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Abstract In the context of Markov evolution, we present two original approaches to obtain
Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochas-
tic derivatives and by using a family of exponential martingales functionals. We show
that GFDT are perturbative versions of relations verified by these exponential martingales.
Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov pro-
cesses, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the
FR to a family of backward and forward exponential martingales.

Keywords Non-equilibrium Markov Process · Fluctuation-Dissipation Theorems ·

Fluctuation Relations · Martingales

1 Introduction

One of the cornerstones of statistical physics is the Fluctuation-Dissipation Theorem
(FDT) [9, 53, 68, 80], whereby, for equilibrium systems, response to a small perturbation
of the Hamiltonian is related to dynamical correlation. This theorem rationalizes the famous
regression principle of Onsager [73, 74]: the decay of spontaneous fluctuation cannot be
distinguished from the decay of forced fluctuation. More precisely, suppose we perturb a
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system in equilibrium at temperature T by adding to its time-independent Hamiltonian H

a small time-dependent term, such that H → H − ktO . Here, O is an observable and kt is
a real function. Throughout this paper, we measure temperatures in units of the Boltzmann
constant kB . The FDT asserts that the response of an observable O ′ is related to the two-time
correlation function as

T
δ〈O ′

t 〉
′

δks

∣∣∣∣
k=0

= ∂s〈OsO
′
t 〉, (1)

with t ≥ s. In this relation, the brackets, 〈 〉 and 〈 〉′, denote expectation in the unperturbed
and perturbed processes, respectively. Since mid-nineties, this theorem has been extended to
nonequilibrium systems in two related directions. The first is the discovery of various Fluc-
tuation Relations (FR) [19, 32, 35, 49], the so-called Gallavotti-Cohen relation [32, 35],
the Jarzynski equality [49] and the Crooks theorem [19]. All of these hold arbitrarily far
from equilibrium and can be viewed as non-perturbative extensions [36] of the FDT (1).
These relations constrain the distribution of entropy production or work performed in the
system. The second is the extension of the relation (1) between response and correlation in
the linear response regime to nonequilibrium states (stationary as well as non-stationary),
for example, those in glassy systems and soft spin models [18, 20, 27, 60, 69] and also in
relation to broken supersymmetry [91]. This second direction has seen an upsurge in the
last three years through formulation of the Generalized Fluctuation-Dissipation Theorems
(GFDT), mainly in the works of Seifert and Speck in Stuttgart [83, 85, 86], Baiesi, Maes
and Wynants in Leuven [3, 4, 67], and Gawedzki and Chetrite in Lyon and Falkovich in
Rehovot [12–14] (see, also, the works [64, 78]). Moreover, experimental verifications of the
GFDT on colloidal particle have been done in Lyon [38, 39].

In the present paper, we revisit, generalize, and unify these FR and GFDT by couch-
ing them in the language of the kinematics of a general Markov process, without strict
mathematical rigor. We show that this language allows elementary proofs and generaliza-
tions of the different GFDT which exist in the literature. We also consider a new family
of non-perturbative extensions of the GFDT which concerns a so-called exponential for-

ward martingale functionals [16, 76, 79]. Finally, we revisit the FR and show their relation
to forward and backward exponential martingales.1 In the process, we prove that a certain
version of the Crooks theorem and the Jarzynski equality hold for fairly general Markov
processes, whereas the Gallavotti-Cohen relation for the performed work can be violated
when the particle is subjected to a Poisson or Levy noise [6, 89].

General Markov stochastic processes form an integral part of modeling of dynamics in
statistical mechanics. Although largely idealized, they often provide a sufficiently realis-
tic description of experimental situations and have traditionally served as a playground for
both theoretical considerations and numerical studies. In a continuous space (e.g., Rd ), all
continuous time Markov processes consist of some combinations of diffusion, determinis-
tic motion and random jumps. Markov processes corresponding to equilibrium dynamics are
characterized by the detailed balance property which ensures that the net probability flux be-
tween microstates of the system vanishes. On the other hand, with nonequilibrium Markov
dynamics, detailed balance is violated and there are non-zero probability fluxes even in a sta-
tionary situation. For the purpose of characterizing the difference between equilibrium and
nonequilibrium dynamics, it is interesting to find a vector field, a kind of velocity, which
vanishes in equilibrium. Such an object was introduced in the sixties by Nelson in his sem-
inal work [71] with the notion of current velocity that we call here the local symmetric

1In the following, unless stated otherwise, use of the word martingale alone would mean forward martingale.
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velocity. This quantity is an average of a well-chosen instantaneous velocity of the process
conditioned to pass through a given point. It was shown in [14] that nonequilibrium diffu-
sive dynamics (without the random jumps) takes, in the Lagrangian frame of this velocity,
an equilibrium form with the detailed balance property and this explains the usual form (1)
of the FDT in that frame, which was observed previously in [12]. The issue regarding the
extension of this result to other types of Markov processes is addressed in this article in one
of the Sections.

The formulation of the usual FDT (1) for some Markov processes is known since long
time [9, 53, 80] in physics, but now it has a strictly mathematically rigorous formula-
tion [25]. For the FR, shortly after the earliest articles in the context of deterministic
dynamics [32, 35], the fluctuation relations were proved for some Markovian dynamics.
In [50], Jarzynski generalized his relation to time-dependent pure jump Markov processes.
At around the same time, Kurchan showed in [57] that the stationary FR hold for the stochas-
tic Langevin-Kramers evolution with additive noise. His result was extended to more gen-
eral diffusion processes by Lebowitz and Spohn in [59]. In [66], Maes has traced the ori-
gin of FR to the Gibbsian nature of the statistics of the dynamical histories. Finally, these
relations were put into the language of stochastic thermodynamics by Sekimoto [84] and
Seifert [82]. There exist now many reviews on fluctuation relations in the Markovian con-
text, like [42, 51, 63] for pure jump process or [10, 11, 51, 58, 62] for diffusion process, but
the extension to FR for general Markov process is still under debate [6, 89].

The paper consists of seven Sections and six Appendices. Section 2 sets the stage and
provides notations by briefly stating definitions relevant to Markov processes. In particu-
lar, in Sect. 2.1, we recall the notions of transition probability, Markov generator, stationary
state and equilibrium state. In Sect. 2.2, we introduce the notion of cotransition probability,
cogenerator, current and velocity operator. We also elucidate the relation between these ob-
jects. Section 3 develops the kinematics of a Markov process [71] by defining a set of local
derivatives and local velocities associated with such processes. It is proved in Sect. 3.2 that
these local derivatives appear naturally in the time derivative of correlation function which
appears on the right hand side of the FDT (1). Section 4 investigates the form of the kinemat-
ics elements, local velocities and velocity operator, for the three most common examples of
Markov process which appear in physics. First is the pure jump process in Sect. 4.1, which
is a process with no diffusion and deterministic evolution. Second is the diffusion process,
considered in Sect. 4.2, which is a process that, on the contrary, neglects the random jumps.
Finally, in Sect. 4.3, we investigate the less considered case which mixes diffusion, random
jumps and deterministic motion given by a stochastic equation with Gaussian and Poisso-
nian white noises. The latter noise consists of a sequence of δ-function shaped pulses with
random heights occurring at randomly distributed times. Such a noise appears in the physical
world, for example, it describes the emission of electrons in diodes or the counting process
of photons. As examples, we study two physical realizations of such a dynamics involving
colloidal particles trapped on the unit circle. It turns out that analytical computation of the
stationary density is possible only for the first realization, and not for the second. Hence, we
resort to extensive numerical simulations to obtain the stationary density as well as the local
velocity for the second realization.

The first central section which contains novel results is Sect. 5 which is devoted to the
study of the behavior of a Markovian system under a perturbation. More precisely, Sect. 5.1
recalls the notion of response function to an arbitrary perturbation. Section 5.2 introduces
a special family of perturbations, which we call Hamiltonian ones or generalized Doob h-
transforms. These include the usual perturbations considered in the physics literature. Sec-
tion 5.3 proves in a very simple way, thanks to the language of kinematics elements, that the
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recent GFDT [3, 4, 12–14, 38, 64, 67, 78, 83, 85, 86] are obtained in this general Markovian
context for the case of a Hamiltonian perturbation. We also numerically verify the GFDT in
the context of the example of Sect. 4.3.2 involving stochastic dynamics with Gaussian and
Poissonian white noise. Section 5.4 presents the GFDT which result from a more general
class of perturbations, such as a time change [25] or a thermal perturbation pulse [14, 80].
The second crucial section is Sect. 6. Here, we present global (non-perturbative) versions
of these GFDT which involve a family of functionals called exponential martingales in the
probability literature [76]. Originally, a martingale referred to a class of betting strategies,
but this notion has now become central to the modern probability theory and characterizes,
ironically, a model of a fair game. A martingale is process whose expectation in the future,
given the knowledge accumulated up to now, is its present value [16, 28, 33, 79, 87]. In
Sect. 6.1, we present a family of exponential martingales, which are natural objects associ-
ated with the Hamiltonian perturbations because they are the ratio of the trajectory measures
of the perturbed and the unperturbed processes. Moreover, we prove in Sect. 6.1.3 that they
also provide global versions of the GFDT. Finally, in Sect. 6.2, we revisit, in the light of the
martingale theory, the usual FR for quite general Markov processes and underline the rela-
tion with the previously considered exponential martingales. In particular, this rationalizes
the typical martingale form 〈exp(−W)〉 = 1 of the Jarzynski equality. Section 7 presents our
conclusions. The Appendices collect some simple but technical arguments.

2 Elements of a Markov Process

As mentioned in the introduction, our study deals with nonequilibrium systems modeled
by Markov processes. We begin by recollecting below some basic properties of a Markov
process [2, 7, 16, 28, 33, 79, 87]. We consider a continuous time Markov process xt which
takes values in a space E . The space E could, for example, be Rd or a counting space.

2.1 Transition Probability, Stationary State and Equilibrium

The dynamics of the process is given by a family of transition functions2 P t
s (x, dy) which

satisfy the Chapmann-Kolmogorov rule:

∫
P u

s (x, dy)P t
u(y, dz) = P t

s (x, dz) ∀s ≤ u ≤ t, (2)

where P u
s (x, dy) is the probability that the process has the value [y, y + dy] at time u,

conditioned on the fact that it had the value x at time s. Here, and in the following, the
notation dy represents the Lebesgue measure or the counting measure, depending on E . We
will assume for simplicity that the transition functions and all other relevant functions admit
a density with respect to this measure (i.e., P t

s (x, dy) = P t
s (x, y)dy). Moreover, we consider

processes without death or explosion, i.e., with so-called honest transition probabilities, such
that one has the normalization condition

∫
dyP t

s (x, y) = 1. This could be easily achieved in
general, e.g., by enlarging the space to include a coffin state. It will be useful to think of the

2Presence of two time indices is a result of the non-homogeneous time character of the process. Such a
process is sometimes called nonstationary in physics. For time-homogeneous process, we define Pt−s ≡ P t

s .
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transition functions as linear operators P t
s which form an inhomogeneous semi-group, and

which are defined by their action on a bounded function f in E in the following way:

P t
s [f ](x) ≡

∫
dyP t

s (x, y)f (y). (3)

The family of transition functions of a Markov process which can be written down explic-
itly is very restrictive. Hence, it is more practical to define the generator Lt of this inho-
mogeneous semi-group, under appropriate regularity conditions [16, 79], by the following
equation:

P t
s =

−→exp

(∫ t

s

Lu du

)
≡

∑

n

∫

s≤s1≤s2≤···≤sn≤t

n∏

i=1

dsiLs1 ◦ Ls2 ◦ · · · ◦ Lsn . (4)

This equation is equivalent to the forward and backward Kolmogorov equation, given, re-
spectively, by

∂tP
t
s = P t

s ◦ Lt , and ∂sP
t
s = −Ls ◦ P t

s . (5)

Here, the symbol ◦ means composition of operators. Also, the initial condition is P s
s = I .

For the transition function to be honest, the generator must obey Lt [1] = 0, where 1 is the
function which is equal to 1 on E . If the initial measure of the process is μ0(dx) = ρ0(x)dx,
we may define the averages of a functional of the process x as

〈F 〉 ≡

∫
μ0(dx)Et0,x(F [x]), (6)

where Et0,x stands for the expectation of the functional of the process x with the initial con-
dition xt0 = x. Next, it will be useful to define a path measure Mμ0,[s,t][dx] ≡ dMμ0,[s,t][x]

on the space of trajectories by the following equation:

〈F 〉 =

∫
F [x]Mμ0,[s,t][dx], (7)

where F is a functional of the path from time s to time t . The instantaneous (or single time)
probability density function (PDF) of the process is given by

ρt (x) = 〈δ(xt − x)〉. (8)

Its time evolution may be deduced from (5). We obtain the following Fokker-Planck equa-
tion:

∂tρt = L†
t [ρt ], (9)

where L
†
t is the formal adjoint of Lt with respect to the Lebesgue (or counting) measure.

A stationary state (ρt ≡ ρ) then satisfies the equation

L†
t [ρ] = 0. (10)
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Further, one says that the process is in equilibrium, i.e., it satisfies the infinitesimal detailed
balance relation if the following condition for the generator is satisfied:3

ρ ◦ Lt ◦ ρ−1 = L†
t . (11)

If the process is time-homogeneous, the above equation is equivalent to the usual detailed
balance condition for the transition function:

ρ(x)Pt−s(x, y) = ρ(y)Pt−s(y, x). (12)

It will be useful to define two particular families of non-stationary states. First, one defines
the so-called accompanying density πt which satisfies the instantaneous relation [41, 50]

L†
t [πt ] = 0. (13)

Next, we introduce the subclass of accompanying density, that we assume to be in local
detailed balance, such that the generator verifies the instantaneous time-dependent version
of the relation (11):

πt ◦ Lt ◦ π−1
t = L†

t . (14)

2.2 Cotransition Probability, Current and Velocity Operator

The two-point density 〈δ(xs − x)δ(xt − y)〉 of a Markov process is usually expressed by
conditioning with respect to the earlier time s, as

〈δ(xs − x)δ(xt − y)〉 = ρs(x)P t
s (x, y). (15)

It can also be expressed by conditioning with respect to the later time t in terms of the
so-called cotransition probability P ∗t

s [30] (sometimes called the backward transition prob-
ability [31, 72]4) as

〈δ(xs − x)δ(xt − y)〉 = P ∗t
s (x, y)ρt (y). (16)

This cotransition probability satisfies the Chapman-Kolmogorov equation (2), but the nor-
malization condition becomes

∫
dxP ∗t

s (x, y) = 1. The relation between the transition and
the cotransition probability can then be expressed by the operator formula P ∗t

s = ρs ◦ P t
s ◦

ρ−1
t , which implies the forward equation5

∂tP
∗t
s = P ∗t

s

(
ρt ◦ Lt ◦ ρ−1

t − ρ−1
t (∂tρt )

)
. (17)

We will now introduce a family of operators L∗
t , which we call cogenerators, by the follow-

ing equation:

L∗
t = ρ−1

t ◦ L†
t ◦ ρt − ρ−1

t (∂t .ρt )I = ρ−1
t ◦ L†

t ◦ ρt − ρ−1
t L†

t [ρt ]I , (18)

3Note that, with this definition, a non-homogeneous process can be in equilibrium. We will see examples of
diffusion process with this surprising property in Sect. 4.2.
4We will not employ this terminology because in our language, the backward process needs also a reversal
of time [11].
5Here, the density ρ is regarded as a multiplication operator. In the following, depending on the context, we
will consider ρ as a function or as an operator.
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Fig. 1 The figure illustrates the
relation between stationarity,
equilibrium and the condition
L∗

t = Lt , as discussed in the text

where I is the identity kernel, so that the cotransition probability now takes the operatorial
form

P ∗t
s ≡

−→exp

(∫ t

s

du
(
L∗

u

)†
)

. (19)

Then, the property
∫

dxP ∗t
s (x, y) = 1 is equivalent, as before, to L∗

t [1] = 0. For a stationary
process (10), the cogenerator takes the form L∗

t = ρ−1 ◦ L
†
t ◦ ρ, which is the adjoint of Lt

with respect to the scalar product with weight ρ. It is also interesting to associate a current

operator and a velocity operator (which depend on the initial density) with the density ρt

by the following equations:

Jt ≡ ρt ◦ Lt − L†
t ◦ ρt and Vt ≡ Lt − ρ−1

t ◦ L†
t ◦ ρt . (20)

The Fokker-Planck equation (9) can be expressed as

∂tρt + Jt [1] = 0, or, equivalently, ∂tρt + ρtVt [1] = 0. (21)

The condition (10) for the density ρ to be stationary can then be expressed as

Jt [1] = 0, or, equivalently, Vt [1] = 0. (22)

Otherwise, the equilibrium condition (11) becomes

Jt = 0, or, equivalently, Vt = 0. (23)

Finally, using (9,18,20), we can express the cogenerator in terms of the velocity operator as

L∗
t = Lt − Vt + Vt [1]I . (24)

Then, by (24), equilibrium implies L∗
t = Lt . The converse of this statement is true be-

cause the condition L∗
t = Lt implies that for any function f , one has L

†
t [ρtf ] − f L

†
t [ρt ] =

ρtLt [f ]. Then, on integrating by parts over all space, we get
∫

dx(−2f (x)L
†
t [ρt ](x)) = 0,

which implies that L
†
t [ρt ] = 0, and then ρt = ρ. Finally, the condition L∗

t = Lt can be rewrit-
ten as the equilibrium condition.

Figure 1 illustrates these relations between stationarity, equilibrium and the condition of
equality between the generator and the cogenerator.

3 Kinematics of a Markov Process

The notion of the velocity operator (20) introduced in the last section is quite different from
the usual notion of velocity as the derivative of the position. Assume that we want to describe
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the “naive” kinematics of a general Markov process. The first difficulty is that the trajecto-
ries in general are non-differentiable (as in a diffusion process) or, worse, discontinuous (as
in a jump process). This does not allow for a straightforward definition of a velocity. In the
sixties, Nelson circumvented this difficulty by introducing the notion of forward and back-
ward stochastic derivatives in his seminal work concerning diffusion process with additive
noise [71]. Here, we will reproduce the definition of Nelson for a general Markov process.
In the following, we assume existence conditions on various quantities, with the expectation
that these conditions have already been, or, can be established by rigorous mathematical
studies.

3.1 Stochastic Derivatives, Local Velocity

According to Nelson, a Markov process is said to be mean-forward differentiable if the limit

limh→0〈
xt+h−xt

h
δ(xt − x)〉

〈δ(xt − x)〉

exists. In this case, this ratio defines the local forward velocity for a process conditioned to
be in x at time t :

v+
t (x) ≡

limh→0〈
xt+h−xt

h
δ(xt − x)〉

〈δ(xt − x)〉
. (25)

Similarly, the local backward velocity is defined as

v−
t (x) ≡

limh→0〈
xt −xt−h

h
δ(xt − x)〉

〈δ(xt − x)〉
. (26)

The local symmetric velocity and the local osmotic velocity are defined as

vt (x) ≡
v+

t (x) + v−
t (x)

2
and ot (x) ≡

v+
t (x) − v−

t (x)

2
. (27)

In the same spirit, he defined the stochastic forward, backward and symmetric derivatives of
function ft (xt ) of the process as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d+f

dt
(x) ≡

limh→0〈
f (t+h,xt+h)−f (t,xt )

h
δ(xt −x)〉

〈δ(xt −x)〉
,

d−f

dt
(x) ≡

limh→0〈
f (t,xt )−f (t−h,xt−h)

h
δ(xt −x)〉

〈δ(xt −x)〉
,

df

dt
(x) ≡

d+f

dt
(x)+

d−f

dt
(x)

2 .

(28)

Note that the set of forward, backward and symmetric local velocities are just special cases
of derivatives of the function ft (xt ) = xt . With the definition of the forward transition prob-
ability and the cotransition probability given in (15) and (16), we can rewrite the above
equations as

{
d+f

dt
(x) = limh→0

1
h

∫
dyP t+h

t (x, y)(f (t + h,y) − f (t, x)),

d−f

dt
(x) = limh→0

1
h

∫
dyP ∗t

t−h(y;x)(f (t, x) − f (t − h,y)).
(29)
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Fig. 2 The figure illustrates the
relation between stationarity,
equilibrium, and vanishing of the
local symmetric velocity, as
discussed in the text

A Taylor expansion of these transition probabilities using (4) and (19) gives

d+

dt
= ∂t + Lt and

d−

dt
= ∂t − L∗

t . (30)

Also, the stochastic symmetric derivative becomes

d

dt
= ∂t +

Lt − L∗
t

2
. (31)

The expression of the cogenerator from (24) allows us to express the stochastic symmetric
derivative in (31) in terms of the velocity operator (20) as

d

dt
= ∂t +

Vt − Vt [1]I

2
. (32)

Then, for a steady state (22), d
dt

= ∂t + Vt

2 .
We can then deduce that, in the equilibrium case, the stochastic symmetric derivative

takes the form of the partial time derivative d
dt

= ∂t , which gives zero while acting on observ-
ables which do not depend explicitly on time. The local symmetric velocity, given in (27),
now reads

vi
t (x) =

Lt [x] − L∗
t [x]

2
=

Vt [x
i] − Vt [1]xi

2
, (33)

and then, for a steady state, vi
t (x) = Vt [x

i ]

2 .
It is important to remark that equilibrium (V = 0) implies vanishing of the local sym-

metric velocity but the converse of this statement is not true. Figure 2 illustrates the relation
between stationarity, equilibrium and vanishing of the local symmetric velocity.

One of the authors of the present article proved in [14] that a diffusion process in the
Lagrangian frame of its mean local symmetric velocity takes an equilibrium form, and then
the concept of equilibrium and nonequilibrium become closer than usually perceived. How-
ever, this property is no longer true for a general process due to the inequivalence between
equilibrium and vanishing of the local symmetric velocity.

3.2 Time Derivative of Two-point Correlations

Here we provide useful formulae for the time derivative of the two-time (s ≤ t ) correlation
of observables U and V in terms of the correlation of stochastic derivatives (forward or
backward) of these observables. The two-point correlation can be expressed in term of the
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forward transition probability and cotransition probability, (15), (16), as

〈Us(xs)Vt (xt )〉 =

∫
dxdyUs(x)ρs(x)P t

s (x, y)Vt (y) =

∫
dxdyUs(x)P ∗t

s (x, y)ρt (y)Vt (y).

(34)
We then obtain the formula

∂t 〈Us(xs)Vt (xt )〉 =

〈
Us(xs)

d+Vt

dt
(xt )

〉
and ∂s〈Us(xs)Vt (xt )〉 =

〈
d−Us

ds
(xs)Vt (xt )

〉
.

(35)
The proofs are direct consequence of the definition of transition and cotransition probabili-
ties (4, 19) and of forward and backward stochastic derivatives, and are given in Appendix A.
These relations provide motivation for a proof of generalizations of FDT by involving the
stochastic derivatives, as discussed later in the paper.

4 Examples of Markov Processes

We will now investigate the form of the velocity operator (20) and of the local symmetric
velocity (33) for the three most popular examples of Markov processes, namely, the pure
jump process, the diffusion process and a process generated by a stochastic equation with
both Gaussian and Poissonian white noise.

4.1 Pure Jump Process

Roughly speaking, a Markov process is called a pure jump process (or, a pure discontin-
uous process) if, after “arriving” into a state, the system stays there for an exponentially-
distributed random time interval. It then jumps into another state chosen randomly, where
it spends a random time, and so on. More precisely, xt is a pure jump process if, during
an arbitrary time interval [t, t + dt], the probability that the process undergoes one unique
change of state (respectively, more that one change of state) is proportional to dt (respec-
tively, infinitesimal with respect to dt ) [33]. In a countable space, one can show that all
Markov processes (with right continuous trajectories) are of this type, a property which is
not true in a general space. It is usual to introduce the intensity function λt (x) such that
λt (x)dt + o(λt (x)dt) is the probability that xt undergoes a random change in the time inter-
val [t, t + dt] if the actual state is xt = x. If this change occurs, then x(t + dt) is distributed
with the transition matrix Tt (x, dy). Such a process naturally generalizes a Markov chain to
continuous time.

We introduce the transition rate of the jump process, which gives the rate at time t for the
transition x → y, through

Wt (x, dy) ≡ λt (x)Tt (x, dy). (36)

One can prove that, with regularity condition [33, 79], such a process possesses the generator

Lt (x, y) = Wt (x, y) − δ(x − y)

(∫
dzWt (x, z)

)
. (37)

The current and the velocity operator, given in (20), take the form of the kernel

Jt (x, y) = ρt (x)Wt (x, y) − Wt (y, x)ρt (y)

and

Vt (x, y) = Wt (x, y) − ρ−1
t (x)Wt (y, x)ρt (y).

(38)
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Otherwise, the local symmetric velocity (33) takes the form

vt (x) =
1

2

∫
Vt (x, y)(y − x)dy. (39)

4.2 Diffusions Processes

Here we are interested in a Markov process which has continuous trajectories. More con-
cretely, the main objects of our study are the non-autonomous stochastic processes xt in Rd

(or, more generally, on a d-dimensional manifold), described by the differential equation

ẋ = ut (x) + ηt (x), (40)

where ẋ ≡ dx
dt

, ut (x) is a time-dependent deterministic vector field (a drift), and ηt (x) is a
Gaussian random vector field with mean zero and covariance

〈
ηi

t (x)ηj
s (y)

〉
= δ(t − s)D

ij
t (x, y). (41)

Due to the white-noise nature of the temporal dependence of ηt (typical ηt are distribu-
tional in time), (40) is a stochastic differential equation (SDE). We shall consider it with
the Stratonovich convention [87], keeping for the Stratonovich SDE’s the notation of the
ordinary differential equations (ODE’s). The explicit form of generator Lt which acts on a
function f is

Lt [f ] = û i
t ∂if + 1

2 ∂j

[
d

ij
t ∂if

]
, (42)

where

d
ij
t (x) = D

ij
t (x, x) and û i

t (x) = ui
t (x) − 1

2 ∂yj D
ij
t (x, y)|y=x . (43)

Here, û i
t (x) is called the modified drift. A particular form of (40) which is very popular in

physics is the so-called overdamped Langevin form (with the Einstein relation):

ẋi = −Ŵ
ij
t (x)∂jHt (x) + Gi

t (x) +
1

2
∂yj D

ij
t (x, y)

∣∣∣∣
x=y

+ ηi
t (x) and d

ij
t (x) =

2

β
Ŵ

ij
t (x),

(44)
where Ht (x) is the Hamiltonian of the system (the time index corresponds to an explicit
time dependence), Ŵt (x) is a family of non-negative matrices, Gt (x) is an external force
(or a shear), β the reciprocal of the bath temperature and ∂yj D

ij
t (x, y)|x=y is an additional

spurious term which comes from the x dependence of the noise. This additional term is
chosen in such a way that the accompanying density (13) is the Gibbs density exp(−βHt )

Zt
, in

the case where the external force is zero (G = 0). Then, in the case of stationary Hamilto-
nian and temperature (i.e., Ht = H,βt = β) and without the external force (i.e., G = 0),
the Gibbs density exp(−βH)

Z
is an equilibrium density, see (11). Note that this last case,

in the situation where the matrix Ŵt depends explicitly on time, is an example of a non-
homogeneous process in equilibrium in the state exp(−βH). The presence of the spuri-
ous term ∂yj D

ij
t (x, y)|x=y was extensively studied in the literature of non-linear Brownian

motion [55] and we can see that it vanishes in the case of linear Brownian motion where
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Ŵt (x) = Ŵt . The overdamped property comes from neglect of the Hamiltonian forces.6 In
addition to the operator current, the operator velocity (20) and the local symmetric veloc-
ity (33), it is usual for this type of process to introduce the hydrodynamic probability current
jt , respectively, the hydrodynamic velocity ṽt , associated with the PDF ρt , (8), through

jt = ûtρt −
dt

2
(∇ρt ) and ṽt = ût −

dt

2
(∇ lnρt ), (45)

such that the Fokker-Planck equation (9) takes the form of the continuity equation, respec-
tively, the hydrodynamical advection equation,

∂tρt + ∇ij
i
t = 0 and ∂tρt + ∇i

(
ρt ṽ

i
t

)
= 0. (46)

A direct calculation, given in Appendix B, shows that the explicit form of the cogenera-
tor (18) for a diffusion process is

L∗
t [f ] = Lt [f ] − 2̃vt .∇f, (47)

and we can deduce the form of the operator velocity, (20), as

Vt [f ] =
(
Lt − ρ−1

t ◦ L†
t ◦ ρt

)
[f ]

=
(
Lt − L∗

t − ρ−1
t (∂t .ρt ) I

)
[f ] = 2̃vt .∇f +

(
ρ−1

t ∇i

(
ρt ṽ

i
t

))
f. (48)

Moreover, for a diffusion process, (47) allows us to obtain the following hydrodynamical
form for the stochastic symmetric derivative and the local symmetric velocity.

d

dt
= ∂t + ṽt .∇ and vt (x) = ṽt (x). (49)

It then follows that the local symmetric velocity is identical to the hydrodynamic velocity,
and moreover, with (48), that the equilibrium condition (Vt = 0) is equivalent to the con-
dition of vanishing of the hydrodynamic velocity ṽt or the local symmetric velocity in E .7

Also, the form of the drift of an equilibrium diffusion is then

ût =
dt

2
(∇ lnρ). (50)

The link between stationarity, equilibrium and vanishing of local symmetric velocity for a
diffusion process is depicted in Fig. 3.

4.3 Stochastic Equation with Gaussian and Poissonian White Noise

We now consider a Markov process in continuous space (e.g., Rd ) which includes the pro-
cesses in the last two sections in the sense that both diffusion and jump can occur. Such pro-
cesses are very popular in finance [17, 70]. They are much less popular in physics, where,

6The Fluctuation-Dissipation Theorem with such Hamiltonian force has been studied in details in [13, 14].
7In [22], a result in a similar spirit was shown for the characterization of diffusion processes with additive

covariance d
ij
t (x) = dδij which possesses a (possibly time-dependent) gradient drift. The characterization

can be written in terms of a second-order stochastic derivative as d+d+xt

dt2 = −
d−d−xt

dt2 .
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Fig. 3 The set of processes
inside the domain marked in red
are such that the local symmetric
velocity vanish, but it is also the
set of equilibrium jump processes
and the set of processes with
vanishing hydrodynamic velocity

after its first study in the beginning of eighties [40, 90], they were used, for example, to
study mechanism of noise-induced transitions [81] or noise-driven transport [21, 65]. We
consider processes that are right continuous with a left limit (i.e., “cadlag” processes), and
we define xt− = lims↑t xs and the jump as


xt = xt − xt− . (51)

We want to consider a process which follows the evolution of a diffusion process (40) for
most of the time, excepting that it jumps occasionally, the occurrence of the jump being
given by a non-autonomous Poisson process. More precisely, we will construct such pro-
cesses by adding a state-dependent Poisson noise [77] to the stochastic differential equa-
tion (40), as

ẋt = ut (xt ) + ηt (xt ) + wt (xt−), (52)

where, as before, ηt (x) is a Gaussian random vector field (with Stratonovich conven-
tion [87]) which has mean zero and covariance (41). On the other hand, wt (x) is a state-
dependent Poisson noise (that depends on the state xt ), and is given by

wt (x) =

Nt∑

i=1

yi(x)δ(t − Ti). (53)

The time Ti at which the instantaneous jump occurs are the arrival times of a non-
homogeneous and non-autonomous Poisson process Nt with intensity λt (x). The jump mag-
nitude yi are mutually-independent random variables, independent of the Poisson process,
and are described by the probability function bt,x(y). This function gives the probability for
a jump of magnitude y while starting from x at time t . Physically, addition of the Poisson
noise mimics large instantaneous inflows or outflows (“big impact”) at the microscopic level.
We remark that this noise contains almost surely a finite number of jumps in every interval
(λt (x) is finite). It is possible to consider a more general noise, the so-called Levy noise,
where this condition is relaxed.8 The mathematical theory of general stochastic differential

8The process xt then describes a fairly large class of Markov processes (of Feller-type) which are governed
by Levy-Ito generators which acts on a function f as the integro-differential operators [46–48, 88]

Lt [f ](x) = û i
t (x)∂

xi f +
1
2
∂
xj

[
d

ij
t (x)∂

xi f
]
+

∫

Rd−{0}

(
f (x + y)−f (x)−

(y.∇f )(x)

1 + |y|2

)
νt,x(dy), (54)

with the so-called Levy jump measure νt,x (dy) which can be infinite but is such that, for all x and t , the

condition
∫
Rd−{0}

|y|2

1+|y|2
νt,x (dy) < ∞ is verified.
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equation with a Levy noise and the theory of stochastic integration with respect to a (possi-
bly discontinuous) more general (semi- martingale) noise are well established [2, 5]. In the
present case, we will just use from this theory the form of the Markov generator which, for
the process (52), is an integro-differential operator, given by

Lt = LD
t + LJ

t . (55)

Here, the diffusive part LD
t is given by (42) and the jump part LJ

t is given by (37), with

Wt (x, y) = λt (x)bt,x(y − x). (56)

The class of process (52) possesses some famous particular cases.

– The piecewise deterministic process [23] is the case where there is no Gaussian noise
(ηt (x) = 0). Then xt follows a deterministic trajectory interrupted by jumps of random
timing and amplitudes.

– The interlacing Levy Processes [2] is the case where the drift is constant and homoge-
neous (ut (xt ) = u), the Gaussian noise is additive and stationary (d ij

t (x) = d ij ), and the
Poisson white noise is state-independent and stationary (λt (xt ) = λ and bt,x(y) = b(y)).

This process belongs to the class of Levy process [2], with independent and homogeneous
increments.

We will now investigate the form of the kinematics elements: the velocity operator, (20),
and the local symmetric velocity, (33). Similar to (55), these two objects can be split into a
diffusive part and a jump part such that

Vt = V D
t + V J

t and vt = vD
t + vJ

t . (57)

On using (178), we can express the diffusive part V D
t as (48)

V D
t ≡ LD

t − ρ−1
t ◦ LD,†

t ◦ ρt

= ρ−1
t ∇i

(
ρt

(
û i

t −
d

ij
t

2
(∇j lnρt )

))
+ 2

(
û i

t −
d

ij
t

2
(∇j lnρt )

)
∇i . (58)

The jump part V J
t is given by (38) with (56). Similarly, the diffusive part of the local sym-

metric velocity reads

vD
t (x) = û i

t (x) −
d

ij
t (x)

2

(
∇j lnρt (x)

)
, (59)

while the jump part of the local symmetric velocity reads

vJ
t (x) =

∫
dyWt (x, y)(y − x) − ρ−1

t (x)
∫

dyρt (y)Wt (y, x)(y − x)

2
. (60)

Finally, the stochastic symmetric derivative (32) takes the form

d

dt
= ∂t +

(
û i

t −
d

ij
t

2
(∇j lnρt )

)
∇i +

Wt − ρ−1
t ◦ W

†
t ◦ ρt − λtI + ρ−1

t W
†
t [ρt ]I

2
. (61)

Here, we are in the general case where the link between equilibrium (V = 0) and local
symmetric velocity is shown in Fig. 2. However, we remark that the condition

ût =
dt

2
(∇ lnρ) and ρ(x)Wt(x, y) = ρ(y)Wt(y, x) (62)
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is a sufficient and a necessary condition to be in equilibrium (V = 0).9

A particular form of such jump diffusion process (52), that we call jump Langevin equa-
tion, is obtained from the Langevin equation (44) by adding a Poisson noise wt , as

ẋi = −Ŵ
ij
t (x)∂jHt (x) + Gi

t (x) +
1

2
∂yj D

ij
t (x, y)

∣∣∣∣
x=y

+ ηi
t (x) + wi

t (x), (63)

with d
ij
t (x) = 2

β
Ŵ

ij
t (x) such that the transition rate, (56), takes the particular form (Kangaroo

process [8])

Wt (x, y) = r exp

(
−

β

2

(
Ht (y) − Ht (x)

))
, (64)

where r is real. The accompanying density (13), in the case without external force (Gt = 0),
is the Gibbs density exp(−βHt )

Zt
. If, in addition, we have a stationary Hamiltonian (Ht = H ),

such processes verify the sufficient equilibrium condition (62) in this Gibbs density ρ(x) =
exp(−βH(x))

Z
. We will now consider physical examples of jump diffusion process (52).

4.3.1 Example 1: Interlacing Levy Process on the Unit Circle

The most elementary example of an interlacing Levy process which describes a nonequilib-
rium system is a particle on a unit circle subject to a constant force G, as

θ̇t = G + ηt + wt , (65)

with an additive and stationary Gaussian white noise (d ij
t (θ) = d) and a state-independent

and stationary Poisson white noise (λt (θ) = λ and bt,θ (θ
′) = b(θ ′)). Moreover, the jump am-

plitude is a periodic function, b(θ) = b(θ + 2π). The Fokker-Planck equation (9) becomes,
with (55),

∂tρt (θ) = −G∂θρt (θ) +
d

2
∂2

θθρt (θ) − λρt (θ) + λ

∫ 2π

0
dθ ′b(θ − θ ′)ρt (θ

′). (66)

Then, the process possesses an invariant probability distribution with the constant density
ρ(θ) = 1

2π
. This is true also in the absence of Poisson noise (λ = 0) or Gaussian noise

(d = 0). For the stationary process, where we take the invariant density as initial density, the
velocity operator (57,58) takes the form

V [f ](θ) = 2G∂θf + λ

∫ 2π

0
dθ ′

(
b(θ ′ − θ) − b(θ − θ ′)

)
f (θ ′). (67)

In the absence of external force (i.e., G = 0), we see that the Poisson noise transforms an
equilibrium state to a nonequilibrium steady state if b is not an even function. Finally, the
local symmetric velocity takes the form (57,59,60)

v(θ) = G +
λ

2

∫ 2π

0
dθ ′θ ′

(
b
(
θ ′ − θ

)
− b

(
θ − θ ′

))
. (68)

9That the condition is necessary follows from the fact we can split up the kernel Vt into a regular and a
distributional part, and both should vanish to ensure that Vt = 0.
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For example, if we choose the probability of the jump distribution as b(θ) = 1+sin(θ)

2π
, then

the local symmetric velocity in the steady state takes the form v(θ) = G + λ
2π

∫ 2π

0 dθ ′ ×

sin(θ ′ − θ)θ ′ = G−λ cos(θ). So, despite the fact that the Poisson noise does not change the
invariant density, it changes the local symmetric velocity which is no longer constant around
the circle. For example, if G < λ, it includes regions of the circle where the local transport
is in the reverse sense to the external force.

4.3.2 Example 2: Jump Langevin Equation on the Unit Circle

We consider a particular case of (63), namely,

θ̇t = −∂θH + G + ηt + wt , (69)

which describes the angular position of an overdamped particle on a circle. The Hamiltonian
H is 2π -periodic, the force G is a constant, the Gaussian white noise ηt has the covariance
〈ηsηt 〉 = 2

β
δ(t − s), and the transition rates of the state-dependent Poisson white noise are

given by (64). Such systems without the Poisson noise (r = 0) have been realized with a
colloidal particle kept by an optical tweezer on a nearly circular orbit [38]. In these experi-
ments, H(θ) = a sin θ . In this case, the invariant density takes the form [12]

ρ(θ) = Z−1 exp(−β{H(θ) − Gθ})

×

(∫ θ

0
exp(β{H(ϑ) − Gϑ})dϑ + exp(2πβG)

∫ 2π

θ

exp(β{H(ϑ) − Gϑ})dϑ

)
,

(70)

where Z is the normalization factor. The corresponding local symmetric velocity (also the
hydrodynamic velocity in the present context) takes the form

v(θ) = β−1Z−1 exp(2πβG) − 1

ρ(θ)
. (71)

However, with the Poisson noise (r �= 0), it is not possible to obtain analytically the form
of the stationary state, except in the equilibrium case (i.e., without external force, G = 0),
where the equilibrium density is

ρ(θ) = Z−1 exp(−βH(θ)), (72)

and the local symmetric velocity is zero. We realize a numerical simulation of the sys-
tem (69) with a = 0.87s−1 and β = 0.8s (these values for a and β are close to those used in
the experiment [38]), but with a non-vanishing Poisson noise (r �= 0). We can imagine for
example that it is once again the laser beam which produces the two noise. We first verify
numerically that we find the equilibrium density (72) for three values of r = 0.001,0.01, and
0.1 in the case G = 0. The results of the numerical simulation are shown in Fig. 4 which
confirm the independence of the equilibrium density on the Poisson noise.

Next, we investigate numerically the case where the external force takes the value of the
experiments [38] (G = 0.85s−1) for three different values of r (which characterizes the role
of the Poisson noise), namely, r = 0.0001,0.001, and 0.1. The corresponding forms of the
stationary state distribution are shown in Fig. 5(b). From the figure, it is evident that in the
presence of the external force, the form of the non-equilibrium stationary state depends on
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Fig. 4 The points in the figure show the equilibrium density ρ(θ), obtained from numerical simulations
of the dynamics (69) with H = a sin θ , and with G = 0, a = 0.87s−1 , β = 0.8s, and for three values of
r = 0.001,0.01, and 0.1. It can be seen that the results do not depend on the value of r . In the figure,
the results of numerical simulations have also been compared with the analytical result given in (72) with
H = a sin θ , and is represented in the figure by the continuous line

Fig. 5 (a) The points represent the stationary density ρ(θ), obtained from numerical simulation of the dy-
namics (69) with H = a sin θ , and with G = 0.85s−1 , a = 0.87s−1 , β = 0.8s, but without the Poisson noise
(r = 0). As expected, the points may be seen to lie on the continuous line representing the exact result in (70).
(b) Here, we show the stationary density ρ(θ), obtained from numerical simulations of the dynamics (69)
with G = 0.85s−1 , a = 0.87s−1 , β = 0.8s, and for r = 0.0001,0.001, and 0.1. It is easily seen that ρ(θ)

depends on the value of r , thereby hinting at the important role played by the Poisson noise

r , thereby underlying the importance of the Poisson noise. This is to be contrasted with the
result for the case depicted in Fig. 4, i.e., with G = 0, when the form of the equilibrium
stationary state is independent of r . Corresponding to the non-equilibrium stationary state
for G �= 0, the local symmetric velocity (57,59,60) is given by

v(θ) = −a cos(θ) + G −
1

β
∂θ (lnρ(θ))

+
r exp(

aβ

2 sin(θ))

2

(∫ 2π

0
dθ ′ exp

(
−

βa

2
sin(θ ′)

)
θ ′

)

−
rρ−1(θ) exp(−

aβ

2 sin(θ))

2

(∫ 2π

0
dθ ′ρ(θ ′) exp

(
βa

2
sin(θ ′)

)
θ ′

)
. (73)
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Fig. 6 The figure shows the local symmetric velocity v(θ) for the dynamics (69) with H = a sin θ , and with
G = 0.85s−1, a = 0.87s−1, β = 0.8s, and for r = 0 (no Poisson noise), 0.0001, and 0.001. The points are
obtained from numerical simulations of the dynamics and use of the formula (73). The exact result for the
case r = 0 is given by (71). It is easily seen that v(θ) depends on the value of r , i.e., on the details of the
Poisson noise in the dynamics

In Fig. 6, we show the local symmetric velocity v(θ) for the dynamics (69) with G =

0.85s−1, a = 0.87s−1, β = 0.8s, and for r = 0 (no Poisson noise), 0.0001, and 0.001. It is
clear from the figure that the quantity v(θ) depends on the details of the Poisson noise in the
dynamics.

In Sect. 5.3.1, we will use the dynamics (69) as a model system to verify the GFDT by
extensive numerical simulations.

5 Perturbation of a Markov Process: The Fluctuation-Dissipation Theorem

Suppose that our dynamics evolves for t ≤ 0 with a given Markovian dynamics of generator
Lt and then suddenly, at time t = 0, we perturb the dynamics such that the new Markov
generator L′

t becomes

L′
t = Lt + ktNt , (74)

with kt a real function, sometimes called the response field, and Nt an operator. We will
assume that the perturbed process still has the property to have honest transition probability
(i.e., Nt [1] = 0). The FDT concerns the relation between correlation functions, (34), in
the unperturbed state and response functions in the case of a small perturbation (i.e., kt

infinitesimal).

5.1 Response Function

The linear response theory allows to express the variation of the average of an observable
under the perturbation as

δ 〈At (xt )〉
′

δks

∣∣∣∣
k=0

=
〈(
ρ−1

s N†[ρs]
)
(xs)At (xt )

〉
, (75)

where 〈〉′ denotes expectation for the process with the generator L′
t . The proof of this relation

is given in Appendix C for the convenience of the reader. Note however that this result is
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known for a long time in the physics literature [1, 41, 53, 80] and now has a mathematically
rigorous formulation (Definition 2.5 in [25]). This relation, besides being the basis for the
FDT, allows to prove the Green-Kubo relation [54] in the case of homogeneous perturbation
(kt = k) of a stationary dynamics. Note that other higher order relations may be derived in
the context of the non-linear response theory [61].

5.2 Hamiltonian Perturbation Class or Generalized Doob h-Transform

We will see that the form of the perturbation is the central point of the FDT, and it does not
make sense to talk of FDT without giving its form. We want to begin by studying a class of
(non-infinitesimal) perturbation of the Markov process such that the transformation of the
generator can be expressed in terms of a family of non-homogeneous positive function ht ,
as

L′
t = h−1

t ◦ Lt ◦ ht − h−1
t Lt [ht ] ≡ Lh

t . (76)

In the case where d+ht

dt
= ∂tht + Lt [ht ] = 0 (ht (x) is the so-called space time harmonic

function), such a transformation is classical in the probability literature and is called the
Doob h-transform (or gauge transformation in physics literature). This was first introduced
by Doob ([28]; see also Chap. 11 of [16]), and plays an important role in the potential theory.
We remark that if ht (x) is space-time harmonic, then ht (xt ) is a martingale, i.e.,

ht (x) = Et,x (hT (xT )) ∀T ≥ t. (77)

By introducing the symmetric bilinear operator Ŵ (the so-called “carre du champs” [79],
which can be roughly translated into English as “square of the field”), such that Ŵt (f, g) =

Lt [fg] − f Lt [g] − Lt [f ]g, the perturbed generator can be expressed in the form Lh
t =

Lt + h−1
t Ŵ(ht , ). A remarkable property of this type of perturbation appears if we restrict to

a subclass of unperturbed processes which are in so-called local detailed balance (14) with
the Gibbs density πt = exp(−βHt ). We then have the relation

h2
t πt ◦ Lh

t ◦
(
h2

t πt

)−1
= htπt ◦ Lt ◦ (πt )

−1 h−1
t − h−1

t Lt (ht )

= ht ◦ L†
t ◦ h−1

t − h−1
t Lt (ht ) =

(
Lh

t

)†
, (78)

which implies that, for the perturbed process, the density, given by

πh
t = πth

2
t = exp(−βHt + 2 lnht ), (79)

is also in local detailed balance. This property of conservation of instantaneous infinites-
imal detailed balance under the perturbation of the Hamiltonian H → H − 2

β
lnht is the

first justification for the name “Hamiltonian perturbation” that we chose for this type of
perturbation. However, we stress that this perturbation, although called here “Hamiltonian
perturbation”, is applicable to general Markov processes which do not have an underlying
Hamiltonian which generates the dynamics. Moreover, for a general diffusion process, we
can easily calculate (see Appendix D) the operator “carre du champs”

Ŵt (f, g) = d
ij
t (∇if )(∇jg). (80)

Then the perturbed generator (76) is

Lh
t = Lt + d

ij
t ∇j (ln |ht |)∇i, (81)
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so that there is just a change of the drift term, ui
t → ui

t + d
ij
t ∇j (lnht ). In the subcase of an

overdamped Langevin process (44), the perturbed process (76) becomes

ẋi = −Ŵ
ij
t (x)∂j

(
Ht (x) −

2

β
lnht

)
+ Gi

t (x) +
∂yj D

ij
t (x, y)|x=y

2
+ ηi

t (x). (82)

So we see that the perturbation in (76) is once again equivalent to change of the Hamiltonian,
H → H − 2

β
lnht . Now we want to show that the type of perturbation in (76) includes the

perturbation usually considered in the articles on FDT that exist in the literature.

– For pure jump process, it is usual to ask precisely the property of conservation of this
local detailed balance for the Gibbs density πt = exp(−βHt ) under the perturbation of the
Hamiltonian H → H − ktOt . We see from (79) that this perturbation of the Hamiltonian
is of the type in (76), with the choice

ht = exp

(
β

2
ktOt

)
. (83)

This implies the following transformation for the transition rates.

W h
t (x, y) = exp

(
−

β

2
ktOt (x)

)
Wt (x, y) exp

(
β

2
ktOt (y)

)
. (84)

This is the perturbation considered recently in [3] and earlier in [27] for finding the GFDT

in this pure jump process set-up.
– For overdamped Langevin process, it is usual [41, 53, 68, 80] to do a perturbation of the

Hamiltonian, H → H − ktOt , in (44). With (82), we see that it is of the type in (76) with
once again (83) valid.

– Finally, we remark that for a jump diffusion process of type (52), this perturbation con-
sists of a change of the drift according to ui

t → ui
t + d

ij
t ∇j (lnht ) and simultaneously, a

perturbation of the jump process by replacing the transition rates (56) by

W h
t (x, y) = h−1

t (x)Wt (x, y)ht (y).

For the jump Langevin process (63), with the transition rates (64) for the Poisson noise,
we can prove easily that the choice (83) in (76) is equivalent to the perturbation of the
Hamiltonian according to H → H − ktOt .

5.3 Fluctuation-Dissipation Theorem for Hamiltonian Perturbation

In the case of an infinitesimal ht function,

ht (x) = 1 + ktBt (x) + O(k2), (85)

we find that the Hamiltonian perturbation (76) has the infinitesimal form (74) with

Nt = Lt ◦ Bt − Bt ◦ Lt − Lt [Bt ]I . (86)

The central point of the proof that follows is the fact that the observable ρ−1N
†
t [ρ], which

appears on the right hand side of (75), can be expressed in terms of the stochastic derivative
(associated with the unperturbed process) of the observable Bt .

ρ−1
t N†

t [ρt ] = Btρ
−1
t L†[ρt ] − ρ−1

t ◦ L† ◦ ρt [Bt ] − Lt [Bt ]
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= −(Lt + L∗
t )[Bt ] =

(
d−

dt
−

d+

dt

)
[Bt ], (87)

where the third equality comes from (30). We can rewrite this observable by adding a term
proportional to (2 d

dt
−

d−

dt
−

d+

dt
)B (which is exactly equal to zero), and then, for all α, we

get

ρ−1
t N†

t [ρt ] = (1 − α)
d−

dt
Bt − (1 + α)

d+

dt
Bt + 2α

d

dt
Bt . (88)

Now, by using the response relation, (75) and the time derivative of a correlation function,
(35), we find the family, indexed by α, of equivalent GFDT.

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= (1 − α)∂s 〈Bs(xs)At (xt )〉 − (1 + α)

〈
d+Bs

ds
(xs)At (xt )

〉
+ 2α

〈
dBs

ds
(xs)At (xt )

〉
. (89)

Two particular cases of α exist in the literature:

– α = 0: First GFDT

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈Bs(xs)At (xt )〉 −

〈
d+Bs

ds
(xs)At (xt )

〉
(90)

= ∂s 〈Bs(xs)At (xt )〉 − 〈(∂sBs) (xs)At (xt )〉 − 〈(LB)s (xs)At (xt )〉 .

(91)

In the usual case of Hamiltonian perturbation of a jump process or an overdamped
Langevin process, with (83), we find Bt =

β

2 Ot and then

2

β

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈Os(xs)At (xt )〉 −

〈
d+Os

ds
(xs)At (xt )

〉
(92)

= ∂s 〈Os(xs)At (xt )〉 − 〈(∂sOs) (xs)At (xt )〉 − 〈(LO)s (xs)At (xt )〉 ,

(93)

which was first written down in [20] for diffusion process with additive noise and recently
in [3, 4, 60, 64, 83] for jump process and overdamped Langevin process. The equilib-
rium limit (1) is a bit obscure; it may be seen by noting that one has 〈(LO)(xs)A(xt )〉 =

〈A(xs)(LO)(xt )〉 = ∂t 〈A(xs)O(xt )〉. However, there exists physical interpretation of the
new term 〈(LB)s(xs)At (xt )〉 as the “frenetic term” [3, 4].

– α = −1: Second GFDT

1

2

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈Bs(xs)At (xt )〉 −

〈
dBs

ds
(xs)At (xt )

〉
, (94)

which has the advantage that the effect of the nonequilibrium character of the unperturbed
state is just in the second term on the right hand side. For a diffusion process, this GFDT

can be written [12–14], with (49), as

1

2

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈Bs(xs)At (xt )〉−〈(∂sBs) (xs)At (xt )〉−
〈(
V c

s .∇Bs

)
(xs)At (xt )

〉
. (95)
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This GFDT was experimentally checked in [38]. In the usual case of Hamiltonian perturba-
tion of a pure jump process or a overdamped Langevin process, with (83), we find

1

β

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈Os(xs)At (xt )〉 −

〈
dOs

ds
(xs)At (xt )

〉
. (96)

5.3.1 Example of Jump Langevin Equation (4.3.2)

Here, we want to numerically verify the GFDT (94) for a Markov process which mixes
jump and diffusion. We consider the stochastic dynamics (69) with H = a sin θ and the
same values for the parameters as those considered in (4.3.2); a = 0.87s−1, G = 0.85s−1,
β = 0.8s, and r = 0.001. The process is supposed to be at time t ≤ 0 in the stationary state
with ρ(θ) given in Fig. 5(b). Then, suddenly, at t = 0, we consider a static perturbation of
the Hamiltonian according to

H ′ = H − k sin θ = (a − k) sin θ. (97)

We saw in the last section that this perturbation is of the form (76 ), with

h(θ) = exp

(
β

2
k sin θ

)
. (98)

We checked numerically the time integrated version of the FDT (96) around steady state
for A = B = sin θ .

1

β

∂

∂k
〈sin θt 〉

′
∣∣
k=0

=
〈
sin2 θt

〉
− 〈sin θ0 sin θt 〉 −

∫ t

0
ds 〈C(θs) sin θt 〉 . (99)

The form of the observable C(θ) ≡ d sin θt

dt
(θ) is found with the help of (61) as

C(θ) =

(
−a cos(θ) + G −

1

β
(∂θ lnρ)

)
cos θ

+
(
∫

dθ ′W(θ, θ ′)(sin(θ ′) − sin(θ)))

2

−
ρ−1(θ)(

∫
dθ ′(sin(θ ′) − sin(θ))ρ(θ ′)W(θ ′, θ))

2
, (100)

with W(θ, θ ′) given by (64)

W(θ, θ ′) = r exp

(
−

βa

2

(
sin(θ ′) − sin(θ)

))
. (101)

Figure 7 shows results from our numerical simulations for the various terms in the in-
tegrated version of the GFDT (99). In the figure, one can observe a satisfactory agreement
between the left hand side and the right side of (99), thereby verifying the GFDT.

5.4 Fluctuation-Dissipation Theorem for a More General Class of Perturbation

We will now consider a larger class of perturbation than (76) such the perturbation can be
expressed in terms of two family of non-homogeneous functions ht and h′

t , as

L′
t = h−1

t ◦ Lt ◦ h′
t − h−1

t ◦ Lt [h
′
t ], (102)
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Fig. 7 Based on our results from
numerical simulations of the
dynamics (69) with H = a sin θ ,
the figure shows the different
terms in the integrated version of
the GFDT (99). Here,
a = 0.87s−1 , G = 0.85s−1,
β = 0.8s, and the parameter
r = 0.001. One observes a
satisfactory agreement between
the left hand side
1
β

∂
∂k

〈sin θt 〉
′|k=0 and the right

side 〈sin2 θt 〉 − 〈sin θ0 sin θt 〉 −∫ t
0 ds〈C(θs ) sin θt 〉 of the GFDT

(99), which therefore verifies the
theorem

which specializes to the Hamiltonian perturbation (76) when h = h′. We will see in the fol-
lowing subsections two physical perturbations, the time change and the thermal perturbation,
which belong to this class. In the case of infinitesimal perturbation,

ht = 1 + ktBt + O(h2) and h′
t = 1 + ktB

′
t + O(h2), (103)

we find that this perturbation has the form (74) with

Nt = −Bt ◦ Lt + Lt ◦ B ′
t − Lt [B

′
t ]. (104)

For a pure discontinuous process, the perturbation (102) implies for the transition rates,
W ′

t = h−1
t ◦ Wt ◦ h′

t , and was considered in [27] and more recently in [67] by taking ht (x) =

exp(μβktO(x)) and h′
t (x) = exp(γβktO(x)), where O(x) is an observable, and μ and γ

two real numbers. As in (87), we show that the observable ρ−1
t N

†
t [ρt ], which appears on the

right hand side of (75), can be expressed in terms of the stochastic derivative of Bt and B ′
t

as

ρ−1N+[ρ] = −ρ−1 ◦ L† ◦ ρ[B] + B ′ρ−1L†[ρ] − L[B ′]

= −L∗[B] − Bρ−1L†[ρ] + B ′ρ−1L†[ρ] − L[B ′]

=

⎧
⎨
⎩

(∂t + ρ−1L†[ρ])(−B + B ′) +
d−B

dt
−

d+B ′

dt

or, (∂t + ρ−1L†[ρ])(−B + B ′) +
d−(B ′+B)

dt
− 2 dB ′

dt
.

We obtain then the generalization of the first GFDT (91)

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈Bs(xs)At (xt )〉 −

〈
d+B ′

s

ds
(xs)At (xt )

〉

+
〈((

∂s + ρ−1
s L†

s [ρs]
)
(B ′

s − Bs)
)
(xs)At (xt )

〉
, (105)
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and the second GFDT (94)

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

= ∂s

〈(
B ′

s + Bs

)
(xs)At (xt )

〉
− 2

〈
dB ′

s

ds
(xs)At (xt )

〉

+
〈((

∂s + ρ−1
s L†

s [ρs]
)
(B ′

s − Bs)
)
(xs)At (xt )

〉
. (106)

We see that in the Hamiltonian perturbation class (i.e., B = B ′), we recover the GFDT

(91,94).

5.4.1 Around Steady State

We will now restrict to the case where the observable does not have explicit time dependence
(i.e., At = A, Bt = B,B ′

t = B ′), and the unperturbed state is a steady state. Then the first
GFDT (105) becomes

δ〈A(xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈B(xs)A(xt )〉 −

〈
d+B ′

ds
(xs)A(xt )

〉
, (107)

and the second (106) becomes

δ〈A(xt )〉
′

δks

∣∣∣∣
k=0

= ∂s

〈(
B + B ′

)
(xs)A(xt )

〉
− 2

〈
dB ′

ds
(xs)A(xt )

〉
. (108)

In the case where the steady state is of equilibrium-type (i.e. d
ds

= ∂s ), this last relation (108)
simplifies to the form

δ〈A(xt )〉
′

δks

∣∣∣∣
k=0

= ∂s

〈(
B + B ′

)
(xs)A(xt )

〉
. (109)

5.4.2 Time Change for a Homogeneous Markov Process [25]

An example of perturbation which belongs to the generalized class (102) but not to the
Hamiltonian perturbation class (76) is when we consider the change of clock as follows.

tf (s) ≡

∫ s

0
du exp (fu (xu)) , (110)

where fu is an observable. It is proved in [25] (Proposition 3.1) that the process x ′
s = xtf (s)

is still Markov with a generator L′
t = exp(−ft )L. In the case of infinitesimal perturbation

fu(x) = kuB(x), L′
t = L − ktBL, which is of the form (104) with B ′ = 0 so that the FDT

(105, 106) takes the form

δ〈A(xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈B(xs)A(xt )〉 −
〈(
ρ−1

s L†[ρs]B
)
(xs)A(xt )

〉
. (111)

In the case of an unperturbed system in the steady state, (107,108) become the usual FDT.

δ〈A(xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈B(xs)A(xt )〉 , (112)
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which is a result of [25]. We want to emphasize that, for this type of perturbation, we obtain
the usual FDT (without correction) for an unperturbed state which is a general nonequilib-
rium steady state.

5.4.3 Thermal Perturbation Pulse: Change of Temperature for Equilibrium Overdamped

Langevin Process

A famous example in physics for a perturbation which is not of Hamiltonian type is thermal
perturbation. Let us consider a system whose dynamics is governed by (44), with G = 0 and
homogeneous Hamiltonian, and the perturbed system which results from the change of the
bath temperature β−1

t = (1 + kt )β
−1. We can easily prove that

N =
1

β
∇i ◦ Ŵij ◦ ∇j , (113)

which is of the form of the general infinitesimal perturbation (104) with B ′ =
βH

2 and B =
βH

2 − 1. This can be easily seen by using the formula (80) for the “carre du champs”:

L ◦ B ′ − L[B ′] = B ′L + Ŵ(B ′, .) = B ′L +
2Ŵij

β

(
∇iB

′
)
∇j =

βH

2
L − L + N. (114)

The formula (109) then takes the form δ〈At (xt )〉
′

δks
|k=0 = ∂s〈(βH − 1)(xs)At (xt )〉, which im-

plies the equilibrium form

1

β

δ〈At (xt )〉
′

δks

∣∣∣∣
h=0

= ∂s 〈H(xs)At (xt )〉 . (115)

In particular, we obtain the usual FDT for the energy [80].

1

β

δ〈H(xt )〉
′

δks

∣∣∣∣
k=0

= ∂s 〈H(xs)H(xt )〉 . (116)

6 Two Families of Non-perturbative Extensions of the Fluctuation-Dissipation

Theorem

It is well understood since the discovery of the FR that they may be viewed as extensions
to the non-perturbative regime of the Green-Kubo and Onsager relations which are usually
valid within the linear response description in the vicinity of equilibrium [36, 59]. A detailed
proof was given in [11] that the Jarzynski equality gives the usual FDT when expanded to
second order in the response field. In [12], it was proved that this correspondence is still
true around an unperturbed state which is stationary but out of equilibrium). This is proved
by doing a Taylor expansion of a special Crooks theorem to first order in the response field.
Finally, in [14], general FR were exhibited which are global versions of the GFDT for
nonequilibrium diffusion, or, of the FDT for energy resulting from a thermal perturbation.
We introduce in Sect. 6.1 a first family of exponential martingales which is a natural object
associated with the perturbation (76), and show in Sect. 6.1.3 that these are global version
of general GFDT (91,94). Section 6.2 presents the martingale property of functionals which
appear in the fluctuation relations and it shows their relation to the exponential martingales
introduced in Sect. 6.1. Along the way, we prove the FR along the lines of the proof given
below for the exponential martingale by a comparison to the backward process generated by
the Doob h-transform of the adjoint generator L†.
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6.1 New Family of Exponential Martingales Naturally Related to GFDT

6.1.1 Introduction

We come back to the perturbation (76) of the generator,

Lh
t ≡ h−1

t ◦ Lt ◦ ht − h−1
t Lt [ht ], (117)

but this time we will not restrict to the regime where ht is infinitesimal. We prove in Ap-
pendix E that the Markov process associated with the generators Lh

t and Lt are related
through the functional exp(−Zh,t

s ) by

P h,t
s (x, y) = Es,x

[
δ(xt − y) exp(−Zh,t

s )
]
, (118)

where

exp(−Zh,t
s [x]) = h−1

s (xs) exp

(
−

∫ t

s

du
(
h−1

u Lu [hu] + h−1
u ∂uhu

)
(xu)

)
ht (xt ). (119)

The functional exp(−Zh,t
s ) is multiplicative:

exp(−Zh,t
s ) = exp(−Zh,u

s ) exp(−Zh,t
u ) (120)

for s ≤ u ≤ t . The perturbation (117) is a particular case of the transformation of a Markov
process by multiplicative functionals [7, 45]. It is a generalization of the Doob h-transform,
which is

P h,t
s (x, y) = h−1

s (x)P t
s (x, y)ht (y), (121)

in the case where ht (x) is the space-time harmonic function, i.e. d+h

dt
= 0.

Thanks to the Markovian structure of the trajectory measure, the relation (118) for the
transition probability is equivalent (as proved in Appendix F) to the relation between the
expectations of functionals of the paths from time s to time t for the perturbed and the
unperturbed processes,

Eh
s,x

[
F[s,t]

]
= Es,x

[
F[s,t] exp(−Zh,t

s [x])
]
, (122)

where Eh
s,x[ ] denotes expectation for the process with generators Lh

t .
Finally, we can also formulate (122) by requiring that the perturbed process with gener-

ators Lh
t and trajectory measure Mh

μ0,[s,t]
,10 can be obtained from the unperturbed process

with trajectory measure Mμ0,[s,t] by using the likelihood ratio process (the Radon-Nikodym
density):

Mh
μ0,[s,t]

[x] = Mμ0,[s,t][x]
ρh

s

ρs

(xs) exp(−Zh,t
s [x]), (123)

with ρs(x) =
∫

dyρ0(y)P s
0 (y, x) the instantaneous density of the original process and

ρh
s (x) =

∫
dyρ0(y)P

h,s
0 (y, x) the instantaneous density of the h-transformed process.

10Note that the measure μ0(dx) = ρ0(x)dx is the measure at initial time t = 0 and not at time s.
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We could not find the general result (119,122,123) in the mathematics literature, but
many very closely related results do exist. The subcase of (122,123) where ht is time-
homogeneous (i.e., ∂tht = 0)) was treated long time ago by Kunita in [56] and was revisited
recently in the articles [76] and [26]. In our context of the FDT, the extension to ∂tht �= 0
is essential. But more than generalizing to ∂tht �= 0, the main interest in the Appendices E,
F is to prove (122) from theoretical physics perspective. We recall also that for a diffusion
process, the perturbed generator (117) is obtained by adding the term dt∇(lnht (x)) to the
drift (see (81)). Then, the proofs in Appendices E, F are also a theoretical physicist’s proofs
of the Girsanov theorem for a diffusion process [79] (for this type of change of drift).

6.1.2 Martingale Properties of the Functional exp(−Zt
s )

The multiplicative functional exp(−Zh,t
s [x]) is an exponential martingale with respect to

the natural σ -algebra filtration Ft = σ(xs, s ≤ t) representing the increasing flow of infor-
mation. This fact can be seen by first noting that (122) (with F = 1) implies the normaliza-
tion condition

Es,x

[
exp(−Zh,t

s [x])
]
= 1, (124)

which, thanks to the multiplicative structure of exp(−Zh,t
s [x]), yields

E
[
exp(−Zh,t

s [x])|Fu

]
= exp(−Zh,u

s [x])Exu,u

[
exp(−Zh,t

u [x])
]
= exp(−Zh,u

s [x]), (125)

for s ≤ u ≤ t.

6.1.3 Fluctuation-Dissipation Theorem as Taylor Expansion of the Exponential

Martingale Identity (122)

In the infinitesimal case, ht (x) = 1 + ktBt (x) + O(k2), Taylor expansion of the subcase of
(122) with one-point functional F[s,t][x] = At (xt ), namely,

〈At (xt )〉
h =

〈
(hs)

−1(xs) exp

(∫ t

s

du
(
−h−1

u Lu[hu] − h−1
u ∂uhu

)
(xu)

)
ht (xt )At (xt )

〉
, (126)

gives, to the first order in [k],

〈At (xt )〉
h − 〈At (xt )〉 −

〈
(hs)

−1 (xs)At (xt )
〉
− 〈(ht ) (xt )At (xt )〉

+

∫ t

s

du

〈
d+hu

du
(xu)At (xt )

〉
+ O(k2) = 0. (127)

To find the first GFDT (91) from (127), we use the direct differentiation formula d+hu

du
=

d+(kuBu)

du
= (∂uku)Bu + ku

d+(Bu)

du
obtaining the relation

δ〈At (xt )〉
′

δku

∣∣∣∣
k=0

− ∂u

〈
Bu(xu)At (xt )

〉
+

〈
d+Bu

du
(xu)At (xt )

〉
= 0, (128)

which is the GFDT (91) (note the equivalence of the two notations 〈 〉′ and 〈 〉h)). To find
the second GFDT (94) from (127), we use the formula d+ = 2d − d−, which gives
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〈At (xt )〉
h − 〈At (xt )〉 −

〈
(hs)

−1 (xs)At (xt )
〉
− 〈(ht ) (xt )At (xt )〉

+ 2
∫ t

s

du

〈
dhu

du
(xu)At (xt )

〉
−

∫ t

s

du

〈
d−hu

du
(xu)At (xt )

〉
+ O(k2) = 0. (129)

Then, by using (35) for the time derivative of a correlation function, we obtain

〈At (xt )〉
h − 〈At (xt )〉 −

〈
(hs)

−1 (xs)At (xt )
〉
− 〈(ht ) (xt )At (xt )〉

+ 2
∫ t

s

du

〈
dhu

du
(xu)At (xt )

〉
−

∫ t

s

du∂u 〈hu(xu)At (xt )〉 + O(k2) = 0. (130)

Next, we use the differentiation formula dhu

du
= d(kuBu)

du
= (∂uku)Bu + ku

d(Bu)

du
to get

δ〈At (xt )〉
′

δku

∣∣∣∣
k=0

− 2∂u 〈Bu(xu)At (xt )〉 + 2

〈
dBu

du
(xu)At (xt )

〉
= 0, (131)

which is (94). This gives a second independent proof of (91, 94). It also shows that the above
exponential martingales are natural global versions of the GFDT. We will discuss in the next
section another well known global version, namely, the Fluctuation Relations (FR).

6.2 Family of Exponential Martingales Related to GFDT Through Fluctuation Relations

6.2.1 Introduction to Fluctuation Relations

Roughly speaking, FR may be obtained by comparing the expectation of functionals of
trajectories of the system and of reversed trajectories of the so-called backward system11

(denoted by an index r). More precisely, let us denote by Mr
μr

0,[0,T ]
the trajectorial measure

of the backward process which is initially distributed with the measure μr
0(dx) ≡ ρr

0(x)dx.
Next, we define the path-wise time inversion R at fixed time T ,12 which acts on the space of
trajectories according to R[x]t = [x]T −t .13 This allows us to introduce the (push-forward)
measure R∗(Mμ0,[0,T ]), which is the measure of the trajectory but traversed in the backward
sense. We then introduce the action functional WT

0 through the Radon Nykodym derivative
of the image measure of the backward system R∗(M

r
μr

0,[0,T ]
) with respect to the trajectorial

measure Mμ0,[0,T ] of the forward system (initially distributed with the measure μ0(dx) ≡

ρ0(x)dx):14

R∗

(
M r

μr
0,[0,T ]

)
≡ exp

(
−WT

0

)
Mμ0,[0,T ]. (132)

Equivalently, we can write this relation in the form of the Crooks theorem [11, 19, 42,
59, 62, 66, 83] asserting that for all trajectory functionals F[0,T ],

〈
F[0,T ] ◦ R

〉r
=

〈
F[0,T ] exp

(
−WT

0

)〉
. (133)

11It is important to underline that this backward process is not unique. We can also call it a comparison
process.
12This was also studied in the probabilistic literature, but with time T that could be random [16].
13For simplicity, we neglect the case where the time inversion acts non-trivially on the space by an involution.
Such a situation arises for Hamiltonian systems (see [11]) where the involution is (q,p) → (q,−p).
14We assume that the measures Mμ0,[0,T ] and R∗(Mr

μr
0,[0,T ]

) are mutually absolutely continuous.
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Finally, by the substitution F[0,T ][x] → F[0,T ][x]δ(x0 − y)δ(xT − x), we find the equivalent
relation,

ρr
0(x)Er

0,x

[
F[0,T ] ◦ R[x]δ(xT − y)

]
(134)

= ρ0(y)E0,y

[
F[0,T ][x] exp

(
−WT

0 [x]
)
δ(xT − x)

]
. (135)

Due to the freedom in choosing the initial forward measure μ0 or the backward measure μr
0,

it is possible to identify the action functional with various thermodynamic quantities like
the work performed on the system or the fluctuating entropy creation σ T

0 [x] with respect
to the inversion r . This latter quantity is obtained when μr

0(dx) = ρr
0(x)dx = ρT (x)dx ≡∫

dyρ0(y)P T
0 (y, x)dx. We can also obtain the functional entropy production in the envi-

ronment, JT
0 , by choosing μ0(dx) = μr

0(dx) = dx, because then the difference from the
entropy creation is the boundary term ln(ρ0(x0))− ln(ρt (xt )), which gives the change in the
instantaneous entropy of the process.

Let us observe the similarity between (122,123) and (135,132); exp(−Zh,t
s [x]) and

exp(−WT
0 [x]) are exponential functionals of the Markov process. However exp(−WT

0 [x])

is not a forward martingale in the generic case because (135) implies that

E0,y

[
exp(−WT

0 )
]
=

∫
dxρr

0(x)P
r,T
0 (x, y)

ρ0(y)
. (136)

Moreover,

exp(−W0
0)(y) =

ρr
0(y)

ρ0(y)
, (137)

and then E0,y[exp(−WT
0 )] �= exp(−W0

0)(y), except in the case where ρr
0 is an invariant

density of the backward dynamics. The fact that exp(−WT
0 [x]) is not a forward martingale

does not prevent us from obtaining the Jarzynski equality [19, 49],

〈
exp(−WT

0 )
〉
= 1, (138)

which is a direct subcase of (133). We will show in the next section that there is nevertheless
a martingale interpretation of the action functional and the Jarzynski equality is one of its
consequences.

The Jarzynski relation (138) implies two important results. First, the Jenssen inequality
allows to obtain the Second Law of Thermodynamics,

〈
WT

0

〉
≥ 0. (139)

Second, the Markov inequality [29] gives an upper bound on the probability of “transient
deviations” from the Second Law:

P
(
exp

(
−WT

0

)
≥ exp(L)

)
≤

〈exp(−WT
0 )〉

exp(L)
then P

(
WT

0 ≤ −L
)
≤ exp(−L). (140)

6.2.2 Martingale Properties of the Action Functional

We noted in the last section that the functional exp(−WT
0 ) is not a martingale with respect

to the time T of inversion. In order to unravel its links with the martingale theory, we shall
define a functional similar to WT

0 , but with a lower time indices different from 0 and a upper
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time indices different from T . This will be done through the comparison of the trajectorial
measure Mμ0,[s,t] for the forward system on the subinterval [s, t] of [0, T ] and the push
forward by the time inversion R∗(M

r
μr

0,[T −t,T −s]
) of the trajectorial measure for the backward

system on the sub interval [T − t, T − s]15

R∗

(
M r

μr
0,[T −t,T −s]

)
= exp

(
−Wt

s

)
Mμ0,[s,t]. (141)

Proceeding as in the last section (133), we can write the Crooks-type theorem for all
functional F[s,t] of the trajectories from s to t ,

〈
F[s,t] ◦ R

〉r
=

〈
F[s,t] exp

(
−Wt

s

)〉
, (142)

or, equivalently,

ρr
T −t (x)Er

T −t,x

[
F[s,t] ◦ R[x]δ(xT −s − y)

]

= ρs(y)Es,y

[
F[s,t][x] exp

(
−Wt

s[x]
)
δ(xt − x)

]
, (143)

with ρr
s (x) =

∫
dyρr

0(y)P
r,s
0 (y, x) and ρs(x) =

∫
dyρ0(y)P s

0 (y, x). Finally, this includes
also a Jarzynski type relation (138):16

〈
exp(−Wt

s)
〉
= 1. (144)

For studying the martingale properties of exp(−Wt
s), it is important to note that this

functional is not strictly multiplicative. For 0 ≤ s ≤ u ≤ t ≤ T , the Markov properties17

imply the “multiplicative” law for the action functional:

exp
(
−Wt

s[dx]
)
= exp

(
−Wu

s [dx]
)

exp
(
−Wt

u[dx]
) ρu

ρr
T −u

(xu). (145)

This allows to introduce two functionals,

At
s[dx] ≡

ρs

ρr
T −s

(xs) exp
(
−Wt

s[dx]
)

and Rt
s[dx] ≡ exp

(
−Wt

s[dx]
) ρt

ρr
T −t

(xt ) (146)

15Then the two measures deal with the “same part” of the trajectory.
16Note that exp(−Ws

s )(y) =
ρr
T −s

(y)

ρs (y)
and this seems to contradict (137) in the limit s → 0. The resolution

of the paradox is that expression here is obtained by the limit at fixed T : lims→0 limt→s Wt
s , while (137)

results from a different limiting procedure: limT →0 lims→0 WT
s .

17

Mμ0,[s,t][dx] =
Mμ0,[s,u][dx]Mμ0,[u,t][dx]

ρu(xu)dxu
,

and

R∗

(
Mr

μr
0,[T −t,T −s]

)
[dx] =

R∗(Mr
μr

0,[T −t,T −u]
)[dx]R∗(Mr

μr
0,[T −u,T −s]

)[dx]

ρr
T −u

(xu)dxu
,

where the right hand sides describe the disintegration of the left-hand-side measures with respect to the map
evaluating trajectories at time u.
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with the strict multiplicative property:

At
s = Au

s At
u and Rt

s = Ru
s Rt

u. (147)

For these two functionals, the relation (143) implies that

Es,y

[
At

s[x]δ(xt − x)
]
=

ρr
T −t (x)

ρr
T −s(y)

Er
T −t,x

[
δ(xT −s − y)

]
, (148)

and

Es,y

[
Rt

s[x]δ(xt − x)
]
=

ρt (x)

ρs(y)
Er

T −t,x

[
δ(xT −s − y)

]
, (149)

yielding the Jarzynski-type relations,

Es,y

[
At

s

]
= 1, (150)

and
〈
Rt

s[x]δ(xt − x)
〉
= ρt (x), i.e. E

(
Rt

s |xt = x
)
= 1. (151)

Then, by using the multiplicative property (147) and the relation (150), we see that Rt
s is a

forward martingale with respect to the natural filtration Ft ,

E
[
At

s |Fu

]
= Au

s , (152)

for s ≤ u ≤ t . Similarly, by using the multiplicative property (147) and the relation (151),
we see that Rt

s is a backward martingale18 with respect to the filtration Gs = σ(xv, v ≥ s)

which describes the future of the process,

E
[
Rt

s |Gu

]
= Rt

u, (153)

for s ≤ u ≤ t . From the definition (146), we deduce that the action functional exp(−Wt
s)

with 0 ≤ s ≤ u ≤ t < T is a forward martingale with respect to upper indices t19 and a
backward martingale with respect to lowest indices s.

This gives a martingale interpretation of the Jarzynski equality (138,144). One possible
application is to improving the upper bound of the probability of “transient deviations” of
the Second Law. The Doob inequality [24, 29] for forward martingales gives a stronger
upper bound than the Markov inequality (140),

P
(

sup
t with 0≤s≤t≤T

(
exp

(
−Wt

s

))
≥ exp(L)

)
≤

〈exp(−Wt
s)〉

exp(L)
, (154)

and then we obtain the relation

P
(

inf
t with 0≤s≤t≤T

Wt
s ≤ −L

)
≤ exp(−L). (155)

18A backward martingale [24, 29] is dual to forward martingale, in the sense that its expectation in the past,
given the knowledge accumulated in the future, is its present value.
19This is a little tricky because we proved in the last section that exp(−WT

s ) is not a forward martingale with
respect to T . What happens for t = T is that a change of T implies also a change of the time inversion R

which breaks the martingale property.
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6.2.3 Action Functional Wt
s and the Time Reversed Process

It is proved in the probability literature [16, 31, 34, 44, 71, 72] that the time-reversed process,
RXt ≡ Xt∗ (with t∗ = T − t ), is also a Markov process. By using the results of Sect. 2.2, and
more specifically, the expression of the cogenerator, (18), we can deduce that the Markov
generator of the time-reversed process is

LCR
t = L∗

t∗ ≡ ρ−1
t∗ ◦ L

†
t∗ ◦ ρt∗ − ρ−1

t∗ L
†
t∗ [ρt∗ ]I . (156)

Choosing this process as the backward process was called complete reversal in [11], and
this explains the index “CR” on the left hand side. We remark that the instantaneous density
of the time-reversed system is related to that of the original system by ρCR

t ≡ ρt∗ . Denoting
by M r◦CR

μ0,[s,t] the trajectorial measure of the time reversal of the backward process initially
distributed with the measure μr

0, we have the tautological formula:

R∗

(
M r

μr
0,[T −t,T −s]

)
= M r◦CR

μr
T

,[s,t]. (157)

This allows to obtain an expression for the action functional Wt
s from (141) without push-

forward R∗:

M r◦CR
μr

T
,[s,t] = exp

(
−Wt

s

)
Mμ0,[s,t]. (158)

This expression will be used in the next section, but it also allows an easy proof of the
assertion that exp(−Wt

s) is a forward martingale in t and a backward martingale in s.

6.2.4 Class of Action Functional Wt
s (141) Which Are in Relation with the Exponential

Martingale Zt
s (119)

We consider here the case where the backward process is given by the generalized Doob
f -transform of the adjoint generator L† composed with an inversion of the time:

L
r,f

u∗ = f −1
u ◦ L†

u ◦ fu − f −1
u L†

u[fu]; u∗ = T − u. (159)

We shall denote by W
f,t
s the action functional associated with this choice of the backward

process.
Using the definition of the total inversion (156) and after some algebra, one may show

that
(
Lr,f

u

)CR
=

(
ρr

u∗

)−1
fu ◦ Lu ◦ ρr

u∗f
−1
u −

(
ρr

u∗

)−1
fuLu[ρ

r
u∗f

−1
u ]I. (160)

So, for hu ≡ ρr
u∗f

−1
u , we have

(
Lr,f

u

)CR
= Lh

u, (161)

upon using the definition of the generalized Doob h-transform (76).
Finally, by comparing the relations (158) and (123), we find the link between the two

families of functionals:20

exp
(
−Wf,t

s

)
=

ρr
s∗

ρs

(xs) exp
(
−Zh,t

s

)
, (162)

20Note that ρh
s = ρr

s∗
.
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with hu ≡ ρr
u∗f

−1
u . Moreover, this relation allows to obtain from (119) an explicit expression

for exp(−W
f,t
s ):

exp
(
−Wf,t

s

)
=

ρr
s∗

ρshs

(xs) exp

(
−

∫ t

s

du
(
h−1

u Lu [hu] + h−1
u ∂uhu

)
(xu)

)
ht (xt )

=
fs

ρs

(xs) exp

(
−

∫ t

s

du
(
h−1

u Lu [hu] + h−1
u ∂uhu

)
(xu)

)
ρr

t∗

ft

(xt )

=
fs

ρs

(xs) exp

(
−

∫ t

s

du
(
f −1

u L†
u

[
fu

]
− f −1

u (∂ufu)
)) ρr

t∗

ft

(xt ), (163)

with, as before, ρs(x) =
∫

dyρ0(y)P s
0 (y, x) and ρr

t∗(x) =
∫

dyρr
0(y)P

r,t∗

0 (y, x).21 In partic-
ular, the action functional with s = 0 and t = T , which results for the choice ρ0 = f0 and
ρr

0 = fT , is then

W
f,T

0 =

∫ T

0
du

(
f −1

u L†
u[fu] − f −1

u (∂ufu)
)
. (164)

The form (159) taken for the backward generator may be justified by showing that it
allows to recover the forms of time inversion usually taken in the probability or physics
literature.

– First, we remark that the usual Doob f -transform corresponds to the case where we take
for ft the PDF (8) of the forward process (i.e., ∂tft − L

†
t .ft = 0). Then, we recognize

using formula (18) that Lr
t∗ = L∗

t and then this backward process is the one obtained from
the original one by the “complete reversal” considered in Sect. 6.2.3. This implies with
(19) that

P ∗t
s =

−→exp

(∫ t

s

du
(
L∗

u

)†
)

=
−→exp

(∫ t

s

du
(
LCR

u∗

)†
)

=
−→exp

(∫ s∗

t∗
du

(
LCR

u

))†

=
(
P

s∗,CR
t∗

)†
. (165)

Finally, with (16), we obtain the generalized detailed balance,

ρs(x)P t
s (x, y) = ρt (y)P

s∗,CR
t∗ (y, x). (166)

21The last equality in (163) results from the following algebra:

h−1
u ∂uhu =

(
ρr
u∗

)−1
fu∂u

(
ρr
u∗f −1

u

)

= −f −1
u ∂ufu +

(
ρr
u∗

)−1
∂u

(
ρr
u∗

)

= −f −1
u ∂ufu −

(
ρr
u∗

)−1
(
L

r,f

u∗

)† [
ρr
u∗

]

= −f −1
u ∂ufu + f −1

u L
†
u[fu] −

(
ρr
u∗

)−1
fuLu

[
ρr
u∗f −1

u

]
.
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One may show that ρCR
t ≡ ρt∗ is the instantaneous density of the backward process and

that the corresponding current operator (20) satisfies the relation

JCR
t = −Jt∗ , (167)

which is very satisfying physically. This choice, however, corresponds to the vanishing of
the functional Wt

s and of the entropy creation (equal to it due to the choice ρCR
0 = ρT ).

– Another useful choice of time inversion, called the current reversal in [10, 11], is based
on the choice ft = πt , where πt is the accompanying density (13). One can show that
π r

t ≡ πt∗ is then the accompanying density for the backward process. If we associate with
the accompanying density the current operator, by analogy with (20),

Jt ≡ πt ◦ Lt − L†
t ◦ πt , (168)

we can easily show that still J r
t = −Jt∗ . The functional (163) now takes the form

exp
(
−Wf =π,t

s

)
=

πs

ρs

(xs) exp

(∫ t

s

du(∂u lnπu)(xu)

)(
πt

ρr
T −t

)−1

(xt ). (169)

Moreover, the choice of initial density ρ0 = π0 and ρr
0 = π r

0 = πT , implies that

W
f =π,T

0 = −

∫ T

0
(∂u lnπu)(xu) du ≡ W

T ,ex
0 , (170)

where the index “ex” stands for “excess” [11, 75, 82]. The Jarzynski equality (138) for this
case was first proved for a one-dimensional diffusion process in [43] and then for Markov
chains [15, 37], general diffusion processes [11, 62], and pure jump processes [63]. We
see here that these FR are true for general Markov processes, including stochastic equa-
tion with Poisson noise (52) or with Levy noise. This is an optimistic result for the gen-
erality of FR in the context of the proof in [6, 89] that the Gallavotti-Cohen relation for
the work is broken for a particle in a harmonic potential subject to a Poisson or Levy
noise. Moreover, in the case of the jump Langevin equation (63), we have the normalized
accompanying density πt = exp(−β(Ht − Ft )) (where Ft is the free energy) and then

W
T ,ex
0 = β

∫ T

0
(∂uHu)(xu) du − β(FT − F0). (171)

So, in this case, the finite time FR (133) for the dissipative work performed on the system
is valid.

– For diffusion processes, it was shown in [11] that to obtain a sufficiently flexible notion
of time inversion, we should allow for a non-trivial behavior of the modified drift ût

(see [11]) under the time-inversion by dividing it into two parts:

ût = ût,+ + ut,−. (172)

Here ût,+ transforms as a vector field under time inversion, i.e., û r
t∗,+ = + ût,+, while

ut,− transforms as a pseudo-vector field, i.e., ur
t∗,− = −ut,−. The random field ηt may be

transformed with either of the two rules: ηr
t∗ = ±ηt . It can be shown [14] that the choice

of the vector field part which allows us to obtain the backward generator given by (159)
is

ût,+ =
dt

2
∇(lnft ). (173)
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This is the choice made to obtain formula (22) in [14] in order to find FR that are global
versions of GFDT in the context of a Langevin process, and we find (164) as formula (24)
in [14].

6.2.5 Fluctuation-Dissipation Theorem as Taylor Expansion of Fluctuation Relation for

the Class of Functional exp(−W
f,t
s )

For completeness, we recall here the proof, done in [14] for a diffusion process, that the
family of FR (133) with (164) are also global versions of the GFDT (91,94). More precisely,
they are global versions of the fundamental relation of the linear response theory (75) which,
as explained in Sect. 5.3, implies the GFDT (91, 94).

For the dynamics of the perturbed systems (76), we consider the fluctuation relation (133)
with the functional (164) written for ft (with ft (x) = 1 + ktAt (x) + O(k2)) as the mean
instantaneous density ρt of the unperturbed system (with f = 1 ≡ k = 0). The functional
(164) becomes

W
f,T

0 =

∫ T

0
ks

(
ρs

−1N†
s [ρs]]

)
(xs) ds, (174)

where N is defined in (74) . Let us now write a particular case of (133) for a single time
functional F [x] = Aa(xt ) ≡ Aa

t (0 < t < T ):

〈
At exp

(
−W

f,T

0

)〉f
= 〈AT −t 〉

f,r . (175)

The first order Taylor expansion,

exp
(
−W

f,T

0

)
= 1 +

∫ T

0
ks

(
(ρ−1

s N†
s [ρs]

)
(xs) ds + O(k2), (176)

in (175) gives the relation

〈
At

〉
+

∫
ks

δ

δks

∣∣∣∣
k=0

〈At 〉
f ds −

∫ T

0
ks

〈
ρs

−1N†[ρs](xs)At (xt )
〉
ds + A(k2)

=
〈
AT −t

〉f,r
. (177)

Due to the form of the considered inversion (159), the right hand side has a functional
dependence only on {kT −u, T − u < T − t}, i.e. on {ku, u > t}. So, if we apply δ

δks
|k=0 for

0 < s ≤ t to the last identity, we obtain the relation (75).

7 Conclusions

We have shown that the kinematics of a Markov process, namely, the local velocity
(25,26,27) and the derivatives (28), allow to develop a unified approach to obtain recent
GFDT in the context of fairly general Markovian evolutions (Sect. 5.3). We have also eluci-
dated the form of the usual perturbation (76) used for FDT by showing its similarity to the
Doob h-transform well known in the probabilistic literature. We also presented examples
where the physical perturbation is more general, e.g. given by a time change (110) or by a
thermal perturbation (Sect. 5.4.3). We derived the GFDT for these examples (111,112,116).
In this paper, we have also presented a class of the exponential martingale functionals (119),
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which represents an alternative to FR as a non-perturbative extension of GFDT (Sect. 6.1.3).
Moreover, we established in Sect. 6.2.4 a direct link between this family of functionals and
the FR. We showed that the FR also involve a family of martingales which for a fairly
general class of FR, including several classes discussed in the literature, coincides with ex-
ponential martingales. This class of FR was obtained by comparison of the original Markov
process to the backward process whose generators (159) are generalized Doob transforms
for the adjoints of the original generators. In the process, we improved the classical up-
per bound for “transient deviations” from the Second Law (155). Our hope is that, despite
lack of rigor from the mathematical perspective, this article will serve as a bridge between
nonequilibrium physics and probability theory.

Acknowledgements The authors thank Andre Barato, Michel Bauer, Gregory Falkovich, Krzysztof
Gawedzki, Ori Hirschberg, Kirone Mallick and David Mukamel for discussions and comments on the
manuscript. Special thanks are due to Krzysztof Gawedzki for his valuable input on Sect. 6.2. RC acknowl-
edges support of the Koshland Center for Basic Research. SG thanks Freddy Bouchet, Thierry Dauxois,
David Mukamel and Stefano Ruffo for encouragement. SG also acknowledges the Israel Science Foundation
(ISF) for supporting his research at the Weizmann Institute and the contract ANR-10-CEXC-010-01, Chaire
d’Excellence for supporting his research at Ecole Normale Supérieure, Lyon.

Appendix A: Proof of the Relation (35)

By taking the derivative of the relation (34) with respect to t (> s), we get

∂t

〈
Us(xs)Vt (xt )

〉
=

∫
dxdyUs(x)ρs(x)

(
∂tP

t
s (x, y)

)
Vt (y)

+

∫
dxdyUs(x)ρs(x)P t

s (x, y)
(
∂tVt (y)

)

=
〈
Us(xs)

(
∂tVt + Lt (Vt )

)
(xt )

〉
=

〈
Us(xs)

d+Vt

dt
(xt )

〉
.

In deriving the second line, we use the forward Kolmogorov equation (5). Now, by taking the
derivative of (34) with respect to s (< t), and by using the definition of the cogenerator (19),
we get

∂s

〈
Us(xs)Vt (xt )

〉

=

∫
dxdyUs(x)

(
∂sP

∗t
s (x, y)

)
ρt (y)Vt (y) +

∫
dxdy

(
∂sUs(x)

)
P ∗t

s (x, y)ρt (y)Vt (y)

= −

∫
dxdyUs(x)

((
L∗

s

)†
P ∗t

s

)
(x, y)ρt (y)Vt (y)

+

∫
dxdy

(
∂sUs(x)

)
P ∗t

s (x, y)ρt(y)Vt (y)

= −

∫
dxdydzUs(x)L∗

s (z, x)P ∗t
s (z, y)ρt (y)Vt (y)

+

∫
dxdy

(
∂sUs(x)

)
P ∗t

s (x, y)ρt(y)Vt (y)

= −

∫
dydz

(
L∗

s Us

)
(z)P ∗t

s (z, y)ρt (y)Vt (y) +

∫
dxdy

(
∂sU(s, x)

)
P ∗t

s (x, y)ρt (y)Vt (y)
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=
〈(
∂sUs − L∗

s Us

)
(xs)Vt (xt )

〉
=

〈
d−Us

ds
(xs)Vt (xt )

〉
.

Appendix B: Proof of the Relation (47)

The formal adjoint of the generator (42) of a diffusion process is given by

L†
t = −∇i ◦ û i

t +
1

2
∇i ◦ d

ij
t ◦ ∇j .

So, for all functions ft in E , we can express the operator f −1
t ◦ L

†
t ◦ ft as

f −1
t ◦ L†

t ◦ ft

= f −1
t ◦

(
−∇i ◦ û i

t +
1

2
∇i ◦ d

ij
t ◦ ∇j

)
◦ ft

= f −1
t ◦

(
−

(
∇i

(
û i

t ft

))
− û i

t ft ◦ ∇i +
1

2
∇i ◦

(
d

ij
t (∇jft ) + ftd

ij
t ◦ ∇j

))

= f −1
t

(
−

(
∇i

(
û i

t ft

))
− û i

t ft ◦ ∇i +
1

2
∇i

(
d

ij
t ∇jft

)
+

d
ij
t

2
(∇jft ) ◦ ∇i

+
d

ij
t

2
(∇ift ) ◦ ∇j +

ft

2
∇i ◦ d

ij
t ◦ ∇j

)

= f −1
t L†

t [ft ] + Lt − 2

(
û i

t −
d

ij
t

2
(∇j lnft )

)
∇i . (178)

Moreover, with ft = ρt (PDF (8)) and with (9), we obtain

ρ−1
t ◦ L†

t ◦ ρt − ρ−1
t (∂tρt ) = Lt − 2

(
û i

t −
d

ij
t

2
(∇j lnρt )

)
∇i .

By using the definition of the cogenerator (18) and of the hydrodynamic velocity (45), we
obtain the formula (47).

Appendix C: Proof of the Relation (75)

We start with the first-order Dyson expansion [52] of the ordered exponential (4):

−→exp

(∫ t

0
du(Lu + kuNu)

)
=

−→exp

(∫ t

0
duLu

)

+

∫ t

0
ds

−→exp

(∫ s

0
duLu

)
ksNs

−→exp

(∫ t

s

dsLs

)
+ O(k2).

Then, for the one point functional, one has
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〈
At (xt )

〉′
=

∫
dxdyρ0(x)P t

0(x, y)At (y)

+

∫ t

0
dsks

∫
dxdydzdz′ρ0(x)P s

0 (x, y)Ns(y, z)P t
s

(
z, z′

)
At

(
z′

)
+ O(k2).

The response function is then given by

δ〈At (xt )〉
′

δks

∣∣∣∣
k=0

=

∫
dxdydzdz′ρ0(x)P s

0 (x, y)Ns(y, z)P t
s

(
z, z′

)
At

(
z′

)

=

∫
dydzdz′ρs(y)Ns(y, z)P t

s

(
z, z′

)
At

(
z′

)

=

∫
dzdz′

(
N†

s ρs

)
(z)P t

s

(
z, z′

)
At

(
z′

)
.

which is (75).

Appendix D: Proof of the Relation (80)

With the formula (42) for the generator of a diffusion process, and for two arbitrary functions
f and g on E , one has

Lt [fg] = û i
t ∇i[fg] +

1

2

(
∇i ◦ d

ij
t ◦ ∇j

)
[fg] = f û i

t (∇ig) + û i
t (∇if )g

+
1

2
∇i

(
d

ij
t (∇jf )g + d

ij
t f (∇jg)

)

= f û i
t (∇ig) + û i

t (∇if )g +
1

2

(
∇i

(
d

ij
t ∇jf

))
g + d

ij
t (∇jf )(∇ig) +

f

2

(
∇i

(
d

ij
t ∇jg

))

= f Lt (g) + Lt (f )g + d
ij
t (∇if )(∇jg).

We then obtain the formula (80) for the operator “carre du champs”:

Ŵt (f, g) = d
ij
t (∇if )(∇jg).

Appendix E: Proof of the Relation (118)

We start by proving the operatorial relation

P h,t
s = h−1

s
−→exp

(∫ t

s

du
(
Lu − h−1

u Lu[hu] − h−1
u ∂uhu

))
ht .

First, it is easy to see that the above relation is true when t = s (also, then both the left hand
side and the right hand side equal the identity). Moreover, we now show that the two sides of
the relation verify the same differential equation. For example, the right hand side satisfies
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∂t

(
h−1

s
−→exp

(∫ t

s

du
(
Lu − h−1

u Lu[hu] − h−1
u ∂uhu

))
ht

)

= h−1
s

−→exp

(∫ t

s

du
(
Lu − h−1

u Lu[hu] − h−1
u ∂uhu

))
◦

(
Lt ◦ ht − Lt (ht ) − ∂tht + ∂tht

)

=

(
h−1

s
−→exp

(∫ t

s

du
(
Lu − h−1

u Lu[hu] − h−1
u ∂uhu

))
ht

)
◦

(
h−1

t ◦ Lt ◦ ht − h−1
t Lt (ht )

)

=

(
h−1

s
−→exp

(∫ t

s

du
(
Lu − h−1

u Lu[hu] − h−1
u ∂uhu

))
ht

)
◦ Lh

t .

It is easy to see by using the forward Kolmogorov equation that the right hand side verifies
the same equation. Now, we can apply the Feynman-Kac formula [79, 87] to the right hand
side of (E), and we obtain the relation (118), namely,

P h,t
s (x, y) = Es,x

(
δ(xt − y) exp

(
−Zh,t

s [x]
))

,

with the functional exp(−Zt
s[x]) given by the relation (119).

Appendix F: Proof of the Relation (122)

We now want to prove the relation (122) with F an arbitrarily functional of the trajectories
on [s, t]. It suffices to check this identity for the so-called cylindrical functional:

F[s,t][x] = F(xs, xt1 , xt2 , . . . , xtn , xt ) for s ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t.

We will use the Markov structure of the trajectory measure.

Eh
s,x

[
F(xs, xt1 , xt2 , . . . , xtn , xt )

]

=

∫
dx1dx2 . . . dxndyF(x, x1, x2, . . . , xn, y)P h,t1

s (x, dx1)P
h,t2
t1

(x1, dx2) . . . P h,t
tn

(xn, y)

=

∫
dx1dx2 . . . dxndyF(x, x1, x2, . . . , xn, y)h−1

s (x)

× Es,x

[
δ(xt1 − x1) exp

(
−

∫ t1

s

du
(
h−1

u Lu(hu) + h−1
u ∂uhu

))]
ht1(x1)h

−1
t1

(x1)

× Et1,x1

[
δ(xt1 − x2) exp

(
−

∫ t2

t1

du
(
h−1

u Lu(hu) + h−1
u ∂uhu

))]
. . .

× Etn,xn

[
δ(xt − y) exp

(
−

∫ t

tn

du
(
h−1

u Lu(hu) + h−1
u ∂uhu

))]
ht (y)

=

∫
dx1dx2 . . . dxndyF(x, x1, x2, . . . , xn, y)h−1

s (x)Es,x

×

[
δ(xt1 − x1) exp

(
−

∫ t1

s

du
(
h−1

u Lu(hu) + h−1
u ∂uhu

))]

× Et1,x1

[
δ(xt1 − x2) exp

(
−

∫ t2

t1

du
(
h−1

u Lu(hu) + h−1
u ∂uhu

))]
. . .
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× Etn,xn

[
δ(xt − y) exp

(
−

∫ t

tn

du
(
h−1

u Lu(hu) + h−1
u ∂uhu

))]
ht (y)

= Es,x

[
F(xs, xt1 , xt2 , . . . , xtn , xt )h

−1
s (xs)

× exp

(
−

∫ t

s

du
(
h−1

u Lu(hu) + h−1
u ∂uhu

))
ht (xt )

]

= Es,x

[
F[s,t] exp

(
−Zh,t

s [x]
)]

.

We thus arrive at (122).
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