestingly, TNFR2 stimulation trig-

gers GM-CSF secretion that has been shown to block

R5 HIV-1 entry via CCR5 downregulation [47]. The

inhibition of HIV-1 entry into macrophages observed

following TNFa pre-treatment could be mediated via

the secretion of C-C chemokines, such as RANTES,

MIP-1a and MIP-1b. TNFa induces the production of

RANTES, MIP-1a, and MIP-1b which in turn down-

regulate cell surface CCR5 expression on primary

macrophages resulting in inhibition of R5 HIV-1 entry

[48-53]. In agreement with this observation, RANTES

inhibits HIV-1 envelope-mediated membrane fusion in

primary macrophages [54] and the activity of RANTES

promoter that contains four NF-kB binding sites is up-

regulated by TNFa [55]. Nevertheless, some authors

report an enhancement of HIV-1 replication by

RANTES in primary macrophages [27,56]. The enhan-

cing effect of RANTES on HIV-1 infectivity may be

independent of the route of virus-cell fusion and could

involve two different mechanisms: one mediated via cel-

lular activation, and the other mediated via increased

virion attachment to target cells [56]. Another explana-

tion for this discrepancy is the activation and/or differ-

entiation status of macrophages with a more potent

inhibitory effect of RANTES on monocyte-derived

macrophages cultivated in vitro in absence of additional

cytokines such as M-CSF [57].

The monocyte chemotactic protein-2 (MCP-2), but

not MCP-1, has been shown to bind to CCR1, CCR2b,

and CCR5 and to inhibit CD4/CCR5-mediated HIV-1

entry/replication [58]. Pretreatment of macrophages

with IL-16 also inhibits R5 and R5/X4 HIV-1 replication

in primary macrophages at the level of entry, although

the secretion of CC-chemokines does not seem to be

involved in this phenomenon [59].

IL-2 has been reported to inhibit HIV-1 replication in

macrophages by down-regulating CD4 and CCR5

expression [60]. IL-15 is a Th1 cytokine produced by

mononuclear phagocytes and shares many activities with

IL-2, such as T-cell proliferation and activation. In addi-

tion IL-15 is more potent than IL-2 in stimulating NK

cell function, including secretion of IFN-g and of CCR5-

binding chemokines [61]. Ex vivo, increased levels of IL-

15 were detected in histocultures established from

lymph nodes of individuals who were HIV positive in

comparison to their uninfected counterparts [62]. Super-

natants of NK cells stimulated with IL-12 and IL-15

inhibited both macrophage-tropic HIV-1NFN-SX and T

cell-tropic HIV-1NL4-3 replication in vitro, but not dual-

tropic HIV-189.6 due to the use of multiple coreceptors

for entry by this latter, including CXCR4, CCR5, but

also CCR3 and CCR2b [24,63]. Importantly, the C-C

chemokines MIP-1a, MIP-1b, and RANTES were

responsible only for a fraction of the HIV-1-suppressive

activity exhibited by NK cell supernatants against

macrophage-tropic HIV-1. Collectively these data indi-

cate that NK cells from normal and HIV-1+ donors

Table 1 HIV-1 viral cycle in classically activated M1, alternatively activated M2 and deactivated macrophages

Viral cycle
target

M1 macrophages M2 macrophages Deactivated macrophages

Entry Decreased * CD4 downregulation: TNFa, IL1b, IFNg, IL-
2, IL-18

Decreased * CXCR4
downregulation: IL-4,
IL-13

Decreased * CCR5 downregulation:
IFNb

* CCR5 downregulation: TNFa, MIP-1a, MIP-
1b, MCP-2, RANTES, IFNg, GM-CSF, IL-2, IL-
16, IL-15

* CCR5
downregulation IL-13

Increased * CCR5 upregulation: IL-10,
M-CSF

* fusion block: RANTES * CD4
downregulation IL-13

Reverse
transcription

No effect
reported

Decreased * Block of RT: IL-13 Decreased * Block of RT: IL-10, IFNa/b

* Inhibition of RT synthesis:
TGFb

Transcription Increased *Transactivation of HIV-1 LTR: TNF, IL-1b, IL-
6, GM-CSF, IL-18

Decreased
+

* Block of HIV-1 LTR
transactivation: IL-4,
IL-13

Decreased * Block of HIV-1 LTR
activation ++

Post
transcription

Decreased * Inhibition of viral assembly and budding:
IFNg, IL-18 (via IFNg release),

No effect
reported

Decreased * Inhibition of viral
assembly: IL-10

* Inhibition of viral budding:
IFNa/b, IL-27 (via IFNa
release)

+ inhibition in differentiated macrophages

++ depends on IL-10 concentration
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produce C-C chemokines and other unidentified factors

that can inhibit both macrophage- and T cell-tropic

HIV-1 replication in vitro [63].

IL-18 is a pro-inflammatory cytokine related to the IL-

1 family of cytokines that plays an important role in

both innate and adaptative immune responses against

viruses [64,65]. Increased levels of circulating IL-18

from HIV-1 infected patients have been reported espe-

cially in the advanced and late stages of the disease [65].

IL-18 reduces cell surface expression of the HIV-1

receptor CD4 [66]. In the advanced stages of the disease,

strong activation of IL-18 production along with persis-

tent decreased production of IFN-g, IL-12 and IL-2 may

promote a Th2 immune response, which leads to persis-

tent viral replication [65].

CD40 ligand (CD40L) is a cell surface molecule of

CD4+ T cells that interacts with its receptor CD40 on

antigen-presenting cells (APC) to mediate thymus-

dependent humoral immunity and inflammatory reac-

tions. The stimulation of macrophages by CD40L has

been shown to trigger the release of TNFa and CC-che-

mokines which results in down-regulation of cell surface

CD4 and CCR5 and subsequent inhibition of HIV-1

entry into macrophages [17,67-69]. An in situ hybridiza-

tion study showed that macrophages in lymph nodes of

HIV-1 infected individuals produce MIP-1a and MIP-

1b, and to a lesser extent RANTES, suggesting that

HIV-1 infection might be modulated in vivo by activated

macrophages [70]. It is interesting to note that the

CD40/CD40L interaction triggers signalling through

TNF receptor-associated factor 6 (TRAF6) in antigen

presenting cells. TRAF6 has also been involved in innate

immune responses mediated by TLR-4, such as the

response to lipopolysaccharide (LPS) [68]. Like CD40L

activation, LPS stimulation also induces high secretion

of C-C chemokines and TNFa and inhibits infection of

macrophages and CD4+ T cells with R5 HIV-1 strains.

Thus, during opportunistic infections, LPS might also be

produced that, either directly or indirectly via TNFa

production, might block HIV-1 entry into macrophages

[71,72]. In human blood monocyte tissue culture-

derived macrophages (TCDM), endogenous TNFa and

IL-1b induced by LPS, down-regulate surface and total

CD4 expression in primary macrophages [41]. Conver-

sely, neither LPS nor TNFa/IL-1b were able to modulate

surface CD4 expression on quiescent or PHA-activated

lymphocytes [41]. Thus, opportunistic infections during

HIV disease can result in a sustained but controlled viral

production within infected macrophages.

Transcription

TNFa has been reported to stimulate HIV-1

replication in chronically infected promonocytic U1

cell line through NF-kB activation and subsequent

transactivation of the proviral LTR [73-76]. The stimula-

tion of HIV-1 replication in U1 cell line with TNFa is

mediated through the TNFR1, and not via TNFR2 [77].

Similarly, IL-1b binding to the IL-1 receptor 1, but not

to the IL-1 receptor 2, stimulates HIV-1 transcription

through activation of NF-kB or by an independent

mechanism [75,78]. IL-1 can act alone or in synergy

with IL-6 to stimulate viral replication in chronically

infected promonocytic U1 cell line [78]. In addition IL-6

alone stimulates HIV-1 replication in U1 cells and pri-

mary macrophages infected with R5 AD-87 strain, but

not in T cell lines [76]. Nuclear factor IL-6 (NF-IL6) is

a nuclear factor that activates gene expression in

response to IL-6. A consensus binding site for NF-IL6 is

present in the LTR of many HIV-1 variants and the reg-

ulation of HIV-1 LTR by NF-IL6 and NF-kB/Rel tran-

scription factors has been reported [79-81]. IL-6

stimulates HIV replication by activating viral transcrip-

tion in synergy with TNFa and also by targeting a post-

transcriptional step [76]. In addition, endothelial cells

enhance C/EBPbeta binding activity and HIV-1 replica-

tion in macrophages. This increase in HIV-1 transcrip-

tion is due in part to the production of soluble factors,

such as IL-6 and also is mediated by ICAM-1 activation

[82], indicating that endothelial cells, through the activa-

tion of C/EBPb, provide a microenvironment that sup-

ports HIV-1 replication in monocytes/macrophages. The

stimulation of HIV-1 replication in primary macro-

phages by GM-CSF is primarily due to enhanced viral

transcription rather than increased viral entry [76]. GM-

CSF stimulates HIV-1 replication in promonocytic U1

cells [83] and in primary human macrophages infected

with the R5 HIV-1 JR-FL strain [84] by targeting HIV

LTR at a site different from NF-�B [76].

In vitro, both acute HIV infection and incubation of

the THP-1 monocytoid cell line with the accessory viral

protein Nef induced expression of IL-18 [85]. Like most

proinflammatory cytokines, IL-18 induces HIV expres-

sion in chronically infected monocytic cell lines via

induction of the release of endogenous TNFa and IL-6

[86]. IL-18 stimulates HIV-1 replication in the chroni-

cally infected U1 monocytic cells, mediated in part via

TNFa and IL-6 since the addition of anti-TNFa and

anti-IL-6 antibodies reduced IL-18 increased HIV-1 pro-

duction by 48% and 63%, respectively [86]. IL-18 stimu-

lation of HIV-1 replication in U1 cells involves NF-kB

and p38 MAPK activation [86].

Posttranscription

The effect of IFN-g on HIV-1 replication might be

more complex. Pretreatment of human primary macro-

phages with IFN-g before viral input has been reported

either to stimulate or to inhibit HIV-1 replication

[45,46,84]. In addition, IL-18 has been reported as an
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IFN-g-inducing factor which inhibits HIV-1 production

in PBMC through IFN-g [66].

Altogether classically activated macrophages M1 are in

contact with Th1 cytokines (IFN-g, IL-2, IL-12), proin-

flammatory cytokines (TNFa, IL-1b, IL-6, IL-18) and

chemokines (MIP-1a, MIP-1b, RANTES) that favor the

formation of viral reservoirs with inhibition of HIV-1

entry, assembling and budding parallel to increased

viral transcription within the infected macrophages

(Figure 2).

Alternative Activation of Macrophages and HIV-1
Infection
The alternatively activated or type 2 macrophages (M2)

induced by Th-2 cytokines, express anti-inflammatory

and tissue repair properties [2] (Figure 1). Alternative

activation of macrophages is induced by IL-4 and IL-13,

cytokines that are produced in a Th-2 type response,

particularly during allergic, cellular and humoral

responses to parasitic and selected pathogen infections.

The alternative activation of macrophages is mediated

by IL-4 and IL-13, acting through a common receptor

chain (IL-4Ra) [87]. IL-4 is a pleiotropic cytokine pro-

duced by a subpopulation of CD4+ T cells, designated

Th-2 cells, and by basophiles and mast cells. IL-4 modu-

lates other lymphoid cell activities such as regulation of

the differentiation of antigen-stimulated T lymphocytes

[88,89] and control of immunoglobulin class switching

in B lymphocytes [90-93]. IL-13 is a cytokine secreted

by activated T cells which has been shown to be a

potent in vitro modulator of human monocytes and B

cell functions [94-96]. Among its pleiotropic activities,

IL-13 induces significant changes in the phenotype of

human monocytes, up-regulating their expression of

multiple cell surface molecules and increasing their anti-

gen presenting capabilities. IL-4 and IL-13 upregulate

expression of the mannose receptor and MHC class II

molecules by macrophages which stimulate endocytosis

and antigen presentation, and they induce the expres-

sion of macrophage-derived chemokine (MDC, also

known as CCL22). IL-4 and IL-13 augment expression

of IL-1 decoy receptor and the IL-1 receptor a-chain in

vitro and in vivo, thereby counteracting the proinflam-

matory actions of IL-1 [97,98]. In alternatively activated

macrophages, the following steps of the HIV-1 life cycle

are modulated (Table 1).

Entry

Infection of macrophages by primary R5X4 and X4 iso-

lates of HIV-1 is inhibited by IL-4 and IL-13, an effect

that is associated with down-regulation of surface

CXCR4, CCR5 and CD4 expression [38,99].

Reverse transcription

Upon cell infection by HIV-1, the reverse transcriptase

copies the genomic RNA to generate the proviral DNA

flanked by two LTRs [100]. IL-13 has been shown to

inhibit HIV-1 replication in blood-derived monocytes

Figure 2 A model of HIV-1 pathogenesis based on the activation status of macrophages.
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and mature lung macrophages, but not in T cells

[95,101]. The mechanism by which IL-13 inhibits HIV-1

is not yet clear. IL-13 has been reported either not to

modulate reverse transcription [102] or to block the

completion of reverse transcription in macrophages

[103].

Transcription

IL-13 has been reported to block HIV-1 replication at

the level of transcription in human alveolar macro-

phages [102]. In fact, the state of maturation of mono-

cytes into macrophages determines the effects of IL-4

and IL-13 on HIV-1 replication. In freshly isolated

monocytes, IL-4 up-regulates the expression of both

genomic and spliced HIV mRNA [104,105]. IL-4 stimu-

lates NF-�B translocation and binding resulting in

enhanced HIV RNA expression [105]. IL-4 up-regulates

the expression of HIV mRNA within the first two days

after infection of promonocytic U937 cells and 3 to 4

days after infection of plastic-adherent blood-derived

macrophages with HIV-1 [104,106]. Conversely, IL-13

and IL-4 inhibit HIV-1 replication at the transcriptional

level in differentiated macrophages, but not in periph-

eral blood lymphocytes [95,104,105]. In addition, expo-

sure to IL-13 inhibits the transcription of many other

cytokines in monocytes, including IL-1a, IL-1b, IL-6,

TNF, and GM-CSF [96], all of which have been impli-

cated in enhancing HIV-1 replication in vitro [107-110].

Altogether alternatively activated macrophages are in

contact with IL-4/IL-13 producing Th2 cells that will

curtail the formation of HIV-1 reservoirs in the macro-

phages (Figure 2).

Deactivation of Macrophage and HIV-1 Infection
The prototypic cytokine involved in the deactivation of

macrophages is IL-10. Although it is superficially simi-

lar to a Th2-type cytokine and is often co-induced with

Th2 cytokines in the course of an immune response, it

is not appropriate to classify IL-10 together with IL-4

and IL-13 as an alternative activator of macrophages

[2]. IL-10 acts on a distinct plasma membrane receptor

to those for IL-4 and IL-13 [1]. Similar to IL-10, other

cytokines such as TGF-b, M-CSF and IFNa/b result in

macrophage deactivation [2] with strong anti-inflam-

matory properties, down-regulation of MHC class II

molecules on the plasma membrane (Figure 1). Deacti-

vation of macrophages leads to immune suppression

through at least two independent mechanisms: dimin-

ished MHC class II expression and increased uptake of

apoptotic cells generating an anti-inflammatory

response [111-115]. In deactivated macrophages, the

following steps of the HIV-1 life cycle are modulated

(Table 1).

Entry

IL-10 up-regulates cell surface CCR5 expression on

monocytes and thereby enhances viral entry [116]. M-

CSF has been shown to favor HIV-1 replication in

human macrophages, probably via an increased matura-

tion stage and increased CCR5 expression, also resulting

in enhanced viral entry [29,117]. By contrast, IFN-b

inhibit R5 HIV-1 entry into primary macrophages via

down-regulation of both cell surface CD4 and CCR5

and via enhanced secretion of C-C chemokines, MIP-

1a, MIP-1b, and RANTES [37,40,42-46].

Reverse transcription

IL-10 suppresses HIV-1 replication in primary human

macrophages by inhibiting the initiation of reverse tran-

scription; therefore, IL-10 mediates a virostatic latent

stage in cells of the monocyte/macrophage lineage

[118-120]. TGF-b inhibits the synthesis of different viral

proteins especially reverse transcriptase in U1 promono-

cytic cells activated by phorbol ester or IL-6 [121].

Members of the APOBEC (acronym for apolipoprotein

B editing catalytic polypeptide) family of cellular cytidine

deaminases represent a recently identified group of pro-

teins that provide immunity to infection by retroviruses

[122-125]. The cytidine deaminases APOBEC exert anti-

HIV-1 activity that is countered by the HIV-1 vif pro-

tein [122]. Tripartite motif (TRIM) proteins constitute a

family of proteins that share a conserved tripartite archi-

tecture [126-128]. Interferons, especially type I IFNa/b

bolster innate defence against HIV-1 via the up-regula-

tion of APOBEC/TRIM proteins which blocks retroviral

replication, especially reverse transcription [129-131].

Transcription

High concentrations of IL-10 inhibit the production of

proinflammatory cytokines such as TNFa, IL-1b, IL-6,

and thereby IL-10 inhibits HIV-1 transcription [132]. By

contrast, low concentrations of IL-10 have been

reported to enhance HIV replication in macrophages

induced by TNF-a and IL-6 via an increase in HIV

mRNA accumulation and stimulation of phorbol ester-

induced LTR-driven transcription that is independent of

the NF-�B and Sp1 transcription factors [133].

Posttranscription

Primary macrophages treated with IL-10 after HIV-1

inoculation show an accumulation of Gag protein sug-

gestive of an inhibitory effect at the level of virus assem-

bly [134]. IFNa and IFNb reduce HIV-1 replication in

primary macrophages although inhibition by IFNa has

been reported to be more efficient [45,135]. Anti-HIV

effects of IFNa/b are mediated by both inhibition of

viral assembly and budding [136,137]. IL-27 inhibits
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HIV replication in monocyte-derived macrophages like

IFN-a and IFN-b[138]. IL-27 suppresses the transcrip-

tion of HIV-1 and preferentially inhibits HIV-1 replica-

tion in macrophages compared with CD4+ T cells and

activates multiple IFN-inducible genes (ISG) in macro-

phages like IFN-a, suggesting that IL-27 inhibits HIV-1

replication in macrophages via a mechanism similar to

that of IFN-a [138-140]. Recently, of the hundred of

IFN-inducible genes discovered to date, ISG15 and

ISG20 have been reported to inhibit assembly and

release of HIV-1 virions [141-144]. In addition the IFN-

inducible tripartite motif protein TRIM22 inhibits the

budding of HIV-1 with diffuse cytoplasmic distribution

of Gag rather than accumulation at the plasma mem-

brane [145]. The effects of TGF-b on the post-transcrip-

tional steps of HIV-1 replication are more complex. In

primary human macrophages, both inhibition and sti-

mulation of HIV-1 replication have been reported fol-

lowing a posttreatment with TGF-b[121,146].

Altogether in deactivated macrophages, HIV-1 replica-

tion is strongly blocked at several steps of the viral life

cycle especially reverse transcription, transcription and

viral budding and assembly (Figure 2).

Activation Status of Macrophages and HIV-1
Pathogenesis
Because of the various behaviours of macrophages

reported (classically activated M1, alternatively activated

M2, deactivated dM), we would like to present a new

model that highlights the role of macrophage activation

status in the modulation of viral persistence and T-cell

apoptosis and could thereby further enhance our under-

standing of pathogenesis of HIV-mediated disease (Fig-

ure 2). We will first propose a model that applies to the

monocytes/macrophages present in the blood and in the

lymph nodes of HIV-1-infected patients. We will then

discuss this HIV model in light of the different popula-

tions of macrophages present in distinct tissues and

highlight the critical role of the microenvironment in

tissues such as mucosal tissue and the central nervous

system (CNS).

Activation status of monocytes/macrophages in

peripheral blood and in lymph nodes of HIV-1-infected

subjects

Early in the disease, when the levels of proinflammatory

cytokines, C-C chemokines and type I IFN are low and

chronic immune activation is not yet predominant viral

proteins are crucial for establishing a productive infec-

tion and for the activation of macrophages [147-149].

Viral proteins expressed early in the viral cycle, such as

Nef, Tat, and virion-associated Vpr, activate the TNFR

pathway to partially mimic TNFa biological effects, sug-

gesting that these viral proteins can fuel the progression

of the disease even in the absence of proinflammatory

cytokines, especially in macrophages [9,148,150]. These

viral proteins play a role in the formation of viral reser-

voirs in macrophages by activating transcription from

the LTR and interfering with apoptotic machinery

[6,151]. The classically activated macrophages M1 are in

contact with high levels of Th1 cytokines (IFN-g, IL-2,

IL-12), proinflammatory cytokines (TNFa, IL-1b, IL-6,

IL-18) and chemokines (MIP-1a, MIP-1b, RANTES)

that favor the formation of viral reservoirs with strongly

increased viral transcription and inhibition of HIV-1

entry to block superinfection within infected macro-

phages. In addition type I interferon production is

impaired in primary HIV-1 infection with only limited

inhibition of viral assembling and budding

[147,152,153]. During this stage of the disease M1

macrophages are predominant, tissue injury especially in

lymph nodes is observed and the rate of T-cell apoptosis

is increasing [148].

At a later stage of the disease, a M1 toward M2 shift

is observed with IL-4/IL-13 as pleiotropic modulators of

macrophage activation that induce distinctive pro-

grammes of altered macrophage gene expression after

the engagement of their specific cytokine receptors

[154]. At this intermediate stage M2 macrophages

appear and will favor tissue repair, the MHC class II-

mediated antigen presentation and T-cell activation, the

stimulation of bacterial endocytosis via the up-regulation

of the mannose receptor on the cell surface [2,155].

Alternative activation of macrophages might help to

favor the clearance of opportunistic infections during

HIV-1 disease [156,157]. Intermediate levels of T-cell

apoptosis are observed that does not totally block the

production of proinflammatory cytokines [111,158]. The

combination of IL-4/IL-13 cytokines and proinflamma-

tory cytokines in the microenvironment present in the

vicinity of infected macrophages will curtail the expan-

sion of macrophage HIV-1 reservoirs [38,159].

At the onset of AIDS, T-cell apoptosis is dramatically

increased and opportunistic infections are very frequent

[148,158,160], resulting in an enhanced apoptotic cell

clearance by IL-10-deactivated macrophages [161,162].

An imbalance in the TH1-type and TH2-type responses

has been proposed to contribute to the immune dysre-

gulation associated with HIV infection, and that pro-

gression to AIDS is dependent on a TH1/TH2 shift

[163]. This hypothesis was based on the following facts:

(1) progression to AIDS is characterized by loss of IL-2-

and IFN-gamma production concomitant with increases

in IL-10; and (2) many seronegative, HIV-exposed indi-

viduals generate strong TH1-type responses to HIV

antigens. Recently, haplotypes of the IL-4 and IL-10

genes associated with AIDS progression have been

reported [164,165]. In HIV-infected patients, the amount
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of IL-10, but not IL-4, increases significantly in patients

with AIDS [166]. Opportunistic infections, especially

present at the late stages of the disease, trigger IL-10

production [167] and IL-10 production from patients

with AIDS has been reported to decrease in vitro HIV-1

replication and TNFa production [168]. In addition, IL-

10 has been reported to suppress antiviral T-cell activity

during persistent viral infection [169] and Tat-induced

IL-10 mediates immune suppression during HIV-1

infection [170]. In addition, the IL-10 deactivated

macrophages inhibit the production of proinflammatory

cytokines such as TNFa and C-C chemokines that were

produced abundantly due to chronic immune stimula-

tion during the previous stages of the disease [171,172].

IL-10 inhibits HIV-1 LTR-driven gene expression in

human macrophages through the induction of cyclin T1

proteolysis [173]. At the late stages of the disease the

decreased levels of proinflammatory cytokines result in

a strong reduction of viral transcription. In addition

high expression of IFNa/b inducible proteins such as

APOPEC and TRIM proteins inhibit strongly the HIV-1

reverse transcription and assembly/budding (Table 1).

The deactivation of macrophages also results in a pro-

found immune suppression resulting from the decreased

expression of MHC class II expression on the plasma

membrane of macrophages with diminished Ag-

mediated T cell response and the depletion of both CD4

+ and CD8+ T cell by accelerated apoptosis. Thus, IL-

10 and type I IFN restrict strongly HIV-1 replication in

macrophages parallel to the immune failure observed at

the very late stages of the HIV-1 disease.

Activation status of macrophages in mucosal tissues and

in the CNS

The localization of macrophages in distinct tissues has

been reported to modulate their susceptibility to HIV-1

infection. In human and macaque gastrointestinal

mucosa, most attention has been focused on the small

intestine, where lamina propria CD4+ T cells are promi-

nent HIV-1 and SIV target cells and undergo profound

depletion shortly after infection [174-182]. In contrast,

macrophages in the gastrointestinal mucosa, unlike

monocyte-derived macrophages, are rather resistant to

infection with HIV-1 [183-185]. In contrast to mono-

cytes and monocyte-macrophages, intestinal macro-

phages do not express many innate response receptors

[186,187], are downregulated for triggering receptor

expressed on monocytes (i.e., TREM-1) [188,189] and

costimulatory molecules [187,190], and display markedly

reduced CD4 and CCR5 cell surface protein and mRNA

[191]. Thus, the striking and well-defined phenotypic

and functional differences between blood monocytes

and mucosal macrophages, in particular macrophages in

the gastrointestinal mucosa [186,187,192], preclude the

simple extrapolation from findings in HIV-1-infected

monocytes to HIV-1 infection of mucosal macrophages.

Human vaginal macrophages have been reported

recently to support R5 virus entry in explanted vaginal

mucosa, and purified vaginal macrophages support sub-

stantial levels of R5 HIV-1 replication [193]. Vaginal

macrophages display the innate response receptors

CD14, CD89, CD16, CD32 and CD64, and the CD4

receptor and CCR5 and CXCR4 coreceptors [193]. The

difference in phenotype and HIV-1 permissiveness

between vaginal and intestinal macrophages may reflect

differences in the local microenvironment, since

mucosa-derived cytokines, including TGF-b, regulate the

phenotype and function of blood monocytes after their

recruitment to the mucosa, at least in the intestinal

mucosa [187]. In agreement with this hypothesis, intest-

inal macrophages are threefold less frequently CD4+

CCR5+ than vaginal macrophages, and yet virus is

detected in intestinal macrophages, indicating low-level

receptor mediated entry, but intestinal macrophages do

not support viral replication suggesting a post-entry

block such as described for TGF-b [193].

Macrophages of the central nervous system (CNS) are

permissive to HIV-1 infection. Two models have been

proposed: the Trojan horse model and the late invasive

model [194]. In the Trojan horse model, the virus enters

the CNS early, and replicates at low levels as a reservoir

separated from the periphery. A viral phenotype that is

more virulent in the context of the CNS emerges, lead-

ing to the development of disease. In the late invasion

model, uncontrolled virus replication and resulting

immune deficiency lead to alterations in the myeloid dif-

ferentiation pathway, promoting the expansion of an

activated monocyte subset that is capable of tissue inva-

sion. The hallmark of the brain histopathology is pro-

ductive infection in macrophages (perivascular

macrophages and microglia) [195]. HIV encephalitis

(HIVE) is characterized by monocyte/macrophage infil-

tration into the brain, multinucleated giant cell forma-

tion (fusion of several macrophages), and presence of

microglial nodules [196]. There is little evidence for

infection in neurons, endothelial cells, or macroglia

(astrocytes and oligodendrocytes) [197-199]. In the Tro-

jan horse model, it has been hypothesized that the virus

enters the CNS mainly through infected monocytes and

macrophages destined to become brain-resident macro-

phages or perivascular macrophages [200]. It is assumed

that HIV-1 enters early after primary infection (at a

peak of primary viremia), and HIV-1 infection persists

at low levels due to the immune-privileged status of the

CNS. In addition there is an uniqueness of the brain

microenvironment with several anatomic/structural,

physiological, and immunoregulatory mechanisms that

ensure the immune priviledge of the brain, preventing
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recognition of foreign antigens, to minimize/deviate and

block inflammatory responses [201]. Soluble anti-inflam-

matory molecules have been shown to play a role in

immune privilege in the CNS. TGF-b has the ability to

inhibit activation of macrophages, T lymphocytes, and

NK cells [202], and TGF-b has been shown to possess

neuroprotective capabilities [203]. Upregulation of TGF-

b is observed during HIV-1 infection and is correlated

with the magnitude of inflammatory responses during

HIV-1 brain infection [204]. High concentrations of

gangliosides downregulate expression of MHC class II

on astrocytes [205] and could contribute to generally

low levels of MHC class II on microglia. In contrast, a

significant increase in MHC class II has been reported

in the context of HIVE on activated microglia [206,207]

and it is considered the best neuropathologic correlate

of cognitive impairment [208]. TGF-b, IL-10, and

TRAIL have been reported to contribute significantly to

the CNS-DC-mediated inhibition of allo-T-cell prolifera-

tion [209] and to participate in the control of viral CNS

infections [210]. In agreement with this observation,

only few DC-like cells were found in perivascular spaces

in SIV-infected macaques [211]. Although invasion of

the CNS by HIV-1 occurs at the time of primary infec-

tion and induces a transitory inflammatory process with

increased number of microglial cells, upregulation of

MHC class II antigens, and local production of cyto-

kines [212], viral replication remains very low during

the asymptomatic stage of HIV-1 infection. Specific

immune responses including Th2 cytokines and CTLs

continuously inhibit viral replication at this stage of

infection [213-216]. While HIV-1 enters the brain early

following viral infection [200], detectable productive

viral replication and brain macrophage infiltration occur

years later and only in some infected patients [217]. The

replication of HIV-1 in microglia depends on the micro-

environment in the CNS. Recently, it has been reported

astrocyte-mediated regulation of microglial function and

its influence on the onset and the progression of neu-

roAIDS [218]. HIV-1, recombinant gp120, and viral

transactivator Tat activate astrocytes to secrete pro-

inflammatory cytokines TNFa, IL-6, and IL-1b and the

pro-inflammatory chemokines MCP-1 and IP-10

[195,219-224], all of which could contribute to the over-

all inflammatory environment in the brain. To further

contribute to the inflammatory environment in the

CNS, microglia and macrophages release proinflamma-

tory cytokines such as IL-1b and TNFa which play a

role in CNS injury [225,226]. In agreement with these

data, in vivo expression of proinflammatory cytokines in

HIV-1 encephalitis has been reported and the macro-

phage/microglia lineage is the main cell type reported to

release cytokines in HIVE [227]. Altogether, after an

early and transitory stage of macrophage/microglia

activation at the time of primary infection, a stage of

deactivation of macrophage/microglia is observed paral-

lel to the presence of “deactivating” cytokines such as

TGF-b and IL-10 in the CNS microenvironment. In

some patients, detectable productive viral infection and

brain macrophage infiltration occur years later parallel

to increased levels of pro-inflammatory cytokines in the

context of HIVE.

A M1/M2/Md macrophage polarization model and

vice versa

Altogether, in the lymph nodes of HIV-1-infected

patients a shift from activated to deactivated macro-

phages throughout the disease is observed parallel to a

Th1 pro-inflammatory/Th2 anti-inflammatory switch. In

some tissue such as the intestinal mucosal tissue, the

macrophages are mostly in a deactivated stage with a

local microenvironment curtailing the viral replication

through the release of anti-inflammatory cytokines such

as TGF-b. In contrast to the intestinal mucosa, macro-

phages from the vaginal mucosa are more permissive to

HIV-1 replication and are activated by proinflammatory

cytokines. In the CNS of HIV-infected patients, the

macrophage/microglia are mostly deactivated under the

control of cytokines such as TGF-b, although in some

cases HIVE occurs parallel to the production of proin-

flammatory cytokines and high viral production at

advanced stage of the disease. Thus the shift of macro-

phage/microglia from activation to deactivation and

vice-versa depends on the tissue infected by HIV-1 and

on the local microenvironment. In agreement with this

hypothesis, the reversion of M2/Md macrophages to M1

polarization has been recently reported in vitro, and was

associated with a renewed capacity to support HIV-1

replication [228]. M1/M2/Md macrophage polarization

may represent a mechanism that allows macrophages to

cycle between productive and latent HIV-1 infection

and vice-versa, parallel to the critical role of the tissue

microenvironment which can drive the macrophage

polarization either way and thereby can modulate HIV-1

replication specifically in distinct tissues at different

stages of the disease.

Conclusion
The concept of macrophage heterogeneity and differen-

tiation has been recently highlighted by the description

of at least three types of macrophage activation: M1, M2

and deactivated macrophages. Based on the activation

status of macrophages we propose a model starting with

M1 classically activated macrophages with accelerated

formation of viral reservoirs in a context of Th1 and

proinflammatory cytokines. Then IL-4/IL-13 alterna-

tively activated M2 macrophages will enter into the

game that will be concomitant to tissue repair, enhanced
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MHC class II-mediated antigen presentation, increased

T-cell activation, and enhanced clearance of opportunis-

tic pathogens via bacterial endocytosis. At this stage of

the disease, the expansion of the HIV-1 reservoir in IL-

4/IL-13 alternatively activated M2 macrophages will be

stopped [228]. The M2 macrophages will be in the vici-

nity of Th2 cells with the appearance of IL-10 deactiva-

tion of macrophages leading to immune failure observed

at the very late stages of the HIV-1 disease with dimin-

ished Ag-mediated T cell response and accelerated

depletion of both CD4+ and CD8+ T cells by apoptosis

[229]. A better understanding of the macrophage activa-

tion status during the progression of HIV-1 infection

could lead to the development of new therapeutic

approaches.
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