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Ferritins, the main intracellular iron storage proteins, have been
studied for over 60 years, mainly focusing on the mammalian
ones. This allowed the elucidation of the structure of these proteins
and the mechanisms regulating their iron incorporation and
mineralization. However, ferritin is present in most, although not
all, eukaryotic cells, comprising monocellular and multicellular
invertebrates and vertebrates. The aim of this review is to provide
an update on the general properties of ferritins that are common to
various eukaryotic phyla (except plants), and to give an overview
on the structure, function and regulation of ferritins. An update
on the animal models that were used to characterize H, L and
mitochondrial ferritins is also provided. The data show that ferritin

structure is highly conserved among different phyla. It exerts an
important cytoprotective function against oxidative damage and
plays arole in innate immunity, where it also contributes to prevent
parenchymal tissue from the cytotoxicity of pro-inflammatory
agonists released by the activation of the immune response
activation. Less clear are the properties of the secretory ferritins
expressed by insects and molluscs, which may be important for
understanding the role played by serum ferritin in mammals.

Key words: cytoprotection, ferritin, iron metabolism, oxidative
damage.

INTRODUCTION

Ferritin is a ubiquitous and highly symmetrical protein,
characterized by a distinct brown colour and a remarkably high
stability to temperature and extreme pH values. These properties
facilitate its recognition, purification and crystallization, allowing
it to be among the first proteins to be identified and named
[1]. Important milestones in ferritin research were achieved by
discovering that: (a) its expression is iron-dependent, (b) it is
present in serum at concentrations related to body iron stores,
(c) mammalian ferritins are formed by two subunit types, (d)
small dodecameric ferritin DNA-binding proteins from starved
cells (DPSs) are expressed by bacteria, and (e) mitochondria
harbour a specific form of ferritin. However, the most important
accomplishment has probably been the resolution of its unique
3D structure. Although this protein is ancient, the interest in it
has never really declined and it keeps attracting the attention
of many researchers working in different fields. New structural
and functional properties of ferritin are constantly identified
in different organisms and/or organs, and recently its versatile
structure has been exploited in a number of nanotechnological
applications [2,3]. Reviews on ferritins are periodically published
[4-16], showing the continuing interest in this molecule. The
aim of the present review is to give an overview of the
ferritins expressed in various eukaryotes (except plants) including
mammals, stressing similarities and surprising differences in
structure and cellular localization among different phyla. It also
provides an update on the different cellular and animal models that
were used to characterize the structure, regulation, and biological
and biochemical functions of ferritin in iron handling and
beyond.

GENERAL PROPERTIES OF EUKARYOTIC FERRITINS
Ferritin genes in eukaryotes

Ferritin has been identified in many species of different phyla, so
it is often stated that it is ubiquitous in all organisms, with the
notable exception of yeasts [9]. However, the recent explosion
of genomes, transcriptomes and proteomes allows verification of
this assertion. Besides yeasts, other ferritin-less organisms include
stramenopiles, a eukaryotic lineage that comprises unicellular
algae, macroalgae and plant parasites [17]. Ferritin has not been
reported in most of the ancient centric diatoms, although they
show a mineral iron phase resembling a ferritin core [17]. In
similar pennate diatoms, ferritin expression was found to confer
a proliferative advantage, with a high number of cell divisions
in the fertilization occurring in the oceans even in the absence of
added iron [18]. This finding stimulated the transcriptome analysis
of 47 diatom species: ferritin was undetectable in most centric
diatoms, but present in all of the other classes analysed. The
ferroxidase centre, necessary for iron incorporation, is conserved
in all of the ferritins and an ancient duplication event led to
two distinct paralogues that differed by a few residues at the
C-terminus. A phylogenic analysis suggested a vertical rather
than a lateral inheritance of these genes [19].

Most organisms contain more than one functional ferritin
gene (including bacteria that can have three or more). Only a
minority has just one ferritin gene, among which are Aplysia
sp. [20], several shrimps and shellfish, and bivalves. Ferritin
paralogues may have distinctive properties that are classified
as: the H- (or M-) type carrying the residues for a functional
ferroxidase centre, and the L-type with inactivated ferroxidase
centre due to the substitution of key residues. The cytosolic
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Figure 1  Structural properties of typical cytosolic eukaryotic ferritin

(A) Representation of the ferritin shell viewed down one of the eight 3-fold axes showed the hydrophilic pore where iron transits to the cavity. (B) Representation of the ferritin fold comprising the
four-helix bundle and the fifth C-terminal helix. The iron-binding site of the ferroxidase centre of the bullfrog M-chain is shown. The ligand residues and iron atoms (red spheres) are highlighted.

ferritins, of 170-180 residues, are the best characterized and
in mammals these are encoded by two genes, FTH and FTL,
with four exons and similar structures. Moreover human and
mouse genomes contain more than 40 non-interrupted ferritin-like
sequences, probably pseudogenes arising from retrotransposition
[21]. Spliced transcript variants are rare and their biological
validity has not been determined [22]. On the contrary, secretory
ferritins, predominantly expressed in insects and molluscs, but
also present in mammals (e.g. serum ferritin), are normally
generated as precursors of 200-240 residues with a leader
sequence that is cleaved in the mature protein. Moreover,
plants, mammals and insects (Drosophila sp.) have another
type of ferritin characterized by an N-terminal extension for
mitochondrial or plastid export, which is cleaved after maturation
[23]. Recently, a novel functional ferritin gene has been identified
on chromosome X in humans and mice, named ferritin-heavy-
polypeptide-like-17 (FTHLI7). It is transiently expressed at the
embryonic stage and the protein product assembles in ferritin
shells that partially accumulate in the nucleus [24].

Structures of eukaryotic ferritins

The highly symmetrical structure of ferritin greatly facilitated
its crystallization; indeed horse spleen ferritin was one of the
first proteins obtained in a crystal form. The hard work of
Pauline Harrison and collaborators succeeded in resolving the
crystallographic structure of this ferritin in 1984 [25]. It disclosed
that ferritin is an almost spherical shell, or nanocage, composed
of 24 subunits that assemble to form a dodecahedron 12 nm in
diameter, with a large hollow cavity 8§ nm across (Figure 1).
Each subunit is folded into a four-helix bundle of similar length,
with a long loop between helices B and C, and a fifth short C-
terminal helix E. This basic structure is characteristic, unique
and conserved in all ferritin types. The next success was the
resolution of the structure of the recombinant human ferritin H-
chain, which disclosed the structure of the ferroxidase centre
common to most ferritins [26]. This was followed by 3D structures
of many prokaryotic ferritins from different species and a few
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eukaryotic ones, listed in Table 1. They include ferritin paralogues
from humans, mice, horses, bullfrogs, the insect Trichoplusia ni
and the dipennate diatoms Pseudo-nitzschia multiseries. Plant
ferritin structures have been discussed elsewhere [27]. In some
eukaryotes the ferritins are generated by the self-assembly of
two subunit types (see below). Once assembled in the 24-mer
structure, the ferritins define a large cavity for iron storage which
is separated from the solution by a 2-nm-thick protein shell.
This is pierced by two types of channels: those on the 4-fold
axes are made of the C-terminal helices of four subunits; they are
tight and hydrophobic and probably permeable to oxygen, but not
to ions. Those on the 3-fold axes are hydrophilic, permeable to
iron and other ions, and lined by carboxy groups forming binding
sites for a variety of metal ions [28,29].

The metal ions inside the four-helix bundle of H-chains identify
the ferroxidase centre, which is composed of two metal-binding
sites at a close distance, named A and B; in the crystals
these are often occupied by non-redox metals, although iron
is generally absent because it forms a labile complex. Iron
was found after soaking bullfrog M-ferritin [30] and diatom
ferritins [31] in Fe(II) solutions. Crystallographic studies of
mammalian ferritins revealed that the pockets at the 2-fold
intersubunit are available to bind organic molecules, including
protoporphyrin [32], anaesthetics [33] and, more recently, fatty
acids [34]. Of interest, the ferritin-bound long-chain fatty acids,
such as arachidonate, project the carboxylate into the cavity,
contributing to ferrihydrite mineralization and accelerating iron
uptake. It remains to be assessed how these molecules can pass
through the shell to reach the binding site.

The chemistry of iron incorporation into eukaryotic ferritins

Natural ferritins purify as iron-containing proteins and the iron is
readily extracted by reducing agents. The apoferritin so obtained
reacts with Fe(Il) ions in the presence of dioxygen to oxidize
and incorporate it into a mineral core similar to that of natural
ferritins. This reaction, thought also to occur in vivo, has been
studied by many groups for over 40 years and is rather well
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Table 1 Representative 3D structures of eukaryotic ferritins
1A=01nm.
Species Ferritin PDBID Resolution (£) Comments Reference
Pennate diatoms (Pseudo-nitzschia multiseries) H-chain 3E6R 24 Structure of recombinant mature ferritin. Analysed [18]
also after soaking in Fe(ll) solution
Insect (Trichoplusia ni) H- and L-chains 1260 1.91 The only structure of ferritin heteropolymer [54]
Amphibian, bullfrog (Rana catesbeiana) M-chain 1MFR 2.8 The structure of a well-characterized ferritin with [175]
an active ferroxidase site. Analysed also after
soaking in Fe(Il) solution and subjected to
various mutageneses
Amphibian, bullfrog (R. catesbeiana) L-chain 1RCI 2 Structure of a ferroxidase-less L-chain [176]
Mammal, mouse (Mus musculus) H-chain 3WNW 2.24 The only structure of mouse H-ferritin None
Mammal, mouse (M. musculus) L-chain 1LB3 1.21 The ferritin structure with the highest resolution. [177]
One of the three ferroxidase-less structures to
be solved
Mammal, horse (Equus caballus) L-chain 1AEW 1.95 The first ferritin type to be crystallized and its [178]
structure resolved
Human (Homo sapiens) H-chain 2FHA 1.9 The first recombinant ferritin to be produced and [178]
crystallized that showed the presence of a
ferroxidase centre
Human (H. sapiens) L-chain 2FG8 2.5 A recombinant ferroxidase-less ferritin [179]
Human (H. sapiens) Mitochondrial 1R03 1.7 The recombinant mature FtMt that shows a high [180]

level of similarity to the H-chain

characterized. Natural horse spleen ferritin, recombinant human
Hand L, bullfrog M and diatom ferritins are the eukaryotic models
studied more carefully, e.g. detailed studies of soaking crystals for
minutes to hours in a Fe(II) solution under aerobic conditions were
conducted for frog M-ferritin [30] and diatom ferritins [31], to
characterize the structure and dynamics of the ferroxidase centre.
In the most widely accepted model, the basic process of ferritin
iron uptake involves the entry of Fe(Il) atoms into the cavity via
hydrophilic 3-fold channels, a process that is facilitated by an
electrostatic gradient attracting metal cations [35] and the funnel-
shaped 3-fold channels with conserved carboxy groups that act
as transient iron-binding sites [36]. Fe(Il) transit is fast, <3 ms,
and follows a facilitated diffusion rate [37]. Once internalized,
Fe(Il) migrates to the ferroxidase centre of the H subunits,
which are 2 nm apart, probably after a path involving cavity-
exposed threonine, histidine and tyrosine residues [38,39]. In the
ferroxidase centre, the Fe(II) atoms occupy the two co-ordination
sites A and B, and encounter dioxygen (or hydrogen peroxide) to
be oxidized in a diferric—peroxo complex that can be monitored
for its absorbance at 650 nm. This complex rapidly decays,
leaving the two Fe(III) atoms linked by a pt-oxo-/hydroxo-bridge
and hydrogen peroxide. The oxidized iron then moves to the
nucleation centre where, in a slower reaction, it is hydrolysed with
the release of protons and mineralized as ferrihydrite [29,40,41].

The reaction of Fe(II) oxidation produces hydrogen peroxide,
which acts in place of dioxygen to oxidize Fe(II) [42], so a major
property of ferritin ferroxidase activity is the capacity to consume
both reagents of the Fenton reaction, reduce the production of
toxic hydroxyl radicals and have a general antioxidant activity
[43]. The path from the ferroxidase centre to the cavity has
been analysed by a paramagnetic nuclear magnetic resonance
(NMR) study indicating that, although moving to the cavity, the
diferric—peroxo complexes interact to form multimeric Fe(IIl)
entities before reaching the nucleation sites to form the iron
core [44]. In an alternative model, the iron core formation
does not need the aggregation of small clusters [16]. Based on
the characterization of the prokaryotic ferritin from Pyrococcus
furiosus, it was suggested that in mammalian ferritin the
ferroxidase centre is also a stable prosthetic group that acts by

oxidizing Fe(Il) and transferring electrons to oxygen [16,45].
Iron oxidation occurs directly on the mineral surface with
simultaneous nucleation in a reaction that most probably does not
occur in vivo [46]. Probably biologically relevant are oxoanions,
in particular phosphate, that increase the rate of iron core
formation [47]. When iron increments are above the saturation
of the ferroxidase centre, 48 Fe atoms per H homopolymer,
the incoming Fe(Il) ions increase turnover at the catalytic site
[48]. This mechanism implies a low stability of the di-iron
complex, unlike bacterioferritins and enzymes with dioxygen
activation such as ribonucleotide reductase and methane mono-
oxygenase, in which the di-iron complex is stable and acts as a
cofactor rather than a substrate, as in mammalian H-ferritins [46].
According to this, the ferroxidase centre of bullfrog M-ferritin
was modified to introduce the iron-co-ordinating residues found
in the enzymes. However, the iron co-ordinated at the site
maintained the properties of a substrate rather than a cofactor,
indicating that electrostatic alterations, steric changes and
hydrophobicity of the cofactor site associated with its second
sphere environment make important contributions to the activation
of O, by binuclear iron enzymes [49].

In addition, L-ferritin can react with Fe(II) to form an iron core.
However, this reaction needs a spontaneous Fe(II) autoxidation
occurring at pH >6.5 and with high iron increments, leading to
the formation of iron cores more ordered than in the ferritin H-
chain (FTH) [50]. It is thought that this does not occur in vivo and
that the L-chain participates in the biological reaction only when
associated with the H-chain in heteropolymers (see below). In
fact, the ferritin L-chain (FTL) has a more efficient iron nucleation
site that co-operates with the ferroxidase activity of H-subunits
to improve ferritin iron incorporation [51]. Indeed, mammalian
H/L-heteropolymers are thought to be more efficient than the
corresponding homopolymers in iron incorporation. It has been
observed that the shape of the mineralized iron core is affected
by the presence and proportion of L-chains, consistent with the
hypothesis that they facilitate iron nucleation [52]. A recent study
indicated a new function of FTL, showing that the electrons
released during iron oxidation were transported across the ferritin
cage, specifically through L-chains [53].

© 2015 Authors; published by Portland Press Limited
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Ferritin self-assembly and heteropolymers

A major property of ferritins is the capacity to self-assemble
into the 24-mer shell, both in vivo and in vitro, leaving no free
subunits in solution. Moreover, ferritins from mammals, plants
[8], insects [54] and fish [55] were shown to form heteropolymers
made of two or more different subunit types. Of particular
interest is the structure of the secreted ferritin from the insect
T. ni which is made up of 12 heterodimers of H- and L-chains
arranged with tetrahedral symmetry, compared with vertebrate
ferritins made of a single subunit type arranged with octahedral
symmetry [54]. This structure explains why the expression of
both subunit types is necessary to form functional ferritins in
Drosophila sp. [56]. In mammalian cells the H- and L-chains
assemble in the proportion that is dictated by their relative level of
expression. However, the exogenous ferritin subunits expressed
in transiently transfected COS7 did not co-assemble with the
endogenous ones [57], although those expressed after stable
transfection did [58]. This suggested that, in vivo, the formation
of heteropolymers is time dependent due to the slow turnover of
the endogenous ferritins which cannot associate with the fast,
newly synthesized, ferritin chains. In vitro ferritin assembly
occurs spontaneously and, when H- and L-subunits are present, the
formation of hetero- over homo-polymers is strongly preferred.
This allows the production of heteropolymers of the desired H/L
proportion [59,60], but the mechanism of the co-assembly is
difficult to clarify. That subunit dimers are the first intermediates
in the self-assembly pathway has been suggested before [61—
63], and recently confirmed using a new technique in which
the interaction for the subunit dimers was engineered to make
it copper-dependent. In the absence of copper, the subunits folded
into monomers that were incompetent in assembly. The presence
of Cu(Il) promoted the formation of the dimers and the assembly
in ferritin shells [64]. It remains to be clarified whether, in
the formation of heteropolymers, the intermediates are subunit
heterodimers, as in the insect ferritins, or homodimers. Whatever
the mechanism, the easy formation of assembled/disassembled
structures of ferritin has been exploited in nanotechnology and
material sciences [2,65], and heteropolymers can be exploited in
nanotechnology for the introduction of different functions in one
molecule.

Regulation, homoeostasis and degradation of eukaryotic ferritins

Most, if not all, eukaryotic ferritins are regulated by iron. In
mammals and higher eukaryotes, most of the iron-dependent
regulation occurs at a post-transcriptional level and involves
the binding of iron-regulatory proteins 1 and 2 (IRP-1/2) to
iron-responsive elements (IREs) located at the 5-UTR of the
transcripts. This mechanism, elucidated almost 20 years ago, has
been carefully described in excellent reviews [66], and it will
not be considered here any further. In nematode worms, such as
Caenorhabditis elegans, the regulation occurs at a transcriptional
level and is discussed below. In many species, ferritin is also
induced by oxidative stress or during infection, e.g. in turtles
ferritin responds to oxygen deprivation and oxidative stress, being
transcriptionally regulated via the activation of the nuclear factor
kB (NF-kB) signal transduction pathway [67].

Cytosolic ferritin acts as an iron buffer. Although it is
known that iron must be recycled when needed, the biological
mechanism through which it is released from ferritin remains
more elusive than its uptake. The current understanding of this
process has recently been reviewed [68]. Ferritin iron is readily
released on incubation with reducing agents, even bulky ones
that cannot penetrate the shell [69], suggesting that the same
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may also occur in vivo. In fact it may take place under specific
conditions, e.g. Bacillus cereus expresses a surface protein named
IIsA which binds ferritin and facilitates its iron release in the
presence of siderophores. This mechanism of iron acquisition is
important for the proliferation and pathogenicity of B. cereus
[70]. Fast iron release without disruption of the ferritin shell
occurs only after iron reduction, which implies the formation
of free radicals, and it was proposed to happen only under
conditions of oxidative damage [71]. The ferritin shell can be
degraded by the proteasomal or autophagic machinery. Studies
indicate that autophagy is the major pathway of iron recycling,
particularly under iron-depleted conditions, whereas, in iron-
replete cells, the lysosomal targeting of ferritin did not involve
autophagy, a mechanism absent from several cancer-derived
cells [72].

Some insights into ferritin autophagy were recently revealed.
In a study of quantitative proteomics aimed to identify
autophagosome-enriched proteins in human cells, the protein
nuclear receptor co-activator 4 (NCOA4) was found to be
highly enriched in autophagosomes, and in associated proteins
recruiting cargo-receptor complexes into the autophagosome.
NCOA4 bound ferritin and was required to deliver it to
lysosomes. Thus, NCOA4 acted as a cargo receptor for the
autophagic turnover of ferritin (ferritinophagy), which is critical
for iron homoeostasis [73]. Similar results were obtained by
another group using a new screen for autophagy substrates.
NCOA4 was found to co-localize with autolysosomes and bind
directly to ferritin. Moreover, NCOA4-deficient mice showed
accumulation of iron in the spleen [74]. NCOA4 has various
functions and it was recently shown to act as a regulator of
DNA replication origins, helping to prevent inappropriate DNA
synthesis and replication stress [75]. Thus, a major actor in the
mechanism of iron degradation, particularly under conditions of
iron deprivation, has been identified. However, the chemistry
of iron core dissolution, iron reduction and transfer back to
the cytosol is still obscure and an interesting matter for future
research.

FERRITIN IN EUKARYOTES
Ferritins in invertebrates
Diatoms

Diatoms are a major group of unicellular algae among the
most common types of phytoplankton. Their high photosynthesis
activity, which contributes strongly to global oxygen production,
requires high levels of iron. Ocean iron studies showed that, after
fertilization, a phytoplankton bloom occurs transiently, dominated
by pennate diatoms. This was attributed to the finding that these
organisms express ferritin, at variance with other members of the
phytoplanktons. Ferritin expression, closely tied to photosynthetic
competence, was induced by iron and enhanced iron storage,
allowing the diatoms to undergo several cell divisions even in the
absence of added iron [18]. The mature ferritin from one of these
pennate diatoms, P. multiseries, was produced in a recombinant
form and its 3D structure and iron-binding site are discussed
above.

Ticks

Ticks are the second most important disease vectors after
mosquitoes. They consume an enormous quantity of blood relative
to their body size, so it is assumed that ferritin is important to
detoxify the excess iron. In fact, ticks have two ferritin genes, both
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with a ferroxidase centre: FER] for cytosolic ferritin and FER2 for
secretory ferritin. FER2 was also found to be a good antigen for an
anti-tick vaccine [76]. The two ferritins were differently expressed
according to the organs and developmental stage analysed, e.g.
only FER2 was detected in ovaries and eggs. Experimental down-
regulation of FER2 with RNAi diminished post-blood meal body
weight (leading to high mortality and decreased fecundity), and
the presence of abnormalities in digestive cells. Together these
results indicate that the iron storage and protective functions of
ferritin are crucial for successful blood feeding and reproduction
of hard ticks [77]. Moreover, it has been shown that ferritins are
essential antioxidant molecules to protect hard ticks from iron-
mediated oxidative stress during blood feeding [78].

Insects

Insect ferritin is mainly secretory, and the crystallographic studies
described above showed it to be composed of H- and L-subunit
types in a 1:1 ratio. There is little information on the mechanism
of assembly of these two subunits and of the in vitro functional
properties of these ferritins, because they have not yet been
produced in abundant recombinant forms. Most studies on these
ferritins have been carried out in Drosophila melanogaster.
Single-particle transmission electron microscopy confirmed that
its ferritin has a 3D structure very similar to that of the ferritin
of T ni, and that it also contains small amounts of zinc and
manganese. Ferritin iron loading varied in the different species,
and the level of bioavailable iron depended on the levels of ferritin
expression [79]. Specific ablation of ferritin in the Drosophila
midgut resulted in a local iron accumulation, accompanied by
systemic iron deficiency and reduced survival. In addition, the
specific inactivation of ferritin in many non-intestinal tissues
caused local iron accumulation with severe tissue damage and cell
loss, showing an essential role for the secretory ferritins in dietary
iron absorption and tissue iron detoxification [80]. Ferritins have
also been studied in malaria mosquitoes, the females of which,
similar to ticks, live on iron-rich blood meals. They have secretory
ferritins composed of H- and L-chains, both regulated by iron
levels; in conditions of its excess, iron associated with ferritin is
secreted by the cells [81].

Shellfish

The interest for ferritins in shellfish was stimulated by reports
describing their involvement in the innate defence against viruses
and pathogens infecting cultivated species [82]. The oyster
Crassotrea gigas has four distinct ferritin genes, two for cytosolic
and two for secretory ferritins [83], which had distinct expression
patterns in the tissues and during developmental stages, indicating
functional differences [84]. Of interest, one of its secretory
ferritins is unusually long and shows a similarity with the ferritin
gene of the snail Lymnea stagnalis, identified long ago [85]. Four
ferritin genes are also in another oyster type, in which one of the
secretory ferritins was induced by iron and bacterial infection,
and showed antibacterial activity [86,87]. It has also been shown
that some shrimps and shellfish express a single ferritin type,
similar to H-ferritin, which is up-regulated by immuno challenges
[87—-89] and infection with white spot syndrome virus (WSSV),
one of the most devastating viral pathogens in shrimp farming
[90,91]. Ferritin down-regulation with RNAi increased virus
replication and shrimp mortality after infection, whereas injection
with a recombinant ferritin reduced virus replication and shrimp
mortality [92].

Worms

The worm C. elegans is an interesting model for iron
homoeostasis, knowing in particular that its ferritins are regulated
by hypoxia and insulin signalling, although with mechanisms that
differ from mammalian ones. C. elegans has two ferritin genes for
the cytosolic H type (fin-1 and fin-2). They are transcriptionally
regulated via an iron-dependent enhancer (IDE) located in their
promoters, with a mechanism that has recently been reviewed
[93]. Basal expression of fin-1 and fin-2 is mediated by the
intestinal GATA transcription factor ELT-2 which binds GATA
sites located in ferritin IDEs. Moreover, the hypoxia-inducible
factor-1 (HIF-1) represses the expression of these genes by
binding inside the IDE during iron deficiency [94]. Upstream
of the HIF-1-binding element in the ferritin promoter there is
another regulatory element that is recognized by helix—loop-helix
29 (HLH-29), a transcription factor involved in the regulation of
growth and lifespan [95]. In addition, fin-1 is regulated by DAF-
16, a transcription factor activated by nutrient deprivation that
modulates genes for stress resistance, metabolism and immunity
[96]. It was also shown that the expression of ftn-2 is necessary
for the full protective response of C. elegans against bacterial
pathogens, both Gram-negative and Gram-positive [82]. This
indicates that ferritin’s role in the innate immune response
originated early.

Ferritin in vertebrates
Fish

Ferritin in fish has been analysed in a few species, most of which
expressed one or two ferritin genes, both with ferroxidase activity
corresponding to the M- and H-type. The two subunits of cold-
adapted Antarctic fish formed heteropolymers in the liver but
not in the spleen, which contained only M-homopolymers [55].
Ferritin was highly expressed in the liver of all of the fish analysed,
which protects against oxidative stress and microbial infection
[97]. The recombinant ferritin from a sole fish inhibited the growth
of six different species of fish pathogens; however, this effect
was completely abolished when the ferroxidase site of ferritin
was inactivated by site-directed mutagenesis [98]. The cold water
in which icefish live is sufficiently rich in oxygen that they do
not need haemoglobin in their blood for respiration; nevertheless
these fishes express H- and M-ferritins in most tissues [99]. The
low iron trafficking in these fish suggests that ferritins have a
minor role in iron storage, although they may be important in
immunity.

Birds

Chickens were one of the first organisms in which a ferritin gene
was identified and cloned, after the human and tadpole ones
[100]. It is of the H-type with the same structure as human
ferritins and an IRE in the mRNA. Chicken liver ferritin was
found to purify together with coated vesicles [101]. Chicken
erythrocyte ferritin was made up of only an H-chain, contained
iron, and presented the same properties as a previously identified
microtubule-associated protein named syncolin [102]. Moreover,
ferritin was found in the nuclei of mature erythrocytes [102].
More attention to chicken nuclear ferritin has been paid by the
laboratory of Linsenmayer, who first identified ferritin in the
nuclei of chicken corneal epithelial cells [103], and found it to
have a protective role against oxidative damage to DNA [104].
The translocation to the nucleus was found to be mediated by a
ferritin-like protein that was named ferritoid [105]. This protein of
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273 residues contained a functional nuclear localization sequence
and was regulated by development and iron concentration, similar
to ferritin. However, it was expressed only in the cornea and not
in the liver (erythrocytes were not analysed). Ferritoid bound to
ferritin H-chain to form a complex that was good at entering the
nucleus and binding DNA [106]. It is interesting that this activity
was shown to be dependent on the phosphorylation of serine
residues of the C-terminal part [107]. This gene is present in most
bird genomes and is annotated as ferritin light-chain. Despite
the low sequence identity with the human L-chain, it maintains
ferritin-like properties, such as the predicted folding in a four-
helix bundle. However, it presents extensions in the N-terminus
(~20 amino acids) and C-terminus (~70 amino acids), and some
residue substitutions of the ferroxidase activity centre, which is
probably inactive.

It remains to be established whether this ferritin-like subunit is
able to form functional heteropolymers with H-subunits, because
the structure of the complexes has not yet been detected. In
most organs, except the cornea (and perhaps the erythrocytes),
chicken ferritin seems to be composed only of an H-chain, an
observation confirmed by the purification of liver ferritin [108].
Probably more interesting is the involvement of ferritin in the
magneto-sensitive properties of birds. The magnetic sensors have
been localized in the avian hair cells, and recently it was shown
that these cells contain an iron-rich organelle, which consists of
ordered aggregates of ferritin [109]. To verify this hypothesis, the
low-field paramagnetic susceptibility of ferritin was studied. The
results suggest that ferritin corpuscles in avian ears may function
as intracellular magnetic oscillators which might generate cellular
electric potential to be sensed by the animal [110].

Ferritin in mammals

Mammals have four differentially regulated ferritin genes for
cytosolic H- and L-chain, mitochondrial ferritin and FTHLI7. The
ubiquitously expressed cytosolic H- and L-ferritins are regulated
at a post-transcriptional level by the IRE/IRP machinery. A few
groups have also studied the transcriptional regulation of FTH
and FTL in humans and mice and found that FTH is induced
by inflammatory cytokines activating NF-xB with the binding
site located some 5 kb upstream of the FTH gene [111]. The
protein pS3 down-regulates FTH expression after association with
nuclear factor Y (NF-Y) and its recruitment on an FTH promoter
[112]. FTH expression is induced by histone deacetylase (HDAC)
inhibitors through a transcriptional mechanism that involves Sp1-
and NF-Y-binding sites located near the transcriptional start site
of the FTH promoter. It is interesting that HDAC inhibitors were
found to regulate ferritin by increasing NF-Y binding to the
FTH promoter without changes in histone acetylation, with a
novel mechanism of action of HDAC inhibitors [113], similar to
that of p53. More recently, it was shown that FTH expression
is regulated by an miRNA [114] and that FTH expression acts
on the expression of some miRNAs and a variety of genes in
K562 cells [115]. Less attention has been given to the FTL gene,
although it was found that its promoter contains a Maf-recognition
element (MARE) and an antioxidant-responsive element (ARE)
that responded strongly to oxidative stress and haemin, a finding
that may explain why serum ferritin, composed of L-chain, is
up-regulated by inflammatory conditions [116].

Mitochondrial ferritin lacks IREs and is expressed only in
a few cell types with high metabolic activity. It was found
primarily in the testis, heart, kidney and brain [117]. Study of its
regulation is problematic, because it is undetectable in cultured
cells. The 5'-end of the gene is within a GpG island that is strongly
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methylated in all five cell lines analysed that do not express it,
although the GpG island is hypomethylated in germ cells that
express it. Treatments with demethylating agents, such as 5-
aza-2'-deoxycytidine, produced some induction of mitochondrial
ferritin (FtMt) [118]. Lastly, FTHL17 lacks IREs and is transiently
expressed in spermatogonia and germ cells but its regulation has
not been analysed yet [119].

Ferritin receptors

It has been known for a long time that FTH can be taken
up by cells, be incorporated [120] and, in some cases, affect
cell proliferation [121], but the identity of the ferritin receptors
remained elusive until 2005 when, during the characterization
of the expression of the T-cell immunoglobulin domain and
mucin domain (TIM) proteins, it was shown that mouse TIM-
2 is expressed on various cells and binds FTH, but not FTL. Thus,
TIM-2 is the mouse FTH receptor, involved in FTH cellular uptake
and delivery to endosomes for lysosomal degradation [122].
However, the TIM-2 homologue has not been found in humans.
The human FTH receptor was found to be transferrin receptor-
1 (TfR1) using expression cloning [123]. On binding to TfR1,
FTH is delivered to endosomes and lysosomes for degradation
and iron recycling. The dual function of TfR1 in binding the two
major iron proteins, i.e. ferritin and transferrin, is intriguing. On
the other hand, the identification of an FTL receptor needed a
more sophisticated approach, based on the observation that TfR/
gene deletion in mice is embryonically lethal but does not inhibit
organogenesis, suggesting other mechanisms for internalizing
iron. They were characterized by producing chimaeric mice with
fluorescently tagged TfR1-null cells and untagged wild-type cells.
The observations revealed that some kidney cells were capable of
internalizing ferritin through the expression of a novel receptor,
named Scara5, which is able to bind and take up FTL [123].
This receptor was found to be expressed in mouse and human
retinas and it could transfer, via retinal blood, the FTL injected
intravenously into mice, suggesting that it might be implicated in
retinopathy and be a possible therapeutic target [124].

Ferritin functions

Ferritins undoubtedly have a rigid structure that contrasts with
the need for flexibility for their functions [9]. Their major
and fundamental function is to oxidise and incorporate iron
and keep it in a non-toxic form. This simple task has a
large number of implications, the most important being to
inhibit oxidative damage. Important examples come from studies
on cardiac protection. The oxidative damage caused by heart
ischaemia/reperfusion is protected by ischaemic pre-conditioning
procedures, which involve the induction of ferritin by a transient
‘iron signal’. It is interesting that pre-treatments of rat heart
with proteasomal and lysosomal protease inhibitors, which reduce
ferritin breakdown and iron recycling, also suppressed the ‘iron
signal’ [125]. Further insight into the role of FTH in cardiac
protection came from the observation that diabetic hearts respond
poorly to ischaemic pre-conditioning. Part of this effect was
attributed to the high basal level of ferritin in diabetic hearts, and
to the rapid and extensive loss of ferritin levels during prolonged
ischaemia in diabetic hearts [126]. Other studies confirmed
that ferritin has a cardioprotective role, e.g. the protective
effect of the drug metformin on adult mouse cardiomyocytes
(HL-1 cell line) against doxorubicin toxicity was attributed to
the capacity of the drug to induce ferritin expression, and the
effect was reduced by experimental FTH down-regulation with
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siRNAs or by NF-«B inhibitors [127]. Doxorubicin toxicity
in HL-1 cells was associated with increased free iron pools,
inhibition of mitochondrial complex I activity and loss of
mitochondrial membrane potential, the ensuing cytochrome c
release and the activation of apoptotic signals. The induction
of FTH by metformin prevented these events [128], confirming
the previously shown protective role of FTH in apoptosis [129].
Also, the tumour necrosis factor (TNF) protection against serum-
starvation-mediated apoptosis of hepatocellular carcinoma cells
involves the activation of the NF-xB signalling pathway and
consequently the reactive oxygen species (ROS) suppression by
FTH [130].

A novel role for circulating ferritin on angiogenesis has been
proposed by Torti’s group [131]. They showed that ferritin binds
with a high affinity (Ky = 13 nM) to cleaved high-molecular-
mass kininogen (HKa), which is an endogenous inhibitor of
angiogenesis, and that ferritin antagonized the anti-angiogenic
effects of HKa, enhancing the migration, assembly and survival
of HKa-treated endothelial cells. In vivo, ferritin opposed HKa’s
anti-angiogenic effects in a human prostate cancer xenograft,
restoring tumour-dependent vessel growth. Ferritin bound a
subdomain of HKa that is critical for its anti-angiogenic activity
[131]. Ferritin, both FTH and FTL, reduced binding of HKa
to endothelial cells, restored the association of the urokinase-
type plasminogen activator receptor (WPAR) with o581 integrin,
promoted adhesion and survival of the cells, and restored
adhesion signalling pathways mediated by extracellular-signal-
regulated kinase (ERK), Akt, focal adhesion kinase (FAK) and
paxillin [132]. The interaction of ferritin with high-molecular-
mass kininogen domain 5 (HKS5) was found to involve a
histidine/glycine/lysine-rich region within HKS, which is an
intrinsically unstructured protein, and the interaction with ferritin
was mediated by metal ions such as Co(Il), Cd(Il) and Fe(II),
independent of the iron core of ferritin [133].

A role for FTL has been found in the regulation of y-secretase
activity, which is involved in the production of amyloid 8 peptide
(Ap) in the brain. FTL was found to physically interact with PEN-
2, a component of the y-secretase complex. FTL overexpression
increased the protein levels of PEN-2 and promoted y-secretase
activity, which leads to an enhanced production of AB. The
opposite was observed when FTL was down-regulated.
The finding that iron supplementation increased y-secretase
activity via FTL induction poses a novel link between iron and
Ap generation in Alzheimer’s disease [134].

Table 2 provides a summary of the proposed functions
of vertebrate ferritins, and Figure 2 shows the alignment of
representative cytosolic and non-cytosolic ferritins.

ANIMAL MODELS FOR THE STUDY OF FERRITIN
Mouse models of ferritin H-chain

FTH is essential for embryogenesis and its inactivation is
embryonically lethal in mice [135]. However, the heterozygous
FTH™'~ mice are healthy with elevated L-ferritin levels,
particularly in serum [136]. Detailed studies in the brain of
these mice showed that H-ferritin deficiency was accompanied by
signs of oxidative stress and alterations of iron transport proteins
similar to those found in Parkinson’s disease [137], and also by an
imbalance of the levels of neurotransmitters such as glutamate and
y -aminobutyric acid (GABA) in different areas of the brain [138].
The protective role of H-ferritin in the brain was confirmed by the
evidence that FTH down-regulation with specific siRNAs made
mouse models of human gliomas more sensitive to chemotherapy
[139]. No disabling mutation of the gene has been observed so

far [140], thus confirming its importance. The generation of a
mouse strain with a floxed FTH gene allowed the production of
mice with the conditional inactivation of FTH at different stages
of differentiation and in different organs.

FTH-flox/Mx-Cre mice

The first ferritin deletion was obtained by crossing FTH-flox
with Mx-Cre mice, which resulted in a strong reduction of
ferritin in the liver, spleen and bone marrow of adult animals.
These mice lost their cellular iron stores but did not show
any visible disadvantage and survived up to 2 years. However,
when mice were fed with an iron-rich diet they had severe liver
damage. Similarly the embryonic fibroblasts from these mice died
soon after iron supplementation, presenting a major increase in
cytoplasmic free iron, ROS and mitochondrial depolarization.
That ferritin H-chain plays a major role in preventing iron-
mediated cell and tissue damage was also demonstrated in the
context of infectious diseases, such as severe forms of malaria.
High FTH expression reduced the susceptibility to Plasmodium
infection and tissue damage, whereas low FTH levels resulted
in iron cytotoxicity, programmed cell death and major disease
severity, as observed in humans and mice [141]. The capacity of
FTH to dictate the outcome of malaria infection and provide a
metabolic adaptation to tissue iron overload relies on preventing
the unregulated generation of ROS and inhibiting oxidative stress-
mediated sustained activation of c-Jun N-terminal kinase (JNK),
which leads to programmed cell death [142]. This cytoprotective
mechanism might be observed in other types of infections
and/or pathological conditions, because tissue iron overload
characterizes a variety of disorders [143].

The FTH-flox/Mx-Cre mice revealed that FTH deficiency in
bone marrow reduced the number of mature B-cells and peripheral
T-cells in all lymphoid organs, and increased cellular free iron,
ROS and mitochondrial depolarization. This also occurred after B-
cell-specific FTH deletion, which caused a reduction in mature B-
cells and an increase in bone marrow B-cell proliferation. Also, T-
cell-specific FTH deletion caused T-cell loss, showing that FTH is
required for B- and T-cell survival by reducing the labile iron pool,
because it was suggested that natural B- and T-cell maturation was
influenced by intracellular iron levels and possibly deregulated in
iron excess or deprivation [144].

FTH-flox/villin-Cre mice

Next, FTH-flox/villin-Cre mice were generated to delete intestinal
ferritin-H. These mice showed increased body iron stores and
transferrin saturation and a 2-fold increase in intestinal iron
absorption, despite up-regulated liver hepcidin. The data indicated
that duodenal ferritin is involved in the so-called ‘mucosal
block’, i.e. the capacity to limit and regulate iron efflux from
intestinal cells [145]. It is interesting that a similar phenotype
with suppression of intestinal FTH was observed with the
conditional deletion of the Mbd5 gene, which encodes a member
of the methyl-CpG-binding domain family and is involved
in the regulation of FTH expression. Histone H4 acetylation
of the FTH promoter was reduced in the intestine of these mice,
suggesting a role for histone acetyltransferase in Mbd5-induced
FTH transcription [146].

FTH-flox/PT—/~ mice

Then followed the generation of mice with a conditional
deletion of FTH in the renal proximal tubule (FtH*™~'~), which

© 2015 Authors; published by Portland Press Limited
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Figure 2 Amino acid sequence alignment of representative eukaryotic ferritins

The o helices (A—E) and ferroxidase iron-binding residues are shown below the sequences. The e helices are indicated in different colours and their boundaries are boxed. Amino acids highlighted in red are the conserved residues of the ferroxidase centre and
those on a yellow background are the substituted ones. (A) Alignment of cytosolic ferritins, which shows the high conservation of the subunit sizes, minor length differences at the N- and C-termini and only one evident insertion in the D—E loop typical of the
mouse ferritins. The residues of the ferroxidase centre are conserved in all but the human and mouse FTL. The listed ferritin species, type and UniProt entry numbers from the top are: Homo sapiens FTH (P02794), Caenorhabditis elegans ftn-1 (Q9TYS3), C.
elegans ftn-2 (016453), Aplysia californica ferritin (ASGZU9), Crassostrea gigas Fer1 (Q70MM3), Lymnaea stagnalis soma ferritin (P42577), Haemaphysalis longicornis Fer1 (Q6WNX1), Chionodraco rastrospinosus FtM1 (R4ZCUO), Salmo salar ferritin M-chain
(P49947), Mus musculus FTH (P09528), Gallus gallus FTH (P08267), S. salar FTH (P49946), H. sapiens FTL (P02792), M. musculus FTL (P29391). (B) Alignment of representative non-cytosolic ferritins showing the predicted processed and mature sequences.
Human FTH (cytosolic) at the top is used as a reference. It points out that the sequences forming the o-helices are not interrupted, whereas insertions are located in the turns/loops between the helices and at the protein termini. The most remarkable insertions are
represented above and below the sequences on a grey background. One of the two secretory ferritins from the shellfish C. gigas of 262 amino acids has an insertion 91 residues long between the A and B helices, which is expected to form a structure exposed
on the outer surface. The other secretory ferritin from C. gigas and the yolk ferritin from the snail L. stagnalis have an insertion in the loop between helices B and C of 36 and 34 residues, respectively, which are expected to form structures that protrude outside
the protein. An unusually long C-terminal extension of 68 residues is found in the chicken L-chain, also known as ferritoid, which is expected to protrude inside the cavity, perhaps interfering with ferritin iron incorporation. The listed ferritin species, type and
UniProt entry numbers from the top are: H. sapiens FTH (P02794), L. stagnalis yolk ferritin (P42578), C. gigas Fer4 (KIROWOQ), C. gigas ferritin (K1QAG9), C. gigas ferritin (K1QHW8), C. gigas ferritin (Q70MM3), H. sapiens FTMT (Q8N4E7), M. musculus FTMT
(Q9D5H4), Drosophila melanogaster sp. Fer3H (Q9VYH1), Drosophila melanogaster Fer2L (AOAOB4KHFO), Trichoplusia ni Fer2 (Q52SA8), D. melanogaster FertH (AOAOB4KI27), T. ni Fer1 (Q52SA9), H. longicornis Fer2 (M5AYGY), G. gallus FTL (Q8AYG9)
Pseudo-nitzschia multiseries fer (B6BDMHG).
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Table 2 Functions attributed to representative ferritins

FTM, ferritin M-chain; Cyt, cytosolic; Mit, mitochondrial; Nuc, nuclear; Sec, secretory; H, ferritin of the H-type with ferroxidase centre; L, ferritin of the L-type without functional ferroxidase centre.

Species Name Type Function Reference(s)
Tick (Haemaphysalis longicornis) Fer2 Sec-H Vaccine antigen [76]
Tick Fer2, fer2 Sec-H and Cyt-H  Protective for feeding and antioxidant [78]
Drosophila sp. FertHCH, Fer2LCH  Sec-L and Sec-H  Essential for dietary iron absorption and detoxification [80]

C. elegans Ftn-2 Cyt-H Necessary for the full protective response against bacterial pathogen  [82]
Shrimp (Litopenaeus vannamei) Ferritin Cyt-H Protection against WSSV infection [92]
Fish: (Scophthalmus maximus and Cynoglossus semilaevis) ~ FTMand FTH Cyt-H Protection against microbial infection [97,98]
Chicken corneal epithelial cells FTH Nuc-H Protection of DNA against oxidative damage [181]
Birds FTH Cyt-H Putative magnetic sensor [110]
Human FTH Cyt-H Cardiac protection [125]
Human/Mouse FTH and FTL Sec-H / Sec-L Angiogenesis [132]
Human FTL Cyt-L Regulation of y-secretase activity [134]
Mouse FTH Cyt-H In intestine, regulation of iron absorption [182]
Mouse FTH Cyt-H Protection in acute kidney injury [147]
Mouse FTH Cyt-H Required for T- and B-cells [144]
Mouse FTH Cyt-H Confers tolerance to malaria [142]
Mouse FTH Cyt-H Implicated in the development of leukaemia/lymphoma, [160]
Mouse FTL Cyt-L Not essential: KO animals have a minor phenotype [166]
Mouse FTMT Mit-H Protection against cardiac toxicity [172]

showed significant mortality, worse structural and functional
renal injury, and increased levels of apoptosis in rhabdomyolysis
and cisplatin-induced acute kidney injury. The mice also had
increased urinary levels of the iron acceptor proteins neutrophil
gelatinase-associated lipocalin, haemopexin and transferrin. The
data showed that FTH has a protective role in acute kidney
injury and a critical role in proximal tubule iron trafficking
[147]. Moreover, after injury, these mice exhibited a marked
increase in pro-inflammatory macrophages, with an abnormally
high level of inflammatory chemokines and fibrosis, allowing
the conclusion that FTH has a critical role during kidney injury
in mediating the cross-talk between tubular macrophages and
epithelial cells [148]. Analyses of differentiated podocytes (the
epithelial cells covering the outer surface of the glomerular
tuft in the kidney) showed that they express high levels of
FTH, which contributes to their elevated resistance to oxidative
damage [149].

FTH-flox/Emx1-Cre mice

Mice with a forebrain-specific inactivation of the FTH gene were
produced to study the role of FTH in the brain. It is interesting
that these mice did not show modifications of brain iron content,
but after 2 weeks they showed an accumulation of cerebrospinal
fluid in the lateral ventricles and subarachnoid space, the origin
of which remained unclear [150]. In fact, there is substantial
evidence for a major role for ferritin in the brain, which is
summarized in various reviews [4,151-153].

FTH-transgenic mice

For better investigation of the role of FTH in different organs,
various laboratories developed transgenic mice (tg-mice), e.g. the
salutary effect of FTH in the brain was demonstrated by generating
a tg-mouse with FTH under the control of a tyrosine hydroxylase
promoter specific for dopaminergic neurons. These animals
displayed lower iron accumulation and oxidative-stress-mediated
neuronal death, and were protected against the development of
Parkinson’s disease [154]. Although brain iron overload may be
favoured by the capacity of immune cells to buffer iron [155] and

infiltrate the brain [156], preliminary experiments suggest that
the levels of FTH in both compartments are crucial to counteract
iron cytotoxicity, because higher or lower expression in one may
dictate the proper functioning of the other (Raffaella Gozzelino
et al., unpublished work). In another transgenic model, the Tet-
OFF system was used to induce a 6-10-fold increase in FTH
expression in muscle and kidney, which caused a local severe
iron depletion [157]. A recent study reports that two lines of
FTH-tg-mice expressing human FTH in almost all brain cells,
including neurons, some glial cells and ependymal cells, were
viable with normal blood indices of iron status [158]. However,
the body size of these animals was reduced when compared with
controls and presented, at 3—-5 weeks of age, a temporary loss of
coat hair on the trunk, but not on the head or face. The temporary
hairless phenotype was associated with epidermal hyperplasia
with hyperkeratosis, dilated hair follicles, bent hair shafts and
keratinous debris [158].

Itis of interest that this transient hairless phenotype is similar to
that of the Mask mice characterized by the deletion of a functional
part of the TMPSS6 gene, which causes hepcidin overexpression
and severe systemic iron deficiency [159]. Another study showed
that ubiquitous tg-FTH expression caused aggressive radiation-
induced thymic lymphoma/leukaemia, with earlier onset after
treatment. The proliferative activity of the tg-lymphoma cells
was higher and associated with the differential expression of
some leukaemia/lymphoma-related genes. Moreover, apoptosis
was augmented in bone marrow, but not in the thymus of treated
tg-mice [160]. This indicates that FTH may be implicated in
the development of leukaemia/lymphoma, in agreement with its
abnormal expression described in earlier studies.

Mouse models of ferritin L-chain

The role of L-ferritin is rather enigmatic, because it is not as
ubiquitous as FTH, being present only in mammals, fish and
molluscs. In vitro studies showed that it facilitates iron nucleation
and therefore co-operates with the H-chain in improving ferritin’s
iron incorporation capability [161]. The L-chain-rich ferritins
from the liver or spleen are typically more iron-loaded than the
L-chain-poor ferritins of the heart or brain [9]. It was suggested
that the presence of heteropolymers with two subunits confers an

© 2015 Authors; published by Portland Press Limited
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advantage, allowing modulation of the iron storage capacity of
the total ferritin without modification of the ferroxidase activity.
However, the experimental up-regulation or down-regulation of
L-chains in cells did not alter cellular iron homoeostasis [162].
In fact individuals with mutations in the 5-UTR of the L-
chain transcript had serum and tissue L-ferritin levels 2—5-fold
higher than normal, but no alteration in iron homoeostasis [163].
Similarly an individual with L-chain haploinsufficiency due to
a disabling mutation of one allele showed hypoferritinaemia
and decreased tissue L-ferritin, but no signs of altered iron
metabolism [164]. More importantly, an individual homozygous
for a disabling mutation of the L-chain has recently been described
[165]. Despite the absence of L-ferritin, the individual did not
show evident signs of iron deregulation, but some neurological
problems possibly associated with the mutation [165].

An L-chain-knockout (KO) mouse has recently been described
and it is of interest that this animal did not have alterations in
serum transferrin, liver iron and other parameters of iron status
[166], but showed fertility problems and possibly some movement
disorders, points that should be studied in the future. In fact,
neuroferritinopathy is a dominant genetic disorder associated with
mutations in the fourth exon of the ferritin L-gene. The insertion
of one or two nucleotides results in frameshifts, which cause
dramatic alterations of the C-terminus of the protein involved in
the formation of 4-fold interactions [153]. The mutated chains act
in a dominant-negative way by altering ferritin permeability and
reducing the capacity to incorporate and detoxify iron [59]. The
iron excess forms iron deposits in the brain and triggers oxidative
damage, which is the probable cause of neurodegeneration [167].

Mouse models of mitochondrial ferritin

Mitochondrial ferritin is located in a strategic position where
the abundant iron needed for haem and iron—sulfur cluster
biosynthesis provides a probable and easy contact with ROS
produced by the mitochondrial respiratory chain. The iron
availability may be controlled by the local presence of a functional
ferritin which has an important protective role against toxic free
radical formation. This notion is supported by several studies
on transfected cultured human cells, showing that expression of
FtMt reduced the damage caused by experimental oxidative stress
and protected the mitochondria [43]. FtMt is highly expressed in
the testis, heart and some neurons, all cell types with a high
metabolic activity [117,168]. However, it was also found that
the expression of FtMt in sideroblasts of sideroblastic anaemia
patients preceded the mitochondrial iron accumulation typical
of the disorder, suggesting that it may be the cause of, rather
than the response to, local iron overload [169]. A protective
role for FtMt in the brain has been shown in cultured primary
neuronal cells [170]. More importantly, FtMt-KO mice did not
exhibit any evident phenotype, being viable and fertile, and no
significant defects were observed after treatment with agents
stimulating sideroblast formation [171]. We have also generated
a FtMt-KO mouse strain that confirmed the absence of an evident
phenotype. Then we subjected mice to doxorubicin treatments,
an anti-tumour drug inducing a well-characterized cardiotoxicity,
and showed that FtMt-KO mice were more sensitive to the drug.
These animals presented an enhanced mortality and altered heart
morphology with fibril disorganization and severe mitochondrial
damage, characterized by biochemical indices of oxidative stress
and increased autophagy. Even untreated mice showed signs of
mitochondrial damage [172], confirming the antioxidant role
for FtMt in vivo, at least in organs in which it is highly expressed.
Finally, as the highest expression of FtMt is in the testis, we

© 2015 Authors; published by Portland Press Limited

are now exploring whether this may play a role in male fertility.
Preliminary data indicate that the litter sizes of FtMt-KO males
are significantly smaller compared with those of controls and
FtMt-KO females. In fact the number of FtMt-KO spermatozoa
is reduced (Federica Maccarinelli et al., unpublished work),
also showing a probable protective role of FtMt in this cell

type.

CONCLUDING REMARKS

Recently, the interest in ferritin has spread from mammals to
different organisms in which it was generally found to have
a crucial role in iron metabolism and protection. Although
very important, ferritin does not appear to have a vital role
for many organisms, in fact many of monocellular species can
survive nicely without it. Of interest in this context is the
finding that phytoplankton species with ferritin have an advantage
over the ferritin-less ones under conditions of iron starvation.
The exploration of ferritin in various eukaryotes opens some
interesting questions, e.g. why is the presence of multiple ferritin
chains so common in many species, including plankton, ticks,
flies, worms and up to mammals? It should be mentioned that
most of the protective functions attributed to ferritins are linked
to the ferroxidase activity of the H-chain, which acts by removing
Fe(II) and consuming hydrogen peroxide, the two major substrates
of the poisonous Fenton reaction. In addition, the conservation of
the ferroxidase-less L-chain is enigmatic, considering that animals
without this protein can survive perfectly well. Only a few
activities have been attributed to it and the recent evidence
of neurological problems in the only individual with L-ferritin
inactivation described so far and in KO mice point to a role in
neurodegeneration that should be researched further.

Another problem is posed by secretory ferritins. They are
present in insects and shellfish, and their characterization may
contribute to an explanation of the role of mammalian serum
ferritin (so useful for the diagnosis of anaemia). Studies on
Drosophila sp. and mosquitoes showed that these secretory
ferritins accumulate in the membranes and the finding in ticks that
these are good antigens for vaccines confirms their localization on
plasma membranes. However, there are few data demonstrating
that these ferritins are secreted and can transport iron from
one cell to another. In fact, storing iron outside the cell poses
serious problems on its recycling, unless the secretory ferritins
are trapped in endosomes and directed to lysosomes. Indeed
data on flies indicate that part of secretory ferritins co-localizes
with lysosome markers. Another interesting problem is how the
secretory ferritins in the endoplasmic reticulum (ER) or Golgi
apparatus have access to iron. Major iron enzymes in the ER
are the lysine and proline hydroxylases necessary for collagen
formation and stabilization. However, we are not aware of any
studies on defining how they acquire iron.

Besides the canonical cytosolic H-chains, some eukaryotes
have exoteric ferritin chains with long extensions at the N- or
C-termini or insertions in the loops or turns (see Figure 2). Plant
ferritins have a long N-terminal extension that participates in iron
uptake and oxidation [173], and it is possible that similar roles
can be attributed to the longer subunits in the invertebrates. It is of
interest that the bird L-chain, named ferritoid by Linsenmayer
and shown to facilitate ferritin nuclear localization, is also
characterized by a long C-terminal extension. The L-type ferritins
do not seem to have any particular function when alone, and there
is no example of a natural L-chain homopolymer. Therefore, they
are expected to co-assemble with H-chains and modulate their
activity in some way.
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In conclusion, the interest in ferritin for iron storage has
apparently been declining in recent times, whereas its function
in protecting from oxidative damage has proved important in
most, if not all, of the organisms tested, and its role in innate
immunity has been assessed in invertebrates. This supports the
data that show that ferritin is crucial to immunity, although also
playing a more complex role in mammals [174]. The picture
that is emerging is that the ferroxidase activity of H-ferritins
is fundamental to controlling the reactivity of intracellular free
iron, an interesting parallelism with hepcidin, which in vertebrates
controls the availability of systemic iron.
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