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Abstract: Earthquake is one of the dominant triggering factors of landslides. Given the wide

areas covered by mega earthquake-triggered landslides, their inventory requires development

of automatic or semi-automatic methods applied to satellite imagery. A detection method is

here proposed for this purpose, to fit with simple datasets; SPOT5 panchromatic images

of 5 m resolution coupled with a freely and globally available DEM. The method takes

advantage of multi-temporal images to detect changes based on radiometric variations after

precise coregistration/orthorectification. Removal of false alarms is then undertaken using

shape, orientation and radiometric properties of connected pixels defining objects. 80% of

the landslides and 93% of the landslide area are detected indicating small omission errors but

50% of false alarms remain. They are removed using expert based analysis of the inventory.

The method is applied to realize the first comprehensive inventory of landslides triggered

by the Pisco earthquake (Peru, 15/08/2007, Mw 8.0) over an area of 27,000 km2. 866

landslides larger than 100 m2 are detected covering a total area of 1.29 km2. The area/number

distribution follows a power-law with an exponent of 1.63, showing a very particular regime

of triggering in this arid environment compared to other areas in the world. This specific

triggering can be explained by the little soil cover in the coastal and forearc regions of Peru.

Analysis of this database finally shows a major control of the topography (both orientation

and inclination) on the repartition of the Pisco-triggered landslides.
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1. Introduction

Earthquake is one of the main triggering factors of landslide [1] and the most damaging trigger

of landslides in terms of social cost. As an example, more than 60% of casualties in landslides

are encountered in earthquake-triggered landslides over the 2004–2010 period [2]. In this context,

understanding and quantifying the susceptibility of slopes to landslide is of major interest.

Triggering of landslides by earthquakes is a complex problem as it encompasses two main

domains: seismology and landslide mechanics. The later includes several fields such as rock

mechanics, geomorphology, hydrology and hydrogeology. Numerous factors, related both to the

earthquake and to the settings in which the seismic waves propagate, drive the number, size and

type of landslides. From the study of landslide inventories, it emerges that the triggering of

landslides by earthquake is controlled by two main class of parameters: (i) the earthquake source

properties (magnitude, duration, fault rupture dynamics) (e.g., [1,3–5]); (ii) the site properties

(geology, topography, geometry, water content) (e.g., [6–9]). The source magnitude controls the

area affected by landslides [1] relating the ground motion decay with distance to the epicenter or

to the fault plane (e.g., [3]). However this generic law is affected by different factors: (1) a

significant over-abundance of landslides in the hanging walls of ruptured thrust faults relative to the

footwalls rate are reported (e.g., [4,5]), showing the effect of the dynamics of the fault rupture on the

landslide distribution; (2) the greater erosion rate due to precipitations observed after the

earthquake [8,10] shows that earthquakes are found to interact non-linearly with precipitations;

(3) the site effect, or amplification of the seismic waves due to shear-wave velocity contrast between

the landslide material and the stable material [11,12] or topographical particularities like ridges [9]. This

topographic control on co-seismic landslides has also been pointed out through different parameters:

convexity [7], slopes, proximity from ridges and crests [6,9].

The effects of all the parameters listed above are fairly well known qualitatively but not quantitatively

due to the very few number of cases studied. Indeed, because of the tedious work of detection, the

studies of earthquake-triggered landslides have been based on approximately 40 coseismic landslide

inventories worldwide [3,13], sampling only few different situations of magnitude, focal mechanism,

climatic settings and land-surfaces. All these results emphasize the need for the generation of new

datasets in order to draw robust conclusions on co-seismic landslides. Landslide inventories are, most

of the time, based on field inventories and/or visual analysis of aerial or satellite images. These

methods often lead to incomplete or biased inventories, due to subjectivity of the operator [5,14].

Therefore, automatic or semi-automatic detection methods have been developed in the past years

(e.g., [15–23]). These methods are either based on the supervised or unsupervised classification of

one satellite image (e.g., [18,24]), or on the detection of new landslides in a pair of images acquired at

different dates [20,21]. Detection is either based on the comparison of individual pixels or on the analysis
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of objects extracted from the images. The interest of object-oriented methods is to enable analysis of the

object shape or texture that often characterizes the landslides compared with other objects [19]. For a

review of the landslide detection methods, see Guzzetti et al. [25].

Accuracy of the methods is generally reported using both the detection error (omission = real

landslides that were not detected) and the false alarm rate (commission = “landslides” that were detected

but did not exist). Unsupervised methods display errors of commission and omission of 56% and 24%

respectively [18,19]. Supervised methods use training data to estimate the parameters of the image

segmentation in object oriented algorithms. It allows to increase this accuracy with errors of commission

between 12% and 27%, similar to omission errors [20,21,23]. These 3 latter methods showing better

accuracy used Very High Resolution (VHR, ≤1 m) sensors, whose past archives have small coverage on

the globe. It therefore restrains the use of such datasets to very specific regions.

The detection has been tested with different types of sensors. Multi-spectral optical images are

particularly well suited for object-oriented analysis [16,19]. Moreover, the use of Normalized Difference

Vegetation Index (NDVI) coming from Landsat TM, SPOT or Quickbird images is of high interest to

detect changes of vegetation and thus landslide in areas covered by vegetation. The high precision of

Lidar (e.g., [26]) allows the detection of specific textures characterizing landslides, but the Lidar datasets

do not cover extensive areas. On the contrary, radar images present the advantages of a good spatial and

temporal coverage even in cloudy regions. In particular, polarimetric radar has been used to detect

new landslides [27,28], taking advantages of different scattering properties on the bare soil and forested

ones. On bare soil area, the InSAR images also allows detection of slow moving landslides [29,30].

The drawbacks of radar images are (1) the presence of shadows or blind areas on the image that

prevent monitoring specific slopes, and (2) their medium resolutions not adapted to detect landslides

of small sizes, which are the most common [31]. The recent launch of DLR TerrarSar-X and Tandem-X

missions (among others) improves the availablity of high resolution radar images, even if past archives

are still limited. Most recent methods use VHR data, either Quickbird (0.6 m) or Ikonos data (0.4 m)

(e.g., [21,23]). The compensation of such very high resolution instruments is that their images cover

only a limited area. Most studies have therefore been performed at a basin scale (typically 50 km2) for

rain-induced landslide inventories (e.g., [20]). In case of co-seismic landslides, the distance affected

by landslides can be as much as 10 times the fault length for small earthquakes (Mw < 5) and 3 to 5

times the fault length for larger earthquakes [32]. That is, for an Mw 8.0 earthquake, landslides can be

triggered up to 600 km away from the source. These large distances require imagery acquired with wide

swath that only high to medium resolution satellite can provide.

Moreover, for reduced areas, the detection can benefit from fine Digital Elevation Model (DEM)

acquired by lidar or derived from a couple of optical images (e.g., [19]). However, for larger areas, fine

DEM (typical resolution of 10 m) is generally not available and/or pricing can be high. In these cases,

the 90-m posting SRTM or 30-m posting ASTER GDEM datasets are free alternatives.

Finally, in most cases (especially when revisiting historical events), panchromatic images are the only

optical dataset available. Landslide detection using panchromatic images [15,17,33,34] is less accurate

than using multi-spectral images. The use of panchromatic images solely makes it difficult to identify

clearly the spectral signature of landslides compared with other objects [34]. Moreover, all the proposed

methods have been used on vegetated regions. In arid environment such as the coast of Peru, landslides
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occur on bare soil. Therefore, changes in texture are small and object detection based on texture analysis

is of low efficiency. For example, Nichol and Wong [35] showed that a pixel-based method alone does

not enable to detect landslides occurring on bare soil on SPOT images.

Therefore, in this study we adapt a pixel-based detection method to be working with (1) medium

resolution (30 m) DEM, (2) panchromatic satellite images of high to medium resolutions, and (3) non-

vegetated areas. We use 5 m SPOT panchromatic satellite images to cover extensive areas. We apply this

method to pairs of co-seismic images, surrounding the Pisco earthquake (Mw 8.0, Peru, 15 August 2007)

over an area of 27,000 km2, where a field inventory (Figure 1) has been realized in the months following

the earthquake [36]. Using visual interpretation of satellite images, we show that the field inventory is

not consistent with the satellite inventory and thus cannot be used to validate our method. The method is

thus validated using a comparison with an expert-based inventory realized on two subsets of the satellite

images. A first analysis of the topographical characteristics of the database is finally proposed.

Figure 1. Summary of the SPOT5 image pairs used in this study: (a) temporal baseline

and (b) corresponding images coverage. The 1 m contour of slip distribution on the fault

during the Pisco earthquake (orange line) is extracted from Sladen et al. [37]. The white dots

represent the landslides identified with the field inventory [36].
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2. Data

2.1. Study Area

The Pisco earthquake (Mw 8.0) struck the coast of Peru on 15 August 2007 (Figure 1). The epicenter

was 18 km deep and ruptured the megathrust along the subduction zone of Nazca and southern American

plates [38]. It broke a fault segment of 170 km, parallel to the coast, composed of 2 main asperities [37].

The analysis of the accelerogram registered in a radius of 200 km showed the complexity of

this rupture [39].
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This earthquake triggered landslides, 134 of which were detected during a field survey following the

remaining accessible roads, the days after the earthquake [36]. This inventory is mostly composed by

rockfalls. Rockfalls mainly occurred along roads that run at the foot-cut slope and were thus easily

detected during the field work [36]. The resulting number-volume statistics do not exhibit a classical

linear relation as plotted in log-log coordinates [31], showing that this inventory is certainly incomplete.

Moreover, the total number of landslides reported in this inventory is far out of classical values for Mw

8.0 earthquake. Indeed Keefer [3] reported average number of landslides being on the order of 105 for an

Mw 8.0 earthquake. A more complete inventory is therefore needed for better analysis and quantification

of the triggering factors of these co-seismic landslides.

2.2. Satellite Images

For this study, we chose to use SPOT5 images, which are a good compromise between the spatial

resolution (2.5 to 5 m pixel size) and the area covered (each scene is 60 × 60 km2). Moreover, the

data programming since 2002 enables a collection of archive images of high interest for studying past

co-seismic landslides.

The method developed in the following is based on the processing of image pairs before/after a

particular event. Pairs of images have been chosen optimizing 3 criterions: (1) small B/H values, where B

is the baseline between the optical center of the two images and H is the altitude of the satellite; (2) small

cloud coverage; and (3) shortest temporal baseline. The first criterion is key for the orthorectification

of the two images since it shows how DEM errors propagate in the difference of coregistration of the 2

images [40]. The last criterion is not a limiting factor for the Pisco case because the arid climate prevents

the vegetation from changing rapidly. The areas covered by the images have been chosen to encompass

most of the areas visited by the field survey after the earthquake.

Table 1. SPOT5 images index table.

Pair # Pre-Event Date Post-Event Date B/H Mean Incidence Angle

1 2005/04/04 2008/03/05 0.0307 2.6 ◦

2008/03/05 2010/04/24 0.0076 2.2◦

2 2005/11/24 2009/07/12 0.0094 2.3◦

2009/07/12 2010/04/24 0.0128 2.1◦

3 2003/10/27 2008/08/29 0.0063 2.5◦

4 2005/05/26 2011/05/19 0.0021 2◦

5 2003/06/19 2007/10/22 0.0248 6.5◦

6 2004/04/20 2008/05/06 0.1578 24.3◦

7 2005/05/26 2011/05/19 0.0021 2◦

8 2007/07/26 2011/05/30 0.0014 22◦

Using these criteria, 8 pairs of images have been chosen and 2 of them acquired twice after the

earthquake (Figure 1 and Table 1). Characteristics of the images are shown in Table 1. The total

area covered by the image pairs is 27,000 km2, imaging 75% of the landslides detected by the field

survey. Time separations between images of a pair are ranging from 3 to 6 years, which is short

compared with the rate of growth of vegetation in this area. Moreover, triggering by other earthquakes
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is excluded in this time-lapse, even if numerous aftershocks were recorded with magnitude below

Ml 6.1 Sladen et al. [37]. Indeed, these aftershocks are clustered updip of the hypocenter and south

of the Paracas Peninsula, at least 60 km far from the main area of landslide (Figure 1). This distance

excludes systematic landslide triggering by magnitude 5–6 earthquakes [3].

3. Methodology

The proposed landslide detection method follows a classical scheme: (1) precise image

orthorectification; (2) change detection; (3) removal of false alarms. The change detection is adapted

from a classical pixel-based method using the comparison of multi-temporal images. New developments

from our study focus on the removal of false alarms adapted to the dataset used here.

3.1. Orthorectification

Orthorectification of SPOT5 imagery is performed using the Cosi-Corr software [41]. Each

pre-earthquake image is first orthorectified using Ground Control Points (GCP) taken on the shaded

DEM. GCPs are mostly located at the crossing between steep valleys or at the summit of the mountains.

Around 30 GCPs are chosen for each image orthorectification. The ASTER Global DEM (GDEM-v2) is

used, with a spatial posting of 1 arc-second (approximately 30 m in our area) and altitude errors (ǫGDEM )

between ±7 and ±15 m [42]. Then, the post-earthquake image is orthorectified on the same grid as

the pre-earthquake one, using GCPs based on the picking of recognizable features (mostly man-made

structures) on both images. The GCPs are first picked manually before running the Cosi-Corr automatic

optimization in order to improve the quality of the co-registration [41].

The B/H values range between 0.0014 and 0.0307, except for pair #7 that exhibits a B/H value of

0.1578 (Table 1). Formal errors of coregistration ǫco using the ASTER GDEM-v2 data are given by

ǫco = ǫGDEM · B/H , which is between 2 and 46 cm except for pair #7 that can present errors up to

2.4 m. All these values are however much less than 1 pixel of the SPOT images (5 m in our case). The

precision of this process is key as coregistration default could cause false change detection. A good

coregistration is also key to detect landslides of small sizes. For consistency between all the pairs of

image available, the resolution is set to 5 m for all images.

3.2. Clouds Detection

Clouds are first detected in order to remove these areas from the following analysis. First, we calculate

3 types of radiometric indicators over windows W of 50 × 50 m size, i.e., the mean µ and standard

deviation σ of radiometric values for each image, and the coefficients of correlation C between the pre

and post-images:

C =
cov(Wpre,Wpost)

σWpre
.σWpost

(1)

where cov is the covariance between the two windows selected. The clouds are detected by selecting

the area of weak correlation (C ≤ 0.1), where either the pre- or post- image displays very high (µ is

greater than 95% of the maximum histogram value) and homogeneous (σ below 5 pixels) radiometric
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values inside the 50 m × 50 m window. This initial area is then iteratively expanded to connected

50 m × 50 m areas that display C below 0.8 and µ greater than 50% of the maximum histogram value.

These numbers have been chosen after a process of trial and errors on one image from the pair #1. It

allows to detect 96% of the total cloud area, as estimated by a comparison with a manual identification

of the clouds on one image. Only small clouds (of less than 50 m size) or the borders of the big clouds

are not well detected and are thus removed manually at the end of the whole process.

3.3. Change Detection

In panchromatic images, new areas of landslides are found to exhibit higher brightness values

(e.g., [34]). Therefore, we apply a classical image differencing technique [43] to detect the changes

between the two multi-temporal images. This technique consists in normalizing the two images impre

and impost (Equations (2) and (3)) to differentiate them (Equation (4)) and then selecting the pixels

exhibiting large variations. We independently normalize each image since we noticed that very few

pixels change their radiometry in between the 2 acquisitions. Indeed, the landscape is dominated by

rocky mountains where the vegetation cover does not change rapidly. Also, the viewing angles of the 2

acquisitions are very close (less than 1◦ for all pairs, except for pair #6 that exhibits difference of angles

of 7◦) and all images experienced little change in solar incidence due to the low latitudes of the studied

area. The normalized images are thus expressed through (Figure 2(a)):

im′

pre = (impre − µpre)/σpre (2)

im′

post = (impost − µpost)/σpost (3)

The difference image is expressed through (Figure 2(b)):

diff = im′

post − im′

pre (4)

where µpre and µpost refer to mean values of pre- and post-images, and σpre, σpost to their standard

deviations. In the difference image, the new landslides exhibit large positive pixel values. We therefore

select the pixels above a threshold T . This threshold can be defined through different methods [33]. Due

to the Gaussian shape of the difference image (Figure 2(b)), we define the threshold as an affine function

of the standard deviation of the difference image diff (noted σd hereafter):

T = A.σd (5)

where A is a parameter of the method.

3.4. False Alarms Removal

This thresholding method applied to our images leads to many false alarms, which can be classified

in 3 classes: (1) river bed variations inside deep valleys; (2) anthropogenic changes of several types

such as villages growth, new roads on slopes, agricultural fields on valleys and valley sides close to

villages; (3) variations of solar reflections. These false alarms are usually removed using a combination

of multispectral information, texture, shape and precise topography (e.g., [19,21]). However, in our
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case not all of these information are available. The proposed methodology therefore mostly focuses

on the development of methods for removing false alarms, adapted to the available datasets (SPOT5

panchromatic images of 5 m resolution, GDEM-v2, non-vegetated area).

Figure 2. (a) Diagram showing the radiometry of each pixel for the pre- and post-event

images (black points). The color lines represent the iso-level of pixel density. We notice

that most pixels are situated along the line x = y. This shows that most pixels have similar

radiometric values in the pre- and post-image. (b) Histogram of the difference image once

the images have been normalized.
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3.4.1. Objects Definition

The connected pixels detected by the threshold analysis are first gathered. This step leads to the

definition of objects, with typical radiometry, slopes, and shape characteristics. We first eliminate objects

containing less than 4 pixels. We then compute mean mo and standard deviation σo of the radiometry

for each object o. Then the slope inclination β(x, y) and aspect θ(x, y) (orientation of the slope) at each

point of the DEM (H(x, y)) are calculated. The slope of an object βo is defined as the median of the

series of β(x, y) obtained for all the pixels of each object. Slope aspect of an object θo is defined by

the median of the series of θ(x, y) for all the pixels of each object. We also compute the main direction

of each object Do through a linear regression between the North and East coordinates of the pixels of

each object. We can notice that for an object aligned in the main slope direction, Do and θo will be

very similar.

We finally compute the correlation coefficient C(x, y) between the pre- and post-images (See

Equation (1)) over windows of parametrized size w, at each point (x,y) separated by S = w/2. We

thus define the correlation Co of an object as the mean correlation of its pixels. The separation between

the landslides and other objects is done in the following using these different characteristics.
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3.4.2. Change Detection at Large Scales

To detect the changes at large scales, we use the fact that the correlation between two images

displaying large changes is low (e.g., [44]). As an example, the correlation C(x, y) is shown for a

subset of an image where changes occur (Figure 3(a)). These changes are mostly due to anthropogenic

factors during the time lapse between the image acquisitions (Figure 3). We notice that anthropogenic

changes mostly occur in or near villages, due to the grouping of the housings and agricultural fields.

New roads are treated separately in the Section 3.4.4. Peruvian villages are either settled inside valleys

or on the flattest area of the mountains with expansion of the agricultural fields on its flanks. Therefore,

villages can be detected by first identifying the flattest area where changes occur and then expanding the

area to connected steeper zones where the correlation displays also similar values.

Therefore the detection can be summarized in 3 steps:

1 We select all the objects with βo below a slope value α (Figure 3(b)). Each object has a

correlation Co.

2 For one of this object, we search its connected points (distant by less than w pixels) having a

correlation lower or equal to Co (Figure 3(c)).

3 Step 2 is iterated until no connected points display values lower than or equal to Co.

The window size w is a parameter of our method whose range must be defined in relation with the

expected maximum size of the landslides to avoid their removals. For our study, we identified visually

the largest landslides and defined the maximum value of w at 128 pixels, i.e., 640 m.

Figure 3. Different steps of the detection of large scale changes. First, the image of

correlation C(x, y) is calculated (a). We note that low correlation corresponds to area with

a high density of changes (black points). (b) Then, the objects situated on low slopes are

detected (red points). (c) The area is finally expanded to connected points with similar

or lower correlation than the objects detected in step (b). The remaining blue points are

candidates for being landslides.
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Other changes at large scales can occur, notably large variations of illuminations. We detect these

false alarms by selecting objects that displays Co lower than 0.7. This fairly conservative threshold value

has been chosen after a process of trial and error to avoid removing objects that could be landslides.
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3.4.3. River Bed Variation

The changes in river bed due to sediment transports or river level variations also cause false alarms.

Some of these changes, mostly the ones occurring on slopes lower than α, are detected by the previous

process (Section 3.4.2). However, some of the rivers flow in steeper valleys. Moreover, because of the

low resolution of our DEM, the low slopes are only partly well defined. Therefore, we also identify

the narrow valleys by detecting the zero crossings of the smoothed DEM partial derivatives in both

directions. The DEM is smoothed using a Gaussian filter G(x, y; σ) of σ = 2 pixels in order to detect the

main valleys with better robustness. The partial derivatives of the topography are then calculated using

the convolution of H(x, y) and the gradient of G:

~I = ~∇H(x, y) ∗ G(x, y; σ) = H(x, y)~∇G(x, y, σ) (6)

A valley is detected by a negative change of the sign of the angle of ~I . A positive change indicates

that this point is situated on a crest. An illustration of the valley detection is given in Figure 4. We note

that due to the low resolution of the DEM, a misfit can exist between the detected valleys and the real

valleys. Therefore, an object is considered inside the valley when its distance to the detected valley is

lower than a certain value V . V is chosen depending on the DEM resolution (here 30 m) and the standard

deviation σ of the Gaussian function used to filter the DEM (here σ = 2 pixels). We define V as V = 30,

σ = 60 m in our case.

Figure 4. Valleys detected by the automatic procedure (red points). Objects identified as

inside these valleys are removed (yellow points). Remaining blue points are candidates for

being landslides.
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We also note that small thalwegs/valleys are not detected by this method, due to the low resolution

of the DEM combined with the Gaussian filter applied on the DEM (Section 3.4.1). Detecting small

thalwegs was not a main objective of the valley detection because many landslides can flow inside and

objects situated inside small thalwegs must therefore not be removed.
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3.4.4. Road Detection

A number of false alarms arise from roads on the slopes either because of new roads that exhibit

higher radiometry or because of changes of lighting. The sinuous roads in the mountain exhibit a large

variability of radiometry. Therefore in our analysis, the same road is often detected in many small objects

(Figure 5). We detect the roads based on their aspect, as roads have rarely slopes greater than 10% and

are therefore perpendicular to the main slope direction. The object direction Do is compared with the

mean direction of the perpendicular to the local slope Ds. The objects that exhibit |Do − Ds| < B are

removed. B is a parameter of the model with possible value between 0◦ and 90◦.

Figure 5. Results of the automatic classification for one subset image (area A2) where an

expert based inventory has been realized.
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A function is first developed to detect anthropogenic changes and changes of solar reflections that

affect large scales (Section 3.4.2). Other functions are also developed to remove the main false alarms

of smaller scales: roads and river bed variation in steep and narrow valleys.

4. Validation

4.1. Comparison with the Field Inventory

We first compared the results of the detection with the field inventory by checking if the landslides

identified on the field are detected by the automatic method. Out of 134 landslides inventoried in the

field, 101 are situated on the image footprints and only 5 (5% of the landslides covered by the images)

are detected by the automatic procedure. This low score can be explained by various factors:

1. The field inventory is dominated by landslides of small size. Among the landslides from the field

inventory covered by the images, 79% are less than 66 m3. Assuming a relation area versus volume
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of V = 0.146A1.33 [45], we infer a size of 100 m2, or 4 pixels of a SPOT5 image. This means they

are removed by our method during the step of object definition (Section 3.4).

2. The field inventory is also constituted by many rockfalls (45% of the database), which are difficult

to see on satellite images taken at vertical angle

3. Most of the mass movements detected by the field inventory occurred on the road [36], which were

already cleaned at the time of the satellite acquisitions (at least 2 months after the earthquake, see

Table 1). These deposits therefore cannot be detected on the satellite images. One exception is

a small landslide scar (100 m2) detected in the SPOT5 images, which furthermore matches the

location of a mass movement detected on the field.

4. There are uncertainties on the field inventory where no testimony exists, i.e., in arid regions the

growth of vegetation is slow, and it is therefore difficult to really give a date to the observed

landslides.

Figure 6 is an example of the difficult interpretation of the field work. Indeed, this image presents

2 different landslides distant by only 600 m. The first one has been detected by the field inventory, but

the multi-temporal images show that it occurred between 19 June 2003 and 26 July 2007, before the

15 August 2007 earthquake. The other one has not been detected by the field inventory because the local

relief prevents to see it well from the road. Similarly, many remote landslides cannot be detected by the

field inventory, which has been realized by following the roads in the main valleys.

Figure 6. Image subsets over the same area (of 1.2 × 1.4 km2) at different dates surrounding

the Pisco earthquake. The red contours correspond to the 2 new landslides detected by the

automatic procedure described in this paper: one occurring between 26 May 2005 and 26

July 2007 (middle image), and the largest one occurring between 26 July 2007 and 30 May

2011 (right image). The yellow point corresponds to a 150 m3 landslide assumed to be

triggered by the earthquake in the field inventory (13.17◦S 75.64◦W), which fits well with

the first landslide detected by the automatic method but before the earthquake.
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This comparison shows that the two inventories are not imaging the same types of landslides. The field

inventory detects mostly the collapses on or very close to the road, with a better detection of rockfalls
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and mass movements of small volumes than with satellite images. The remote-sensing inventory detects

the larger mass movements outside of the roads.

4.2. Sensitivity Analysis

For a better quantification of the method efficiency, we select 2 specific areas of 11 × 9 km2 (Area

A1) and 10 × 6 km2 (Area A2), which encompass both areas of valleys and mountains. Those two

sub-regions have topographic characteristics that are similar to our whole study region, with slope

distribution showing a mean value of 35◦/40◦ and maximum slope of 65◦. An exhaustive inventory

of landslides is realized by a visual comparison of the pre- and post-images for the two areas.

Respectively 174 and 45 landslides are identified for A1 and A2, corresponding to areas of 64,250 m2 and

24,875 m2 respectively.

We test the performance of the automatic detection method on the test areas and calculate the resulting

errors of omission (landslides not detected) Eo,i and commission (false alarms) Ec,i relative either to the

area (i = a) or to the numbers of landslides (i = n) (e.g., [46]) :

Eo,i = 1 −
itrue

itotal

(7)

Ec,i = 1 −
ifalse

ichanges

(8)

where itrue corresponds to the area or numbers of actual landslides well detected by the method, ifalse

corresponds to the area or numbers of changes detected by the method but are not landslides, itotal is the

total number or area of actual landslides, ichanges is the total number or area of changes detected.

The automatic detection and the resulting errors of omission/commission are computed for the set

of parameters defined in Table 2. The results show the strong sensitivity to the minimum angle of the

landslide slope α and to a lesser extent the radiometric threshold value A chosen (Figure 7). In particular

we see that α greater than 15◦ implies a great increase in the area error. This does not indicate necessarily

that the landslides are in low slopes, but rather that the precision of the DEM does not enable to pick up

the small fluctuations of the topography. Precision of the DEM is thus a critical parameter of the method.

Great improvements of the method are thus foreseen with the release of the high resolution global DEM

from the Tandem-X mission [47]. Other parameters W,B are found to have less impacts on the results.

Table 2. Definition and values of the method parameters.

Name Description Min Value Max Value Section Optimum

A parameter related to the detection threshold 3 4.5 3.3 3.5

w size (in pixel) of the correlation window 16 128 3.4.2. 32

α minimum slope of landslides 10◦ 25◦ 3.4.2. 15◦

B maximum angle between road and slope 0◦ 90◦ 3.4.4. 20◦

We found the optimum errors by minimizing the sum of commission and omission errors. The

minimal errors are found to be Eo,n = 20%, Ec,n = 50%, Eo,a = 7%, Ec,a = 35% obtained for

α = 15◦, A = 3.5, w = 32, B = 20◦. This sensitivity analysis also shows that the area errors are less
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than the number errors. This indicates that the method is more suitable to detect large landslides than the

smaller ones. All landslides larger than 700 m2 (=28 pixels) are detected by the method.

Figure 7. Effect of the minimum slope angle α (top) and the threshold parameter A (bottom)

on the error of omission (black) and commission (red) for landslide number (left) and area

(right). Error bars are calculated by the standard deviation of the omission and commission

when parameters other than α or A vary in the range defined by the Table 2.
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5. Application: Landslides Triggered by the Pisco Earthquake

5.1. Inventory Validation

The methodology is now applied to all SPOT5 image pairs using the parameters obtained in the

Section 4.2. High number of false alarms remained after the automatic processing (Section 4.2). A visual

screening was thus necessary to remove them. False alarms are principally new roads often associated

with landslide (Figure 5), small clouds not detected by the cloud algorithm at large scale (Section 3.2),

small agricultural fields that are numerous on the slopes of Peru, and the presence of snow notably on

the image pairs #7 and #8. All these false alarms are easily recognized visually. Moreover, using a

pixel-based criterion to detect landslides often leads to pepper and salt inventories. Therefore, we gather

manually the patches of changes detected that belong to the same landslide. We also get an independent

validation of the algorithm over the whole dataset. Indeed, we also realize an expert-based inventory of

the largest landslides by screening all the images visually. We estimate our visual detection is complete

for landslides of size greater than 40 pixels. We see that all the landslides detected visually are also

detected by the automatic procedure.
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Over one scene (scene 1), 2 inventories are realized taking advantage of the multi-temporal acquisition

(2005, 2008, 2010) (Figure 8). The 2005–2008 inventory is composed of 219 landslides (for an area of

215,000 m2). The 2008–2010 inventory is composed of 10 landslides for an area of 5,000 m2. A

decrease by a factor 21 in numbers and 43 in area is therefore observed between the periods 2005–2008

and 2008–2010. The multi-temporal inventories show that not all of the landslides detected with 5 years

baselines (2005–2010) are co-seismic landslides, but that the effect of the Pisco earthquake is major

compared with other triggering factors in this area, and notably the rain effect. This can be explained by

the high aridity of the coastal environment of Peru, with less than 3 cm a year of precipitation on average

at the meteorological station of Ica (Figure 1). This multi-temporal inventory shows that large temporal

baselines (2.9–6 yr), as used in this study, are not a limitation for studying the co-seismic landslides

of Pisco.

Figure 8. Multi-temporal inventories of the pairs #1. The 2005–2008 inventory is in blue

and the 2008–2010 inventory is in yellow.
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5.2. Characteristics of the Landslide Inventory

The mass movements detected are of different types (Figure 9), mostly flows, rockfalls and

topples. The area detected for each mass movement contains not only the source area but also

sediment-transported area and debris-accumulated area (Figure 6).

Figure 9. Example of landslides detected by the methodology. Left and right subplots

correspond to pre- and post-event images respectively.
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The regional inventory realized using all the images is composed of 866 landslides of more than

100 m2 representing a total area of 1.29 km2 (Figure 10). These figures are rather low for a magnitude

Mw 8.0 earthquake, as Keefer [3] has predicted around 105 landslides being triggered for such event. We

reckon it can be explained by 4 main reasons: (1) the distance between the source and the relief is large

(80 km), that is, half the length of the ruptured fault; (2) the earthquake is coming from the subduction,

therefore not rupturing the surface and producing lower ground movements; (3) the coast of Peru is arid,

therefore the soil cover—the part the most prone to slide—is very thin; (4) the constant seismic activity

of the central coast of Peru [48] can regularly purge the slopes and therefore stabilize them.

Figure 10. Field (white circle) and remotely-sensed (red square) landslide inventories. The

1 m contour of slip distribution on the fault during the Pisco earthquake is shown with dashed

dot yellow line. The red contour is the coverage of the SPOT5 images. Iso-altitudes are lined

in black at 1,000 m and 4,000 m levels.
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We compute the normalized probability density function of this distribution (pdf) on the Figure 11.

A power-law can be fitted over 3 orders of magnitude and displays a slope exponent of 1.63. Since all
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landslides with area greater than 750 m2 were also identified visually (see Section 5.1), we can conclude

that this exponent is fairly robust. This power-law is similar in a mathematical sense to the second part

of the inverse gamma law observed for landslide area [31]. Therefore exponents can be compared. The

Pisco case displays exponent lower than previous landslide inventories [31,49] with exponents between

2.1 and 2.5 obtained for the United States, New Zealand, Italy, Guatemala and Taiwan. This means

that the Pisco inventory is dominated by larger landslides compared with other seismic or rain events in

various seismic and climatic contexts.

Figure 11. Probability density function (pdf) of landslide area.
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Very few landslide inventories exist in this region of the world. To our knowledge only two inventories

were realized, after the 1946 and 1970 Ancash earthquakes of magnitude Ml 7.3 and 7.7 respectively. No

statistics on the surface or volume of landslides exist for the 1970 earthquake [50]. On the contrary [51]

shows that the volumes of the 1946 earthquake-triggered landslides are following a power law. The

exponent is found to be 0.51 much lower than for other cases with exponent of 0.8 (e.g., Northridge

case). This lower exponent for the volume distribution in Ancash and for the surface distribution in the

Pisco case shows a common particularity of the Peruvian landslide inventories.

Both inventories are situated in regions with very thin soils due to both steep slopes and the very

little vegetation cover. We suggest that the very thin soil cover in this hyperarid region of Peru explains

both the few number of mass movements reported and the particular slope exponent of the distribution.

The Pisco earthquake occurred on a region where low volumes of available material were susceptible to

be mobilized. Indeed, steep slopes of intensely fractured basement rocks are present all along the dry

canyons incising the western Cordillera in Pisco region, but the soil, fine grain or superficial sedimentary

cover is very rare. Mean annual precipitations along the coastal plain or western cordillera are only of a

few millimeters per year and thus vegetation is absent or focused in the valleys. The strong topographic
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gradient, the regional desert climate and its geology explain why the slopes are only covered with sparse

and thin colluvial deposits.

On the contrary, all other published inventories focus on regions with important soil cover or low

consolidated materials. For instance, the Northridge inventory (USA) is dominated by landslides

occurring in very weakly cemented sedimentary rocks [52]. The highest erosion rates in Taiwan occur in

terrains of weak substrate [53]. We therefore suggest that the slope exponent of the landslide distribution

is dependent on the soil cover of each region and shows the prime role of the soil cover in the landslides

triggered by earthquakes. This explanation is also corroborated by the different slope exponents of

volume-area distributions for shallow soil-based landslides and rockslides [45].

5.3. Topographical Properties of the Landslides

We first notice that the majority of landslides is clustered in a 100 km band, from 1,000 to 4,000

m of altitude (Figure 10), where the steepest topography exists. This suggests a main control of the

regional slopes on the observed landslide distribution. We therefore compute the distribution of slope

gradient of inventoried landslides on Figure 12. This distribution is given for either the landslide number

(Figure 12(a)) or area (Figure 12(b)). To be correctly analyzed, this distribution is normalized by the

total distribution of regional slopes (Figure 12(c)), that is, we compute for each slope value by step of 5◦

the proportion of the total area affected by the landslide. This normalization allows us quantifying the

susceptibility of the different slope values to the landslide. In particular, this process shows an increase

of the susceptibility of the slopes to the landslide with slope gradient until 45◦–50◦, reaching 0.044%,

followed by a decay for slopes greater than 50◦. This decay cannot be considered totally real for two main

reasons. First, the coarse resolution of the DEM is not able to pick up large slope gradients (maximum

values of the DEM is 65◦ whereas steeper slopes exist). Second, the quasi-nadir observations of the

SPOT5 images (Table 1) do not allow detecting the landslides in steeper slopes (see also Section 4.1).

Figure 12. (a) Distribution of landslide numbers as a function of slopes; (b) Distribution of

landslide area as a function of slopes; (c) Proportion of slopes affected by landslide, i.e., the

percentage of area of each slopes covered by landslides.

We also compute the distribution of slope orientation, shown in Figure 13(a,b) for the landslide

number and area respectively. An unusual aspect of the landslides triggered by this subduction

earthquake is their orientation along the western cordillera relief, which is mostly perpendicular to
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the fault rupture (Figure 10). We should note that this particular orientation of the slopes affected

by landslide does not follow the general distribution of the regional slope orientation (Figure 13(a)).

Slopes oriented E/NE are more affected than the W/SW slopes, with 3 times more landslides in the N70

than in the N250 directions. We suggest that this distribution reflects the interaction of the wave field

with the topography (e.g., [4,54]). Indeed, in a first order, the landslides can be considered fairly far

from the earthquake source, therefore being situated approximately at an azimuth E/NE (N70) from the

source. In other words, the observed landslide orientation distribution reflects that flanks facing away

from the wave source are more affected than the others. This has previously been interpreted as a result

of the amplifications of the ground movement in these slopes [9]. Another explanation of this particular

orientation could be the co-seismic tilt, which can destabilize specific slopes. In subduction zones, the

tilt associated with earthquakes is first oriented away and then toward the subduction zone as we move

away for this zone [55]. This change of tilt orientation appears at a distance close to the coastline [55].

This is notably the case for the Pisco earthquake [37]. Therefore, on the area where landslides occur, the

tilt is oriented toward the trench. This mechanism can thus be excluded to explain the triggering of the

Pisco triggered landslides.

Figure 13. (a) Distribution (given in %) of landslide numbers as a function of slope

orientation (solid line). The slope distribution of the study area is shown as reference with a

dashed line. (b) Distribution of landslide area (given in %) as a function of slope orientation.

(c) average landslide area (m2) as a function of the slope orientation.
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Our inventory also shows that larger landslides are encountered in slopes facing N320 (mean size

of 7,000 m2) with secondary peaks in slopes N160 (mean size of 5,000 m2) and N80 (mean size of

4,800 m2) (Figure 13(c)). We suggest that this effect comes from the geomorphology of the area. Indeed,

the main (deepest) valleys near the seismic source, collecting and channeling the erosion down to the

nearby coastal region, are oriented SW-NE (Figure 10). The walls of these valleys are thus trending

NE-SW. Largest denivellation are therefore encountered on these particular slope orientations. We

propose that the largest mean size of the landslides in the NE-SW orientation is directly due to this

systematic pattern and topographic singularity, trending perpendicular to the topography and parallel to

the subduction megathrust.
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6. Discussion on the Method

The method used has been developed to work with simple datasets: panchromatic images coupled

with a freely and globally available DEM. Thus, this method can also be used to realize landslide

inventories in others parts of the globe subjected to earthquake activity, including for past events

where only panchromatic images are available. It has been successfully applied to derive the first

comprehensive landslide inventory triggered by the Pisco earthquake over a wide area (27,000 km2).

The detection errors compare favorably to other studies (e.g., [21,23]) using other types of datasets

(VHR, multi-spectral) in various areas. Commission errors are however larger with our method (50%)

than for other studies using multispectral data (20%–25%). However, another study using panchromatic

data [34] shows branching factors (ratio between the false alarms and the detected landslides) up to 3.6,

corresponding to commission error of 78%. Therefore the 50% of commission rate obtained here can

certainly be explained by various factors including the use of panchromatic versus multi-spectral data

and the coarse resolution of the DEM [23]. Results of higher quality could probably be obtained if a

higher resolution DEM was available.

A major lesson from this application is that pixel-based methods coupled with contextual analysis

are working fine on panchromatic images in arid environment. Compared with other methods using

panchromatic images (e.g., [34]), scores of detection obtained here are better (80% against 73% for the

number of landslides, 93% against 88% of the landslide extent), and false alarm rates are similar (50%).

It must be noted that the latter method has been applied to other climatic context and with DEM of better

resolution (10 m). It is thus difficult to compare directly the scores obtained. A comparative study of the

various methods with similar datasets would be very interesting for this purpose.

The region affected by the Pisco earthquake is arid with limited vegetation. We can therefore wonder

what is the applicability of the developed method to other climatic and vegetation contexts. It is first

important to note that the precise co-registration is a key step to obtain high score of detection. The co-

registration is here realized with a precision better than half a pixel, thanks to the selection of successive

images with similar incidence angles (less than 7◦ or B/H ratio below 0.15 (Table 1)). This prevents the

histogram of the difference image from stretching out and thus allows a better definition of the detection

thresholds (A). This enables both the higher detection rate of false alarms and the better definition of

the limits of the landslides. This good detection of the landslide limits is also enhanced by the climatic

context in the area studied. Indeed the arid environment keeps the areas around the landslides unchanged

in the time interval between the two image acquisitions. Therefore the landslide limits are very clearly

marked in the difference image. On areas covered by vegetation, the method would certainly be of

lower efficiency. For these areas, the method must be modified for use with multispectral data. Indeed,

multispectral data enable the computation of Normalized Difference Vegetation Index (NDVI) images,

and changes of vegetation-cover can be detected between the two acquisitions (e.g., [22]). Therefore,

only the change detection step (Section 3.3) would differ. The process of false alarm removal would

be unchanged.

The method developed can be summarized in 5 steps: (1) orthorectification, co-registration;

(2) estimation of the method parameters on a subset of the images where a manual inventory has

been realized; (3) application to the whole images; (4) visual removal of the remaining false positives;
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(5) gathering of pixel groups belonging to the same landslide. Application of this method to other context

would thus require the estimation of various parameters described in Table 2. The sensitivity analysis

realized here (Section 4.2) shows that only 2 of them have large effects on the obtained scores (A and α).

Therefore, the step (2) can be realized by running the sensitivity analysis over a representative sample of

the total images, letting only A and α evolve. Due to its definition (Equation (5)), the range of evolution

of A does not depend on the histogram of the difference image. Values of A between 3 and 5 are good

first estimations. On the contrary, the range of evolution of α must be chosen depending on the DEM

used and the regional slope characteristics. Indeed, as pointed out in Section 4.2, a main limitation of the

method comes from the coarse resolution of the DEM, which precludes the precise computation of the

local slopes. Therefore taking a large α will remove some landslides but decrease the false alarm rate.

In this study we preferred using a smaller α to keep the score of detection the largest as possible. The

drawback of our choice impacts on the false alarm rate (50%).

The two latest steps of the method (removal of the remaining false positives and gathering of pixel

groups) have been realized manually. The false alarm removal is not a big task, as only 900 objects over

1800 must be removed, and these false alarms are easily recognized visually. This step can become

tedious when more objects are kept (for instance the Wenchuan earthquake triggered about 60,000

landslides [5]). However, checking visually the quality of the obtained inventory is a necessary step.

Concerning the merging of pixel groups, our experience on the Pisco earthquake teaches us that this step

cannot be automated. For instance Figures 6 and 9(d) show two examples of instabilities where merging

was necessary (groups of pixels of the same landslide are not connected). The three groups of pixels of

the Figure 9(d) could be merged automatically because they are all aligned and situated along the same

thalweg. However, the resolution of the DEM does not enable to detect precisely the small undulations

of the topography. On Figure 6, the merging is less obvious for several reasons: (1) a criterion of distance

must be defined to know which groups must be gathered; (2) we do not really know if all the groups of

pixels were triggered exactly at the same time, and therefore if they can be gathered or not. We thus see

that the step of merging is subjective and cannot be automated.

7. Conclusions

We developed a method for the detection of landslides in optical satellite images, with the purpose

to cover extensive areas in arid environment. This method is adapted to the following dataset: high

resolution (5 m) panchromatic SPOT5 images, coupled with coarse resolution (posting of 30 m) but

freely available DEM (GDEM). The method enables to extract both the number and the area of the

landslides. Score of detection reaches 80% of the landslides representing 93% of their area. The

detection score, evaluated over two sub-regions where a detailed inventory has been manually obtained,

is similar to that of previous studies using satellite images and DEM of better resolutions. The drawback

of the method is the resulting high level of false alarms (50%), mainly due to the low resolution of the

DEM that prevents picking the small undulations of the topography. However, these false alarms are

easily identified and removed visually.

The application of this method to eight pairs of images enables us to realize the first comprehensive

inventory of the landslides triggered by the Pisco earthquake. A total of 866 landslides larger than
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100 m2 were detected covering an area of 1.29 km2. This inventory does not encompass a band of about

10 km along the coast of Peru, where no images were available or clouds masked the coastal relief.

However, this number is far lower than predicted by generic laws [3]. The size/number relation is found

to follow a power law with slope exponent of 1.63, lower than previously found for other case studies.

The triggering by earthquakes in the coastal part of Peru seems therefore to be fairly particular, with

low level of triggering but relatively bigger landslides than in other seismic/climatic contexts worldwide.

We suggest that this low slope exponent of the power law is related to the type of the soil cover of the

study area. Another interesting characteristic of our inventory is the greater average size of landslides

oriented parallel to the earthquake rupture. We argue that this particularity highlights the main role of

the geomorphology in the propagation of landslides.

A first analysis of the obtained database in relation with the topography shows an increase of the

susceptibility of the slope to landslide with the slope gradient, and a site effect with flanks facing away

from the wave source more susceptible than other flanks directions. Future work will include analysis

of this database with the ground movements and with the geological settings, to decipher all these

particularities. Because of the simple dataset required to use the proposed methodology, the method

can be used for a large set of applications, mostly for covering wide areas, which is of particular interest

for co-seismic landslides studies.

Acknowledgments

We particularly thank the ISIS program from the French Space Agency (CNES), who permits the

acquisitions of all the SPOT5 images. We also acknowledge support from the CNES/TOSCA. The

earthquake source model has been kindly provided by Anthony Sladen. Helpful discussions with Bernard

Pirletta also benefits this study. We thank four anonymous reviewers and the scientific editor for very

useful comments and suggestions.

Conflict of Interest

The authors declare on conflict of interest.

References

1. Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Amer. Bull. 1984, 95, 406–421.

2. Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930.

3. Keefer, D.K. Investigating landslides caused by earthquakes—A historical review. Surv. Geophys.

2002, 23, 473–510.

4. Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation

of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery.

Landslides 2006, 4, 113–122.

5. Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution

pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake.

Geomorphology 2011, 133, 152–167.



Remote Sens. 2013, 5 2613

6. Sepulveda, S.A.; Murphy, W.; Jibson, R.W.; Petley, D.N. Seismically induced rock slope failures

resulting from topographic amplification of strong ground motions: The case of Pacoima Canyon,

California. Eng. Geol. 2005, 80, 336–348.

7. Sidle, R.; Ochiai, H. Landslides: Processes, prediction, and land use. Water Resour. Monogr.

2006, 18, 1–312.

8. Lin, G.W.; Chen, H.; Chen, Y.H.; Horng, M.J. Influence of typhoons and earthquakes on

rainfall-induced landslides and suspended sediments discharge. Eng. Geol. 2008, 97, 32–41.

9. Meunier, P.; Hovius, N.; Haines, J.A. Topographic site effects and the location of earthquake

induced landslides. Earth Planet. Sci. Lett. 2008, 275, 221–232.

10. Tang, C.; Zhu, J.; Qi, X.; Ding, J. Landslides induced by the Wenchuan earthquake and the

subsequent strong rainfall event: A case study in the Beichuan area of China. Eng. Geol. 2011,

122, 22–33.

11. Del Gaudio, V.; Coccia, S.; Wasowski, J.; Gallipoli, M.R.; Mucciarelli, M. Detection of directivity

in seismic site response from microtremor spectral analysis. Nat. Hazards Earth Syst. Sci. 2008,

8, 751–762.

12. Bozzano, F.; Lenti, L.; Martino, S.; Paciello, A.; Mugnozza, G.S. Self-excitation process due to

local seismic amplification responsible for the reactivation of the Salcito landslide (Italy) on 31

October 2002. J. Geophys. Res. 2008, doi: 10.1029/2007JB005309.

13. Rodriguez, C.; Bommer, J.; Chandler, R. Earthquake-induced landslides: 1980–1997. Soil Dyn.

Earthq. Eng. 1999, 18, 325–346.

14. Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide

inventory maps. Geomorphology 2008, 94, 268–289.

15. Hervas, J.; Barredo, J.I.; Rosin, P.L.; Pasuto, A.; Mantovani, F.; Silvano, S. Monitoring landslides

from optical remotely sensed imagery: The case history of Tessina landslide, Italy. Geomorphology

2003, 54, 63–75.

16. Barlow, J.; Franklin, S.; Martin, Y. High spatial resolution satellite imagery, DEM derivatives,

and image segmentation for the detection of mass wasting processes. Photogramm. Eng. Remote

Sensing 2006, 72, 687–692.

17. Lee, S.; Lee, M.J. Detecting landslide location using KOMPSAT 1 and its application to

landslide-susceptibility mapping at the Gangneung area, Korea. Adv. Space Res. 2006,

38, 2261–2271.

18. Borghuis, A.M.; Chang, K.; Lee, H.Y. Comparison between automated and manual mapping of

typhoon-triggered landslides from SPOT-5 imagery. Int. J. Remote Sens. 2007, 28, 1843–1856.

19. Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial

and morphometric properties of landslides for semi-automatic detection using object-oriented

methods. Geomorphology 2010, 116, 24–36.

20. Mondini, A.; Guzzetti, F.; Reichenbach, P.; Rossi, M.; Cardinali, M.; Ardizzone, F. Semi-automatic

recognition and mapping of rainfall induced shallow landslides using optical satellite images.

Remote Sens. Environ. 2011, 115, 1743–1757.

21. Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-oriented change detection for landslide rapid

mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 701–705.



Remote Sens. 2013, 5 2614

22. Martha, T.R.; Kerle, N.; van Westen, C.J.; Jetten, V.; Kumar, K.V. Segment optimization and

data-driven thresholding for knowledge-based landslide detection by object-based image analysis.

IEEE Trans. Geosci. Remote Sens. 2011, 49, 4928–4943.

23. Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using random forests. Remote Sens.

Environ. 2011, 115, 2564–2577.

24. Holbling, D.; Fureder, P.; Antolini, F.; Cigna, F.; Casagli, N.; Lang, S. A semi-automated

object-based approach for landslide detection validated by persistent scatterer interferometry

measures and landslide inventories. Remote Sens. 2012, 4, 1310–1336.

25. Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide

inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66.

26. McKean, J.; Roering, J. Objective landslide detection and surface morphology mapping using

high-resolution airborne laser altimetry. Geomorphology 2004, 57, 331–351.

27. Czuchlewski, K.R.; Weissel, J.K.; Kim, Y. Polarimetric synthetic aperture radar study of the

Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. J. Geophys. Res. 2003,

doi: 200310.1029/2003JF000037.

28. Yonezawa, C.; Watanabe, M.; Saito, G. Polarimetric decomposition analysis of ALOS PALSAR

observation data before and after a landslide event. Remote Sens. 2012, 4, 2314–2328.

29. Delacourt, C.; Allemand, P.; Berthier, E.; Raucoules, D.; Casson, B.; Grandjean, P.; Pambrun, C.;

Varel, E. Remote-sensing techniques for analysing landslide kinematics: A review. Bull. Soc.

Geol. France 2007, 178, 89–100.

30. Riedel, B.; Walther, A. InSAR processing for the recognition of landslides. Adv. Geosci. 2008,

14, 189–194.

31. Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their

statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711.

32. Tatard, L.; Grasso, J.R.; Helmstetter, A.; Garambois, S. Characterization and comparison

of landslide triggering in different tectonic and climatic settings. J. Geophys. Res. 2010,

doi: 201010.1029/2009JF001624.

33. Rosin, P.L.; Hervas, J. Remote sensing image thresholding methods for determining landslide

activity. Int. J. Remote Sens. 2005, 26, 1075–1092.

34. Martha, T.R.; Kerle, N.; van Westen, C.J.; Jetten, V.; Vinod Kumar, K. Object-oriented analysis

of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J.

Photogramm. 2012, 67, 105–119.

35. Nichol, J.; Wong, M.S. Satellite remote sensing for detailed landslide inventories using change

detection and image fusion. Int. J. Remote Sens. 2005, 26, 1913–1926.

36. Zavala, B.; Hermanns, R.; Valderrama, P.; Costa, C.; Rosado, M. Procesos geologicos e intensidad

macrosismica Inqua del sismo de Pisco del 15/08/2007, Peru. Revista de la Asociacion Geologica

Argentina 2009, 65, 760–779.

37. Sladen, A.; Tavera, H.; Simons, M.; Avouac, J.P.; Konca, A.O.; Perfettini, H.; Audin, L.;

Fielding, E.J.; Ortega, F.; Cavagnoud, R. Source model of the 2007 Mw 8.0 Pisco, Peru earthquake:

Implications for seismogenic behavior of subduction megathrusts. J. Geophys. Res. 2010,

doi: 201010.1029/2009JB006429.



Remote Sens. 2013, 5 2615

38. Tavera.; Bernal, I. The pisco (Peru) earthquake of 15 August 2007. Seismol. Res. Lett. 2008,

79, 510–515.

39. Tavera, H.; Bernal, I.; Strasser, F.O.; Arango-Gaviria, M.C.; Alarcon, J.E.; Bommer, J.J. Ground

motions observed during the 15 August 2007 Pisco, Peru, earthquake. Bull. Earthq. Eng. 2009,

7, 71–111.

40. Berthier, E.; Vadon, H.; Baratoux, D.; Arnaud, Y.; Vincent, C.; Feigl, K.; Remy, F.; Legresy, B.

Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens. Environ.

2005, 95, 14–28.

41. Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectification,

coregistration, and subpixel correlation of satellite images, application to ground deformation

measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1557.

42. ASTER GDEM Validation Team. ASTER Global DEM Validation, Summary Report; Technical

Report; ASTER GDEM Validation Team (METI/ERSDAC, NASA/LPDAAC, USGS/EROS);

2009.

43. Singh, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens.

1989, 10, 989–1003.

44. Im, J.; Jensen, J.R.; Tullis, J.A. Object-based change detection using correlation image analysis

and image segmentation. Int. J. Remote Sens. 2008, 29, 399–423.

45. Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nat.

Geosci. 2010, 4, 247–251.

46. Zhang, Q.; Wang, J.; Peng, X.; Gong, P.; Shi, P. Urban built-up land change detection with road

density and spectral information from multi-temporal Landsat TM data. Int. J. Remote Sens. 2002,

23, 3057–3078.

47. Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X:

A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens.

2007, 45, 3317–3341.

48. Dorbath, L.; Cisternas, A.; Dorbath, C. Assessment of the size of large and great historical

earthquakes in Peru. Bull. Seismol. Soc. Amer. 1990, 80, 551–576.

49. Stark, C.P.; Hovius, N. The characterization of landslide size distributions. Geophys. Res. Lett.

2001, 28, 1091–1094.

50. Plafker, G.; Ericksen, G.E.; Concha, J.F. Geological aspects of the May 31, 1970, Peru earthquake.

Bull. Seismol. Soc. Amer. 1971, 61, 543–578.

51. Kampherm, T.S. Landslides Triggered by the 1946 Ancash Earthquake (Peru) and Geologic

Controls on the Mechanisms of Initial Rock Slope Failure. M.Sc. Thesis, University Waterloo,

Waterloo, ON, Canada, 2009.

52. Parise, M.; Jibson, R.W. A seismic landslide susceptibility rating of geologic units based on

analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California

earthquake. Eng. Geol. 2000, 58, 251–270.

53. Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.L.; Willett, S.D.; Hu, J.C.; Horng, M.J.;

Chen, M.C.; Stark, C.P.; et al. Links between erosion, runoff variability and seismicity in the

Taiwan orogen. Nature 2003, 426, 648–651.



Remote Sens. 2013, 5 2616

54. Qi, S.; Xu, Q.; Lan, H.; Zhang, B.; Liu, J. Spatial distribution analysis of landslides triggered by

2008.5.12 Wenchuan Earthquake, China. Eng. Geol. 2010, 116, 95–108.

55. Kanda, R.V.; Simons, M. Practical implications of the geometrical sensitivity of elastic dislocation

models for field geologic surveys. Tectonophysics 2012, 560-561, 94–104.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Data
	Study Area
	Satellite Images

	Methodology
	Orthorectification
	Clouds Detection
	Change Detection
	False Alarms Removal
	Objects Definition
	Change Detection at Large Scales
	River Bed Variation
	Road Detection


	Validation
	Comparison with the Field Inventory
	Sensitivity Analysis

	Application: Landslides Triggered by the Pisco Earthquake
	Inventory Validation
	Characteristics of the Landslide Inventory
	Topographical Properties of the Landslides

	Discussion on the Method
	Conclusions
	Acknowledgments
	Conflict of Interest

