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Abstract

The construction of unitary operator bases in a finite-disimmal Hilbert space is re-
viewed through a nonstandard approach combinining angudanentum theory and rep-
resentation theory ofU(2). A single formula for the bases is obtained from a polar
decomposition o6U (2) and analysed in terms of cyclic groups, quadratic Fourgrsy
forms, Hadamard matrices and generalized Gauss sums. \Aleg| generalized Pauli
operators and their application to the unitary group and?dugi group naturally arise in
this approach.
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1 Introduction

Angular momentum theory]|[1] and its group-theoretical fotation in terms of the Wigner-
Racah algebra of SU(Z)[B], B, 4] (see aldo [5] for an extensi@Tinite or compact group)
are of central importance in subatomic, atomic, molecuta@r@ndensed matter physics.
The components of any angular momentum (spin, isopin, arbhitgular momentum,
etc.) generate the Lie algebra of the grdiip(2). Therefore,SU(2) and its noncompact
extensionSU(1, 1) are basic ingredients for dealing with generalized angulamenta.
Chains of groups ending witRO(3) ~ SU(2)/Zs(+) or SO(3) c SO(2) are of in-
terest in subatomic and atomic physics. In this directiamle oan mention the group
SU3) ® SU(2) ® U(1) (related to the chait/(3) C SU(2) ® U(1) C U(1)) and its
grand unified and/or supersymmetric extensions for desgriélementary particles and
their (strong and electroweak) interactiofis [6]. Furthemn one know the relevance in
atomic physics of the chaiti(7) C SO(7) C G, C SO(3) C SO(2) for the electronic
spectroscopy of "V ions [3]. On the other side, chains ending with'(2) c G, where
G is a finite group (or a chain involving finite groups), provedoe of considerable in-
terest in molecular and condensed matter spectros¢bply[@T., Becently, chains of type
SU(2) € G were also used in attempts to understand the flavor struofugearks and
leptons [IP]. The groupSU(2) andSU(1, 1), as well as theiy- or gp-deformations in
the sense of Hopf algebras (see for instahde[[11, 12], tlysagbivotal role in many areas
of physical sciences.

The representation theory 61/(2) is generally adressed in two different ways. The
standard one amounts to diagonalise the completgjégt. } involving the Casimir oper-
ator ;2 and one generatgr of SU(2). Another way is to consider a sgf?, v}, wherev
is an operator defined in the enveloping algebrd@f2) and invariant under a subgroup
of SU(2). A third way (not very well-known) consists in diagonaligia complete set
{52, v:4}, Wherev,, stands for a two-parameter operator which commutes yitnd is
a pseudoinvariant under a cyclic grodip][13].

It is the aim of this review paper to show that the third apphot the representation
theory of SU(2) opens a window on the apparently disconnected subjectsexated in
the title.

The plan of the paper is as follows. The minimal requireméorta { ;2, v,, } approach
to SU(2) (i.e., a nonstandard approach to angular momentum thexrgjivzen in Section
2 and in two appendices. Section 3 deals with quadratic summelation with quadratic
discrete Fourier transforms, generalized Hadamard neatrgeneralized quadratic Gauss
sums and mutually unbiased bases) and Section 4 is devoteutéoy groups and Pauli
groups.



The present paper is dedicated to the memory of the late $dmféurii Fedorovich
Smirnov who contributed to many domains of mathematicabpisy(e.g., Lie groups and
Lie algebras, quantum groups, special functions) and étieat physics (e.g., nuclear,
atomic and molecular physics, crystal- and ligand-fielatiie

A few words about some of the notations is in order. The baicatds complex
conjugation. The symbal, , stands for the Kronecker symbol efandb. We usel and
1, to denote the identity operator and tielimensional unity matrix, respectively. The
operatorA' stands for the adjoint of the operatdr We note a§A, B]_ and [A, B],
the commutator and the anticommutator of the operatioasid B, respectively. We use
the Dirac notation) for a vector in an Hilbert space; furthermorg|y) and|¢)(¢|
are respectively the inner product and the outer produdtef/ectordy) and|¢). The
symbols® and& stand respectively for the addition and subtraction moduldhile ®
andw are used respectively for the direct product of vectors @rajors and the direct
sum of vector spaces. The matrices of typg, with the matrix elements

(E)\“u))\,#, = (5)\’)\/(5“7“/ (1)
stand for generators of the Lie grodfi.(d, C). Fora andb coprime, we take
+1if a = k? mod(b)
a
Q):z @
L —1sia # k? mod(b)
to denote the Legendre symbol@findb (equal to 1 ifa is a quadratic residu modulo

and—1if a is not a quadratic residu modukp In addition, the integer inverse\b) of a
with respect ta is given by

a(a\b) = 1 mod(b). (3)

Finally, theq-deformed numbejn|, and theg-deformed factorialn] !, with n € N, are
defined by

[l = T @
and
ml =012, ), 0], =1 (5)

whereq is taken is this paper as a primitive root of unity.



2 A nonstandard approach to su(2)

In some previous workg TIL3], we developed a nonstandardoapprto the Lie algebra
su(2) and studied the corresponding Wigner-Racah algebra of itvgpgsU (2). This
nonstandard approach is based on a polar decompositien(2f, based in turn on a
troncated oscillator algebra (see Appendices A and B)eltiginonstandard bases for the
irreducible representations 8t/(2) and new Clebsch-Gordan coefficients for the angular
momentum theory. Basically, the approach amounts to repteeset 52, ;. }, familiar in
guantum mechanics, by a e, v, } (2 andj. are the Casimir operator and the Cartan
generator oku(2), respectively).

The operator,, acts on thg2;j + 1)-dimensional subspa¢&2; + 1), associated with
the angular momentur of the representation space$f (2). We define it here by

j—1

Vra = €25, =) G gl 4+ D qUTM G m+ 1) (G, ml (6)
m=—j
where
21 .

q == exp 2] 1 2] eN relR a € Z2j+1 (7)
and, for fixedj, the vectordj, m) (with m = j,7 — 1,...,—j) satisfy the eigenvalue
equations

Flim) =3+ Dlg,m)  galj,m) = mlj,m) (8)

familiar in angular momentum theory. The vectdjisn) span the Hilbert spacg(2; +
1) ~ C¥*! and are taken in an orthonormalized form with

<j7m|j7 m/> = 6m,m’- (9)
Obviously, the operator,, is unitary and commutes witf¥. The spectrum of the set
{52 v, } is described by
Result 1. For fixedj, » anda, the2; + 1 vectors

J

1 ) ) ) )
o ra) = S UG i G ) (10)
—J

V21

m=

witha = 0,1, ..., 24, are common eigenvectors®@f, and ;2. The eigenvalues ef, and
4% are given by

Vpalje;ra) = @t

jasra)  Pljara) = §(j + 1)|jasra) a=0,1,...,2j. (11)
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The spectrum af,, is nondegenerate.

The set{|ja;ra) : a« = 0,1,...,2j} constitutes another orthonormal basis, besides
the basig|j,m) :m =74, —1,...,—j}, of £(2j 4+ 1) in view of

(jairaljBsra) = dap. (12)

Note that the value ofj«;raljs3; sb) is much more involved for # s anda # b and
needs the calculation of Gauss sums as we shall see below.

The Wigner-Racah algebra 617(2) can be developed in thg?, v,,} scheme. This
leads to Clebsch-Gordan coefficients and (3., symbols with properties very differ-
ent from the ones of the usué@ly/(2) C U(1) Clebsch-Gordan coefficients and 3=
symbols corresponding to tHg?, j.} scheme[[13].

The nonstandard approach to angular momentum theory bsiefiynarized above is
especially useful in quantum chemistry for problems inirgdvcyclic symmetry. This is
the case for a ring-shape molecule wXh+ 1 atoms at the vertices of a regular poly-
gon with2;j + 1 sides or for a one-dimensional chainyf+ 1 spins ¢-spin each)[[14].
In this connection, we observe that the vectors of tyjoe ra) are specific symmetry-
adapted vectorg [15, [16]. Symmetry-adapted vectors arelyvigsed in quantum chem-
istry, molecular physics and condensed matter physicsrasdtance in rotational spec-
troscopy of moleculeq]17] and ligand-field theofy][18]. Hewer, the vector$jo; ra)
differ from the symmetry-adapted vectors considered isRgB [2P[211[ F2] in the sense
thatv,, is not an invariant under some finite subgroup (of crysta#pgic interest) of the
orthogonal groug(3). Indeedv,, is a pseudoinvarianf[P3] under the Wigner operator
Pr(, associated with the rotatiai(y), around the quantization axisz, with the angle

2T
= =0.1,...,29 13
sop2j+1 p=0,1,...,2j (13)
since
Prig)vra Pl = € Fra. (14)

More precisely, we have

Result 2. The operatomw,, transforms according to an irreducible representation lod t
cyclic subgroupCy;11 ~ Zsj41(+) of the special orthogonal groufO(3). In terms of
vectors, one has

Prigljoira) = ¢"|jBira)  Bi=ap (15)

so that the sef|ja;ra) : « = 0,1,...,25} is stable undePp.). The latter set spans the
regular representation af’y; ;.



3 Variationson quadratic sums

3.1 Quadratic discrete Fourier transform

We leave the domain of angular momentum theory and adopotloeving notations
d:=2j+1 k:=j—m |k) :== |7, m). (16)

These notations are particularly adapted to quantum irdtion and quantum computa-
tion. In these new notations, we have

Ura = €T = 1)(0] + D gk — 1) (K]. (17)

From now on, we assume that> 2 andr = 0 (the casel = 1 andr # 0, although of
interest in the theory of angular momentum, is not esseliotiahat follows). In addition,
we put

lac) = |ja; 0a) (18)

with a anda in the ringZ, := Z/dZ. Then, Eq. [(q]1) gives

Vog|acy) = q(d_l)“/2_°‘\aoz) (19)
with
d—
‘CLO[ TZ (k+1)(d—k—1)a/2—(k+1) a‘k). (20)
k=0

Equation [[Z0) can be rewritten as

d—1
lac) = > (Fo)ya k) (21)
k=0
where
1 —k—1)a/2— o
(Fa)ka — ﬁq(k—i-l)(d k—1)a/2—(k+1) (22)

is theka-th matrix element of @ x d matrix F,, (the matrixF;, can be seen as the matrix
associated with the character table of the cyclic gréyppre- and post-multiplied by
diagonal matrices).



Equations[(41){(32) define a quadratic quantum Fouriesfcam. The matrixF, is
unitary so that[(41) can be inverted to give

QL

-1

k) = ) (Fa)palacy) (23)
a=0
or
1 d—1
_ —(k+1)(d—k—1)a/2+(k+1)a
= — Z q lac). (24)
\/a a=0

In the special case = 0, we have

d—1
27 1 2L

0y = ¢~ IZ e Tk o |k) = e @ D), (25)

=0

Q.

Q

Consequently, the quadratic quantum Fourier transformaeslto the ordinary quantum
Fourier transform (up to a phase factor). The corresponuliatyix F|, satisfies

Fy =qly (26)

to be compared to the well-known relatidit = I, for the standard quantum Fourier
transform [24].

At this stage, we forsee that+ 1 (orthonormal) bases of the spa€éd) play an
important role in the present paper: (i) the basis

By =A{lj,m): m=34,7—1,....,—j} & Bg:={lk) : k=0,1,...,d — 1} (27)

associated with thé;2, j.} scheme, known as the spherical or canonical basis in the
theory of angular momentum, and as the computational bagigantum information and
guantum computation and (ii) thebases

B, :={laa) :a=0,1,...,d -1} a=0,1,...,d—1 (28)

(notedB,y, in Ref. [25]) associated with thgj?, vy, } scheme.
To close this subsection, let us show how the preceding dprednts can be used for
defining a quadratic discrete Fourier transform. We starhfthe formal transformation

x:={x(k)eC:k=0,1,...,d—1} - y:={y(a) eC:a=0,1,...,d— 1} (29)
defined via

(k+1)(d—k—T)a/2— (k4 e 1) (30)



wherea can take any of the valuésl, ..., d — 1. Alternatively, for fixeda we have

U

yla) = (Fa) gy T (k) a=01,...,d—1. (31)
0

e
i

The inverse transformation— x is described by

d—1

z(k) =

(]

(Fo)pa () kE=0,1,...,d— 1. (32)

a=0
The bijective transformation < y can be thought of as a quadratic discrete Fourier
transform. The case = 0 corresponds to the ordinary discrete Fourier transfornmdugp
phase factor). These matters lead to the following resuithvbeneralizes the Parseval-
Plancherel theorem for the ordinary discrete Fourier frans

Result 3. The quadratic discrete Fourier transforms— y andx’ < 3’ associated withe
same matrix matrix;,, a € Z,4, satisfy the conservation rule

U

-1

U

-1

yla)y'(a) = ) z(k)a'(k) (33)

Q
Il
)
=
Il

where the common value is independent.of

3.2 Generalized Hadamard matrices

The modulus of each matrix element Bf (with a € Zj,) is equal tol /v/d. Therefore,
the unitary matrixF, turns out to be a generalized Hadamard matrix. We adopt here t
following definition. Ad x d generalized Hadamard matrix is a unitary matrix whose
each entry has a modulus equalltb/d [Pg]. Note that the latter normalization, used
in quantum information[J27, 28], differs from the usual oree@rding to which al x d
generalized Hadamard matix is a complex matrix such thaf' H = dI,; and for which
the modulus of each element is[I][29]. In this respect, thegdized Hadamard matrix
H, considered in[[J4] corresponds {GiF, up to permutations.

Example 1. By way of illustration, from [2R) we get the familiar Hadardanatrices

1 /1 -1 1 T —1
pel 7)) menl ) .
ford =2 and
1 1 w? w 1 w 1 w? 1 wow 1
Fp=—711 w V| FF=—"—7|w w 1 | FKR=—1|w 1 w]| (35
V3 1 1 1 V3 1 1 1 V3 1 1 1



(with w := ¢27/3) for d = 3. Another example is

1 T 2 -1 —7 -7
™ - 1 7 -7
-1 1 -1 1 —1

1

1

1 -7 72 1 -7 72 (36)
1

1

Sl

-2 -7 -1 2 7
1 1 1 1 1

(with 7 := e~""/3) which readily follows from [2R) forl = 6 anda = 0.
We sum up and complete this section with the following re@ée also[[14, 30]).

Result 4. The matrix

d—1 d—-1
7 Z Z q (k+1)(d—k—1)a/2—(k+1)c Ek@ (37)
k=0 a=0

associated with the quadratic quantum Fourier transfofr)(& a d x d generalized
Hadamard matrix. It reduces the endomorphism associatéutive operatomny,,:

1 0 ... 0
— 0 ¢! 0
FJ‘/OaFa o q(d 1)a/2 Z q erl (d 1)a/2 . ' e ' (38)
" 0 0 .. gl
where the matrix
0 ¢ 0 0
d—1 0 0 gqg* ... 0
=Y Eerr=|: 1 (39)
k=0 0 0 0 .. gl4he
1 0 0o ... 0

represents the linear operatoy, on the basig3,.

3.3 Generalized quadratic Gauss sums

The Hadamard matricds, andF;, (a, b € Z,) are connected to the inner produety|b).
In fact, we have

(aalbB) = (FIF),,- (40)

A direct calculation yields

U

—1
§HaR) (b=a) 2=k (5-a) (41)

0

Ul

{aa|bf) =

e
Il



or

U

-1
oim{(a=b)k? +[d(b—a)+2(a—B)]k}/d (42)

Ul

{aalbB) =

e
Il

0

Hence, each matrix element &f F;, can be put in the form of a generalized quadratic
Gauss sun$(u, v, w) defined by [31]

S(U, v,w) — Z 6i7r(uk2+vk)/w (43)

whereu, v andw are integers such thatandw are mutually primeyw # 0 anduw + v
is even. In detail, we obtain

(ac|bB) = (Fij)aﬁ = 2S(u,v,w) (44)
with the parameters
u=a-—=>b v=—(a—bd+2(a—-p) w=d (45)

which ensure thatw + v is necessarily even.
In the particular casé = 2 (of special interest for qubits), we directly get

(act|bf) = % [1 4 eim(bmat2a=26)/2] (46)
which reduces to
(ac]aB) = b0  b=aq, (47)
and
faalb) = (1) b#a (48)

where thet sign corresponds tb — a + 2(a — 3) = 1, —3 and the— sign tob — a +
2(a— B) = —1,3.

In the general caséarbitrary (of interest for qudits), the calculation®fu, v, w) can
be achieved by using the methods describe@1h [31] (see BBEB,[34#[3p]). The cases
of interest for what follows are/even,v even,w odd), (. odd,v odd,w odd) and { odd,

v even,w even). This leads to

Result 5. For a # b, d arbitrary andu + v + w odd, the inner productaa|b3) and the
af3-th element of the matrik| 7, follow from

10



caseu =a —beveny =d(b—a) + 2(a — ) evenw = d odd

(aalvt) = (FLE),, =1 (1) e (5l 14 o)) @)

caseu = a —bodd,v = d(b— a) + 2(a — 3) odd,w = d odd

(ac|bB) = (Fij)aﬁ _ /2 (u )Lexp (—i%[w -1+ 16%(4u\w)2v2]> (50)

w \w

caseu = a —bodd,v =d(b—a) + 2(a — 3) evenw = d even

(aaltd) = (FIR),, = l(“’)Lexp (<t pardl) 6y

w u

so that the matrix~| F} is a Hadamard matrix for each case under consideration.
Finally, fora = b andd arbitrary we recover the orthonormality property (de¢ X12)
(acarlaf) = o p (52)

from a direct calculation of the right-hand side pf](42).

3.4 Mutually unbiased bases

Speaking generally, twd-dimensional baseB, = {|aa) : a € Zy} and B, = {|bf) :
0 € Zy} are said to be mutually unbiased if and only if

(aalb)] = bupbus + (1 — 5%,,)% (53)

for any«a and 3 in the ringZ,. It is well-known that the number of mutually unbiased
bases (MUBS) in the Hilbert spa¢& cannot be greater thah+ 1 [B8, 37.[3B[3P]. In
fact, the maximum numbef + 1 is attained wheni is the power of a prime number
[B, [39]. Despite a considerable amount of works, the marinmumber of MUBSs is
unknown whend is not a power of a prime. In this respect, several numeritaliss
strongly suggest that there are only three MUBsdot 6 (see for exampld 27, 28,140,
B1,[42]). MUBs are closely connected with the concept of demgentarity in quantum
mechanics. There are of paramount importance in classifahnation theory (Kerdock
codes and network communication protocols) [B9, 43], innquia information theory
(quantum cryptography and quantum state tomogragdhy) [dd]im the solution of the

Mean King problem[[45}_ 46, 47, ¥8,14B,]50]. Recently, it wasfed out and confirmed

11



that MUBs are also of central importance in the formalism efiiman path integrals
[PT,[52]. Finally, it should be emphasized that the concéMdBs also exists in infinite
dimension[[5B]. There are numerous ways of constructing aeMUBs. Most of them
are based on discrete Fourier analysis over Galois field&afals rings, discrete Wigner
functions, generalized Pauli matrices, mutually orth@dmtin squares, finite geometry

methods and Lie-like approaches (see Reffs] [T4[ 29, 21, RBB[3V [38[ 39} 47, B1,
B3, [43,[48 [45[ 460 41, 18, 140.150,194] $5] 56, BT, [58,[5P,[B0FB1ES, [6#] for an

nonexhaustive list of references).

34.1 Casedprime

We have the following important result. (See algg [64] foreaemt alternative group-
theoretical approach to the casprime.)

Result 6. In the case wheré = p is a prime number (even or odd), one has

1
aalbB :‘F;'F —— a#b 54
aalbd)] = |(FIF) 5| = =5 a# (54)
fora,b, o, B € Z,. Therefore, the + 1 basesB,, By, . . ., B, constitute a complete set of

MUBSs inCP.

The proof easily follows from the calculation of the modubfsS(a — b, pb — pa +
2a — 203, p) from @48), (49), (5P) and[(B1). As a consequence, the b&sesvith a =
0,1,...,p— 1, arep MUBSs in the sense that they satisfy](53) for any, o and3 in the
Galois fieldF,. Obviously, each of the basés, (witha = 0,1,...,p — 1) is mutually
unbiased with the computational bagis. This completes the proof. Note that Result 6
can be proved as well from the developmentg i [14].

As two typical examples, let us examine the cases2 and 3.

Example 2: cased = 2. In this case, relevant for a spjn= 1/2 or for a qubit, we have
g = —1 anda, « € Z,. The matrices of the operatorg, are

0 1 0 —1
= (1 o) =(] 3) (55)
By using the notation

o= |§7 _> Bi= |_7__> (56)

12



familiar in quantum chemistrya(is a spinorbital for spin up and for spin down), the
d+1=3MUBsare

1
By [00) = 7 (a+p)  [01) = 7 (= 0) (57)
1 , 1
By : |10) = Zﬁ (v —if) |11) = ﬁ (a+1if) (58)
By : |0) =« 1) = 5. (59)

Example 3: cased = 3. This case corresponds to a spir= 1 or to a qutrit. Here, we
haveq = exp(i27/3) anda, o € Z3. The matrices of the operatorg, are

0 1 0 0 g O 0 ¢2 0
Voo=10 0 1 Voo=[0 0 ¢ Vo=10 0 q|. (60)
1 0 0 1 0 O 1 0 O

Thed + 1 = 4 MUBs read

By:  |00) = 7<|0>+\1>+|2>>

01) = % (10) + ql1) + [2))

02) = % (al0) + ¢*11) + 12) (61)
B.:  [10) = %<q\0>+qu>+|2>>

11) = 7(|o>+q|1>+|z>)

12) = % (¢210) + 1) + [2)) (62)
By:  |20) = % (10) + /1) +]2))

21) = %<q\o>+|1>+\2>>

22) = 7<|o>+q|1>+|2>> (63)
By |o)=[L1) [)=|L0) [2)=L-1) (64)

It should be observed th&t, (respectivelyB; andB;) can be associated with tiector
(respectivelyprojective irreducible representations of the grotip.

13



3.4.2 Cased power of aprime

Different constructions of MUBSs in the case wheres a power of a prime were achieved
by numerous authors from algebraical and geometrical tqaks (see for instancg ]38,

B9.[54.[5p[ 96, 37, $8. b9, 60,41 62Z] 63] and referencesithelle want to show here,

through an example faf = 4, how our angular momentum approach can be useful for
addressing this case.

Example 4: cased = 4. This case corresponds to a spis= 3/2. Here, we have = i
anda,a € Z4. Equations[(J0) and (R8) can be applied to this case too. Kewthe
resulting based3,, B;, B2, B3 and B, do not constitute a complete system of MUBs
(d = 4 is not a prime number). Nevertheless, it is possible to find1 = 5 MUBs
becausel = 22 is the power of a prime number. This can be achieved by repiatie
spacef(4) spanned by{|3/2,m) : m = 3/2,1/2,—1/2,—3/2} by the tensor product
spacef(2) ® £(2) spanned by the basis

{a®a,a®B,8®a,8® 3} (65)

The spacef(2) @ £(2) is associated with the coupling of two spin angular momenta
J1 = 1/2 andj, = 1/2 or two qubits (in the vector ® v, v andv correspond tg; and
Jj2, respectively).

In addition to the basig ($5), it is possible to find other lsasfe (2) @ £(2) which are
mutually unbiased. Thé = 4 MUBs besides the canonical or computational bdsis (65)
can be constructed from the eigenvectors

laba3) = |aa) © [b3) (66)
of the operators
Wap = Voa @ Vob (67)

(the vectorsaa) and|bp) refer to the two spaced(2)). As aresult, we have the+1 =5
following MUBs where\ = (1 —¢)/2 andp = i),
The canonical basis:

a® a® 0 ® g ® 0. (68)

Thewy, basis:

10000) = %(a®a+a®ﬁ+ﬁ®a+ﬁ®ﬁ) (69)

14



10001) = ;a®a—a®ﬂ+ﬂ®a—ﬂ®ﬂ) (70)

0010) = %(a®a+a®ﬁ—ﬁ®a—ﬁ®ﬁ) (71)
0011) — ;a®a—a®ﬁ—ﬂ®a+ﬁ®m. (72)

Thew, basis:
1100) = S(@®atia®p+ifea—Fe0) (73)
11101) = ;a®a—M®ﬁ+w®a+ﬁ®m (74)
1110) = ;a®a+m®ﬁ—w®a+ﬁ®m (75)
1111y = ;a®a—M®ﬁ—w®a—ﬁ®m. (76)

Theuwy; basis:
A[0100) + |0111) = ;a®a+a®ﬁ—w®a+w®ﬁ) (77)
pl0100) + X011 = (0®a-af+ifeatifes) (78)
NOL0L) +4f0110) = (a@a—a®f-ifEa—ifes) (79)
§]0101) + A[0110) = ;a®a+a®ﬁ+w®a—w®ﬁ) (80)

Thewy, basis:
AL000) + u[1011) = ;a®a—m®ﬁ+ﬁ®a+w®ﬁ) (81)
pl1000) + A[1011) = (a@atia®f-FEatifes) (82)
AL001) + 2[1010) = ;a®a+M®ﬁ+ﬁ®a—w®ﬁ) (83)
p1001) 4+ A1010) = (a®a—ia®f-Fea—iBeh). (84

It is to be noted that the vectors of thg, andw,; bases are not intricated (i.e., each
vector is the direct product of two vectors) while the vestofthew,; andw;, bases are
intricated (i.e., each vector is not the direct product ab tvectors). To be more precise,
the degree of intrication of the state vectors for the basgsw,, wo; andw;o can be
determined in the following way. In arbitrary dimensiénet

QL

-1

U
Ju

|©)

ap|k) @ 1) (85)

e
Il
o
Il
o
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be a double qudit state vector. Then, it can be shown thatdtesrdinant of thel x d
matrix A = (ay,) satisfies

1
0<|detA|l < — 86
<| | < i (86)
as proved in the Albouy thesig ]6p,]66]. The cdse A = 0 corresponds to the absence
of intrication while the case

1
det A| = — (87)
T
corresponds to a maximal intrication. As an illustratior, @btain that all the state vec-
tors for wyy andw;; are not intricated and that all the state vectorsugy andw,, are

maximally intricated.

34.3 Casedarbitrary

In the special case whete= 1, the generalized Gauss sul, —d + 2« — 23, d) can
be easily calculated fat arbitrary by means of the reciprocity theorem|[31]

S(u,v,w) = ‘ﬂ

6@'7r[sgn(uw)—112/(U“’)V45(—u;7 -, u) (88)
U

This leads to the following particular result.

Result 7. For d arbitrary andb = a © 1, one has

1 . 1
(acla_yB) = —=e =200 = Yaala_1 B)| = — a1 =aO 1. (89)

Vi Vi

Therefore, the three basés;, B, and B, are mutually unbiased i€.

This result is in agreement with a well-known result provedmany papers from
quite distinct ways (see for instande][41]). We thus recofvem an approach based on
generalized Gauss sums, that daarbitrary the minimum number of MUBs is 3.

Another special case, vizi,= 2 (= d > 3), is worth of value. The application of the
reciprocity theorem gives here

Result 8. Ford > 3 andb = a © 2, one has

(a0fa_sf) = —temli=2a-BPd/ay | cin(-d+2a-20)/2)

V2
= |(aala_sB)| = \/g ’cos E(d ~2a+ 25)} ’ a4y = a6 2.(90)
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Therefore, the baseB,-, and B, cannot be mutually unbiased ii for d even with
d > 4. In marked contrast, the basés -, and B,, are unbiased for/ odd withd > 3 (d
prime or not prime).

Going back to the Hadamard matrices, let us remark that/ fmbitrary, if B, and
B, are two MUBs associated with the Hadamard matrigeand F;, (respectively), then
FIF, is a Hadamard matrix too. However, féarbitrary, if I, and F;, are two Hadamard
matrices associated with the basgésand B, (respectively), the produdt] F; is not in
general a Hadamard matrix.

4 Unitary group and generalized Pauli group
4.1 Weyl pairs

We continue with the general case whérie arbitrary. The operatar, can be expressed
as

d—1 i
voe = "k © 1) (k] € voa = Y ¢ i, m @ 1)(j,m]| (91)
k=0 m=—j
so that
voalk) = ¢k © 1) & vga|d, m) = ¢V j,m & 1) (92)

whereq = exp(27i/d). The operators: (the flip or shift operator) and (the clock
operator), used in quantum information and quantum contiputésee for instancé [p7,
B8]), can be derived from the generic operatgras follows

T = Vpo Z = (Uoo)T Vo1 - (93)
Therefore, we get
d—1
r = ko 1)(k| = |d—1){0] 4+ |0){(1]|+ ...+ |d—2){d — 1] (94)
k=0
and
d—1
2= q" kYK = [0)(0] + g[1) (1] + ... + ¢ Md — 1)(d — 1. (95)
k=0

The action ofr andz on the basis3, of £(d) is given by the ladder relation
zlk) = [k ©1) & xljm) = (1= dn;) [7,m + 1) + dn 1), —J) (96)
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and the phase relation
2|k) = ¢"lk) & z|j,m) = ¢~"|j,m). (97)
Alternatively, the action of andz on any basi3, (a« = 0,1,...,d — 1) of £(d) reads
zlaa) = ¢4 gq,) a,=ada = z|0a) = ¢~ *|0cx) (98)
and
zlaa) = ¢ Haa_1) a_;=aol. (99)

Equations[(96) and (P7), on one side, and Egs. (98) [and (B9heoother side, show that
the flip or clock character for andz is basis-dependent. The relationship betweand
z can be understood via the following

Result 9. The unitary operators andz are cyclic andg-commute:
d=24=1 xz —qzx = 0. (100)
They are connected by
r=fl2f &z = foft (101)

where the Fourier operator

1 d—1 d—1
f=— M |k) (K| (102)
d k=0 k'=0
is unitary and satisfies
ft=1 (103)
The operators andz are isospectral operators with the common spectfung, . . ., ¢4 '}.

A direct proof of Result 9 can be obtained by switching to trenmes

010 ... 0

d—1 o0 1 ... 0
X=) Eew=|i i i ... (104)

k=0 00 0 ... 1

100 0
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d—1 0 ¢
7= ¢En=[0 0 ¢ 0 (105)
k=0 N :
00 0 ... ¢+t

of the operators andz, in the basisB, (cf. (81) and [98)). Let’ be the matrix of the
linear operatorf in the basisB,;. The reduction by means df of the endomorphism
associated with the matriX yields the matrixZ. In other words, the diagonalization of
X can be achieved with the help of the matfiwia Z = F X F''. Note that the matri¥’
is connected tdy by

d—1

F=(FRS)  S=> ¢"Egay (106)

B=0
whereS acts as a pseudopermutation.

In view of ([LOQ), the pair(z, z) is called a Weyl pair. Weyl pairs were originally
introduced in finite quantum mechanifs|[69] and used for éimstuction of unitary bases
in finite-dimensional Hilbert spacef [70]. It should be mbtieat matrices of typ& and
Z were introduced long time ago by Sylvester][71] in order twesthe matrix equation
PX = X@); in addition, such matrices were used by Morfig [72] to defjeaeralized
Clifford algebras in connection with quaternion algebrad division rings. Besides the
Weyl pair (z, z), other pairs can be formed with the operatogs and z. Indeed, any
operaton, (a € Z,4) can be generated fromandz since

Vo = 2. (207)
Thus, Eq.[(2J0) can be generalized as
e_”(d_l)“(v()a)d = =7 VoaZ — q20pa = 0. (108)

Therefore, the paifv,, z) is a Weyl pair for(d — 1)a even.

4.2 Generalized Pauli matrices

Ford = 2 theg-commutation relation aof andz reduces to an anticommutation relation.
In fact, Eq. [I0P) withd = 2 can be particularized to the relations

=22 =1 xz4+zx =0 (209)

which are reminiscent of relations satisfied by the Paulrites. Hence, we understand
that the matriceX’ and Z for d arbitrary can be used as an integrity basis for producing
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generalized Pauli matrice§ 137 38] 39} 54, (55, [57 (5B [GI78U74. 7B (16,7 1. 78179,
B0,[81,[8R]. Let us develop this point.
For d arbitrary, we define the operators

Ugy = 22" a,b e Zy. (110)

The operators:,;, shall be referred as generalized Pauli operators and thediiaes as
generalized Pauli matrices. They satisfy the ladder-phelagon

ualk) = ¢k © a) & ualj,m) = qV|j,m @ a) (111)
from which we can derive the following result.

Result 10. Thed? operatorsu,;,, with a,b € Z4, are unitary and obey the multiplication
rule

Ugh U/t = q_ba/uaubn d"=a®d V' =bpb. (112)
Therefore, the commutator and the anticommutatar,gandw,,, are given by
[Uapy Ui |+ = <q_bal + q_“b,> Uy "' =a®d b =bal. (113)
Furthermore, they are orthogonal with respect to the Hitk®chmidt inner product
Trea) [(uab>Tua’b’:| = d dg,ar Oy (114)
where the trace is taken on thiedimensional spacé(d).
As a corollary of Result 10, we have
[Uap, Uary] - = 0 & ab ©ba' =0 (115)
and
[Uap, Uy ]+ = 0 & abl © ba' = %d. (116)

This yields two consequences. First, Hg. {116) shows thabhitommutatoru, w. iy |+
are different from 0 ifZ is an odd integer. Second, from Ef. (L15) we have the impbrtan
result that, ford arbitrary, each of the three disjoint sets

ege = {up,=2":a=12...,d—1} (117)
Coo = {Ugg=2"2%:1a=1,2,...,d—1} (118)
Ceg = {Upp=2":a=12....,d—1} (119)
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consist ofd — 1 mutually commuting operators. The three sgts e.. ande,, are asso-
ciated with three MUBSs. This is in agreement with the fact tha base$3,, B; and B,
are three MUBSs for] arbitrary (oo = = € e40, Vo1 = T2 € €40 aNdz € ey, are associated
with By, B, and B,, respectively).

By way of illustration, let us give the matrices in the baBjsof the operators,,, for
d=2,3and 4.

Example5: cased = 2. Ford =2 < j = 1/2 (= ¢ = —1), the matrices in the two sets

Ey = {IL=X°2° X =X"'Z° =V} (120)
B, = {Z=X"Z"Y = X'Z' =Vy} (121)

corresponding to the four operatarg, are
1 0 0 1 1 0 0 -1
I2_<0 1) X‘(1 0) Z‘(o —1) Y‘(1 0)'(122)
In terms of the usual (Hermitian and unitary) Pauli matriegss, ando ., we have
X =o0, Y = —ioy Z =a0,. (123)

The matricesX, Y andZ are thus identical to the Pauli matrices up to a phase factor f
Y. This phase factor is the price one has to pay in order to gettarmatic generalization
of Pauli matrices in arbitrary dimension.

Example 6: cased = 3. Ford = 3 < j =1 (= ¢ = exp(i27/3)), the matrices in the
three sets

Ey, = {X°Z° X'Z° = Vp, X?2°} (124)
By = {X°Z' X'Z' =V, X* 72} (125)
By, = {X"Z% X'Z? = Vi, X?Z%} (126)

corresponding to the nine operatarg are

1 00 0 1 0 0 0 1
Ii=10 1 0 X=(0 01 X?=11 00 (127)
0 0 1 1 00 0 1 0
1 0 0 0 ¢ O 0 0 ¢
Z=10 q 0 XZ=10 0 ¢ X*Z=110 0 (128)
0 0 ¢ 1 0 0 0 g O



0 0 0 ¢ 0
@ 0 XZ =10 0 0
q 1 0

[

1
z2=|0 X7 =
0

S = O

q
0. (129)
0

o O

2

0 q

These generalized Pauli matrices differ from the Gell-Maratrices and Okubo matrices
used forSU(3) in particle physics with three flavors of quarks]|[83, B4, 8H}ey consti-
tute a natural extension based on Weyl pairs of the Pauliceatin dimensio = 3.

Example 7: cased = 4. Ford = 4 < j = 3/2 (= ¢ = i), the matrices in the four sets

Ey, = {X°2° X'Z° = Vi, X?2° X*2°} (130)
B, = {X°Z',X'Z'=Vy, X?Z2', X32"} (131)
By = {X'Z* X'Z* = Vi, X?2*, X3 2%} (132)
By = {X°Z3 X'Z° = Vi, X*2° X*Z°} (133)

corresponding to the 16 operatotg are

1 0 0 0 01 0 0
01 00 001 0
14_0010 X_0001 (134)
00 0 1 1 0 0 0
0010 00 0 1
) 00 0 1 s |1 0 0 0
=110 0 0 X=101 0 o0 (135)
01 00 0010
1 0 0 0 0 i 0 0
0 i 0 0 00 —1 0
Z = 00 —1 0 X2 = 00 0 —i (136)
1 0 0 —i 10 0 0
00 —1 0 00 0 —i
s, [0 0 0 —i s, |1 0 0 o
X7 = 10 0 0 XZ_Oi 0 0 (137)
0 i 1 0 00 —1 0
1 0 0 0 0 -1 0 0
, 0o =10 o0 >, o 0o 1 o0
=10 0 1 o XZ2=10o 0 o -1 (138)
0 0 0 —1 1 0 0 0
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0 0 1 0 0 0 0 -1
on O 0 0 -1 ss |1 0 0 0
XZ7=11 0 0 o XZ=10 —1 0 o (139)
0 -1 0 0 0 0 1 0
1 0 0 0 0 —i 0 0
, o =i o0 o0 , o o -1 0
Z=1o 0o -1 o0 X2%=10 0 0 (140)
0 0 0 i 1 0 0 0
0 0 -1 0 0 0 0 i
o O 0 0 i ss |1 0 0 0
XZ7=11 0 0o o XZ=10 =i 0 o (141)
0 —i 0 0 0 0 -1 0

These generalized Pauli matrices are linear combinatibtiseogenerators of the chain
SU(4) D SU(3) D SU(2) in particle physics with four flavors of quarKsTq6] §7] 88].

For d arbitrary, the generalized Pauli matrices arising fropmQjldre different from
the generalized Gell-Mankh matrices introduced i [89]. The generalizedhatrices are
Hermitian and adapted to the chain of grofis(d) > SU(d —1) D ... D SU(2) while
the matricesX*Z® are unitary and closely connected to cyclic symmetry. Idgéer d
arbitrary, each of the sets

Ey:={X%2":a=0,1,....,d—1} b=0,1,...,d—1 (142)

is associated with an irreducible representation of théicgeoup C,;. More precisely,
the one-dimensional irreducible representatiortgfassociated withf, is obtained by
listing the nonzero matrix elements of any matrixff column by column from left to
right. In this way, we obtain thé irreducible representations 6f;. This relationship
betweend-dimensional Pauli matrices and irreducible represemtatofC, are clearly
emphasized by the examples given aboveifer 2, 3 and 4.

4.3 Pauli basisfor the unitary group

Two consequences follow fronj (114). (i) The Hilbert-Schimielation [11}) in the
Hilbert spaceC® shows that thé? operators.,, are pairwise orthogonal operators. Thus,
they can serve as a basis for developing any operator aaidgd. (i) The commuta-
tor in (II3) defines the Lie bracket ofdd-dimensional Lie algebra generated by the set
{ua : a,b=0,1,...,d—1}. This algebra can be identified to the Lie algeb(d) of the
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unitary groupU(d). The subsefu,, : a,b = 0,1,...,d — 1} \ {ug} then spans the Lie
algebrasu(d) of the special unitary groupU (d). In other words, the Weyl paitX, 7),
consisting of the generalized Pauli matricésand Z in dimensiond, form an integrity
basis foru(d). More specifically, the two following results hold.

Result 11. The se{ X*Z% : a,b=0,1,...,d — 1} forms a basis for the Lie algebra d)
of the unitary groug/(d). The Lie brackets ai(d) in such a basis (denoted as the Pauli
basis) are

d—1 d-1
(XeZb XeZ7)_ = (ab,ef;ij) X" 27 (143)
i=0 j=0
with the structure constants
(ab,efsif) = 8(i,a® e)5(5,b® f) (¢ —q) (144)

wherea, b, e, f,1,j € Z4. The structure constantsb, ef;:j) withi = a®e andj = bD f
are cyclotomic polynomials associated withThey vanish fou f & be = 0.

Result 12. For d = p, with p a prime integer, the Lie algebrau(p) of the special
unitary groupSU (p) can be decomposed into a direct sunpaf 1 abelian subalgebras
of dimensiorp — 1, i.e.

su(p) X v Yo W... W, (145)

where each of thg + 1 subalgebras, v1, . . ., v, is a Cartan subalgebra generated by a
set ofp — 1 commuting matrices. The various sets are

Vo = {X°Z' X°72 X073 ...  XOzr-2 XOzr 1} (146)
Vo= {X'Z20, X220, X320, . XP270 Xl z%) (147)
Vo = {X'Z',X22% X373, XPizr-2 xr-lgzr1y (148)
Vs o= {X'Z2 X274, X376, Xpigrt xvolgee?y (149)
: (150)
Vo = {X'zp? xRzt XPzeet L Xz Xl 72 (151)
V, = {X'Zrl XPZpm XAz XPRZ Xz (152)
for vy, vy, ..., v,, respectively.
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Example8: p =7 < j = 3. Equations[(T46)F(1H2) give

Vo = {(01),(02),(03),(04),(05),(06)} (153)
Vi = {(10),(20),(30),(40), (50), (60)} (154)
Vo = {(11),(22),(33), (44), (55), (66)} (155)
Vs = {(12),(24),(36), (41), (53), (65)} (156)
Vi = {(13),(26),(32),(45), (51), (64)} (157)
Vs = {(14),(21),(35), (42), (56), (63)} (158)
Ve = {(15),(23),(31),(46), (54), (62)} (159)
V= {(16),(25),(34),(43),(52), (61)} (160)

where(ab) is used as an abbreviation & Z°.

Result 12 can be extended to the case whlete p¢ with p a prime integer and a
positive integer: there exists a decompositiora(fp©) into p¢ + 1 abelian subalgebras of
dimensionp® — 1. In order to make this point clear, we start with a countengxa.

Counterexample: d =4 < j =3/2(= a,b =0, 1,2,3). In this case, Result 11 is valid
but Result 12 does not apply. Indeed, the 16 unitary operatgicorresponding to

ab = 01,02, 03, 10, 20, 30, 11, 22, 33,12, 13, 21, 23, 31, 32,00 (161)

are linearly independent and span the Lie algeb¥a(df but they give only three disjoint
sets, viz. {(01), (02), (03)}, {(10), (20), (30)} and{(11), (22), (33)}, containing each 3
commuting operators, where here agaib) stands forX*Z°. However, it is not possible
to partition the set[(I61) in order to get a decompositionilamto (I4%). Nevertheless,
it is possible to find another basis of4) which can be partitioned in a way yielding a
decompostion similar td (I#5). This can be achieved by wykvith tensorial products
of the matrices\* 2" corresponding te = 2. In this respect, let us consider the product
Uayb, @ Uaghy, Whereu, ,. with ¢ = 1,2 are Pauli operators fgr = 2. Then, by using the
abbreviationa, by azby) for g, @ g, OF X4 Z% @ X® 7% it can be checked that the
five disjoint sets

{(1011), (1101), (0110)} (162)
{(1110), (1001), (0111)} (163)
{(1010), (1000), (0010)} (164)
{(1111), (1100), (0011)} (165)
{(0101), (0100), (0001)} (166)



consist each of 3 commuting unitary operators and that teealgebrasu(4) is spanned
by the union of the 5 sets. It is to be emphasized that the 1Eatgrs [T6R){(166) are
underlaid by the geometry of the generalized quadrangledsfr@ [90]. In this geometry,
the five sets given by (I52)-(7]66) correspond to a spread®ftmdrangle, i.e., to a set
of 5 pairwise skew linegT90].

The considerations of the counterexample can be genatdlizé := d.d,...d., ¢
being an integer greater or equaktolLet us define

UAB 1= Ugyp, @ Ugghy @« .. @ Ugp, A:=ay,as,...,a. B:=0by,by,... ;b (167)

whereug, p, , Uay,, - - - , Ua,b, &re generalized Pauli operators corresponding to the dimen
sionsdy, ds, . .., d. respectively. In addition, lefi, ¢», .. ., q. be theg-factor associated
with dy, ds, . . ., d. respectively {; := exp(27i/d;)). Then, Results 10, 11 and 12 can be
generalized as follows.

Result 13. The operators: 45 are unitary and satisfy the orthogonality relation
Trg(dldg...de) [(UAB)T UA’B’] =didy ... d, 5A,A' 5B,B' (168)
where
0a,A" = Oy Oazay - - - Oag,al 0B,B" = Oy b, Oy b, - - - Ob bl - (169)

The commutatofu s, uap]— and the anti-commutatdic s, wa g+ Of uap and w4/ pr
are given by

S bid T —ail,
[uap, uap |+ = (H q 7 F qu ’ J) UAr B (170)
j=1

j=1

with
A" :=a; ®ady,ay B ay, ... a. D a, B":=b, @b, ba®dl,,.... 0. (171)

The sef{up : A, B € Zg, @ Zg, @ ... R Zg,} of thed?d3 . . . d* unitary operatorsu s
form a basis for the Lie algebra(d;ds . . . d.) of the grouplU(dds . . . d.).

The operators 45 may be called generalized Dirac operators since the orgDiaac
operators correspond to specifig,, ® tq,p, fOr di = dy = 2.

In the special case whekg = dy, = ... = d. = p with p a prime integer (or
equivalentlyd = p°), we havelu,p, ua /|- = 0 if and only if
> " ajb; © bial =0 (172)
j=1

26



and[uap, uap]+ = 0if and only if

e

1

J=1

so that there are vanishing anti-commutators onjy # 2. The commutation relations
given by {I7D){(171) can be transcribed in terms of Lagramgubmodule$ 6%, P1]. For
d = p°, there exists a decomposition of the §etis : A, B € Z7°}\{/} that corresponds
to a decomposition of the Lie algebsa(p®) into p¢ + 1 abelian subalgebras of dimension

p° — 1[E3,[73.[92{9B[ 94, 95].
4.4 Generalized Pauli group
Let us define the?® operators

Wape = ¢°x°2° = ¢“upe a,b,c € Zg. (174)
The action ofw,,. on the Hilbert spacé(d) is described by

Wane| k) = "k © b) & wapelj, m) = ¢* UMY, m @ b). (175)

The operatorsu,;,. are unitary and satisfy

Trea [(wabc)fwa’b’c’} = q" " d Sy Oe (176)

which gives back[(114) fat = o’ = 0.
The product of the operators,,. andw,, . reads

WabcWa't ¢! = Wa!'p! el a’=a ©® a’ © cb’ V' =b ) b ' =c © . (177)

The set{wgu. : a,b,c € Z;} can be endowed with a group structure. In the detail, we
have the following

Result 14. The se{wy,. : a,b,c € Z4}, endowed with the internal lay (377), is a finite
group of orderd®. This nonabelian group, notdd, and called generalized Pauli group in
d dimensions, is nilpotent (hence solvable) with a nilpoyeriass equal to 2. The group
11, is isomorphic to a subgroup éf(d) for d even orSU(d) for d odd. It hasd(d+1) —1
conjugacy classesi(classes containing each 1 element affd— 1 classes containing
eachd elements) and(d + 1) — 1 classes of irreducible representation# lasses of
dimension 1 and — 1 classes of dimensiaf).
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A faithful three-dimensional representationldf is provided with the application

a —c 1

1 0 0
Hd — GL(S, Zd) L Wape b 1 0 . (178)

This is reminiscent of the Heisenberg-Weyl gro{ig [08,[97 SB[I0P[101]. Indeed, the
groupll, can be considered as a discretizatidil’(Z,) of the Heisenberg-Weyl group
HW (R), a three-parameter Lie group. The Heisenberg-Weyl gidlip(R), also called
the Heisenberg group or Weyl group, is at the root of quantweahanics. It also plays
an important role in symplectic geometry. The grdlipwas discussed bgfovicek and
Tolar [I02] in connection with quantum mechanics in a discspace-time, by Balian
and ltzykson[[7B] in connection with finite quantum mechaniy Patera and Zassenhaus
[[4] in connection with gradings of simple Lie algebras qiey,,_,, and by Kibler [2]

in connection with Weyl pairs and the Heisenberg-Weyl grot{mte that the discrete
version HW (Z) of HW (R) was used for an analysis of the solutions of the Markoff
equation [1I03]. Recently, the discrete versigm/’[Z, x (Q,/Z,)] was introduced for
describing p-adic) quantum systems with positions4p and momenta itQ,, /Z,, [[[04].

As far asHW (Z,) is concerned, it is to be observed that a Lie algehrzan be
associated with the finite grodp,. This can be seen by considering the Frobenius algebra
of I1, (see [10p] for the definition of the Lie algebra associatethwan arbitray finite
group). Then, the Lie brackets of are

[wabca wa’b’c’]— = Wapy — W pry! (179)
with
a=a®docd =0l y=cdd d=adbObd =8 v =+ (180)

The algebrar,, of dimensiond?, is not semisimple. It can be decomposed as the direct
sum

d? d—1
ma ~ [ u(1) [H u(d) (181)
1 1

which containsi? Lie algebras isomorphic te(1) andd — 1 Lie algebras isomorphic to
u(d). The Lie algebrau(d) spanned by the sét.,;, : a,b € Z,} is one of the subalgebras
of m,.

The groupll,; (noted P; in [E3]) should not be confused with the Pauli grop
on n qubits spanned by-fold tensor products ofoy = il5, 0, ando. used in quan-
tum information and quantum computatidn [L06,]107]. TheliRgnoup P, has4"+!
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elements. It is used as an error group in quantum computirge nbrmaliser ofP,,

in SU(2"), known as the Clifford (or Jacobi) groupii,, on n qubits, a group of order
Qn*+2n+3 [[;_, (47 — 1), is of great interest in the context of quantum correctoresod
[£7, [LO8,[I0P[ 110, 111, InP, 113]. In additiondd:,,, proper sugroups af'li,, having

P,, as an invariant subgroup are relevant for displaying quartaherence[[114]. The
distinction bewteer?,, andIl,; can be clarified by the example below which shows that
I1, is not isomorphic tdP;. In a parallel way, it can be proved that the grothsand P,
(both of order 64) are distinct.

Example 9: d = 2. The simplest example di, occurs ford = 2. The groupll, has

8 elements{1, +z, +y := +xz, +2) and is isomorphic to the dihedral grodpy. It
can be partitioned into 5 conjugation classes}({—1}, {z, —z},{y, —y}, {2, —2}) and
possesses 5 inequivalent irreducible representatiordirtansions 1, 1, 1, 1 and 2). The
two-dimensional irreducible representation correspdads

+ I +— to9 +z— to, + y — Fioy + 2z to, (182)

in terms of the Pauli matrices, with A\ = 0,z,y,z. The elementg; := =, e; ==y
andez := z of II, span the four-dimensional algebft1, —1,0) = N;, the algebra of
hyperbolic quaterniongwith e? = —e2 = ¢2 = 1 instead ofe? = ¢ = €2 = —1 as for
usual quaternions). This associative and nhoncommutaliy@bea is a singular division
algebra. The algebnid; turns out to be a particular Cayley-Dickson algeHi@;, ¢, c3)
[LI3]. Going back tdl,, we see that not all the subgroupdbf are invariant. The group
I1, is isomorphic to the group diyperbolic quaternionsather than to the grou@ of
ordinary quaterniondor which all subgroups are invariant (the gro@pcan be realized
with the help of the matricesoy, +io,, +io,, +io,). Like @, the groudlI, is ambivalent
and simply reducible in the terminology of WignéJ [2]. Indé#l, is the sole generalized
Pauli group that is ambivalent.

To end up with this example, let us examine the connectiowdmtIl, and the 1
qubit Pauli groupP;. The groupP; has 16 elementsto,, +io, with A = 0,z,y, 2).
Obviously, I1, is a subgroup of index 2 (necessarily invariant)/af. The groupP;
can be considered as a double grouplefor ) in the sense thaP; coincides with
I, | Jill, = QJiQ in terms of sets. Therefore, the group table/jfeasily follows
from the one ofl]l, or ). As a result, the numbers of conjugation classes and irilduc
representation classes are doubled when passingliroon () to P;.
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5 Closingremarks

Starting from a nonstandard approach to angular momentdnsamanscription in terms
of representation of U (2), we derived (in an original and unified way) some results &bou
unitary operator bases and their connection to unitaryggoBauli groups and quadratic
sums. These results (either known or formulated in a new whg§l some light on the
importance of the polar decompositionsef(2) and cyclic groups for the study of unitary
operator bases and their relationship with unitary grouqgsRauli groups. In particular,
the latter decomposition and the quadratic discrete Fotraasform introduced in this
work make it possible to generate in prime dimension a coraglet of MUBS given by a
single formula (Eq.[(30)). From the point of view of the regeatation theory, it would be
interesting to find realisation on the state vectfr$ (20)henspheres? thus establishing
a contact between thg2, vy, } scheme and special functions.

To close this paper, let us be mention two works dealing @itk Schwinger unitary
operator bases in an angular momentum scheme. In Rel. [atBgry operator bases
and standard (discrete) quantum Fourier transforms in gnplanmomentum framework
proved to be useful for spin tunneling. In additiehdimensional generalized Pauli ma-
trices applied to modified Bessel functions were considénean angular momentum

approach withj = (d — 1)/2 — oo [L17].

Appendix A: A polar decomposition of su(2)

In addition to the operator,,, a second linear operator is necessary to define a polar
decomposition o6U(2). Let us introduce the Hermitian operatothrough

= > VU +mG —m+Dljm)G.ml. (183)

m=—j
Then, it is a simple matter of calculation to show that thed¢hwperators

1

Jr=hvee =)' g = (B = (0r) 0] (184)

satisfy the ladder equations
rlim) = ¢TI/ —m) (i + m 4 1), m + 1) (185)
joljm)y = U/ (G m)(j — m 4 1)]j,m = 1) (186)

and the eigenvalue equation
Jz|j,m) = mlj,m) (187)
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wheres = 1/2. Therefore, the operatoys, j_ andj, satisfy the commutation relations
Uzsd+]- =+t ==l =—J- U+, d-]- =252 (188)

and thus span the Lie algebra$/(2).

The latter result does not depend on the parametensd «. However, the action
of j, andj_ on |j,m) on the spac&(2j + 1) depends oru; the usual Condon and
Shortley phase convention used in spectroscopy correspgond = 0. The writing of
the ladder operatorg, andj_ in terms ofh andwv,, constitutes a two-parameter polar
decomposition of the Lie algebra 6T (2). This decomposition is an alternative to the

polar decompositions obtained independently 1t [Z4] [18, I20,[TZ1].

5.1 Appendix B: A quon approach to su(2)

Following [IZ2], we define a quon algebra @deformed oscillator algebra fgra root
of unity. The three operators , a, and /N, such that

a_ay —qaya_ =1 [Ny, as]- = +ay (ax)f =0 NI =N, (189)

a

where

q = exp (%) ke N\ {0,1} (190)

define a quon algebra grdeformed oscillator algebra denoted 4ga_, a4, N,). The
operators:_ anda.. are referred to as quon operators. The operators., and N, are
called annihilation, creation and number operators, ressdy.

Let us consider two commuting quon algebraga_, a., N,) = A,(a) witha = z,y
corresponding to the same value of the deformation parameléeir generators satisfy
equations [(I189) and (190) with = z,y and [X,Y]_ = 0 for any X in A, (x) and
anyY in A,(y). Then, let us look for Hilbertian representationsAf(x) and A,(y)
on thek-dimensional Hilbert space&(x) and F(y) spanned by the orthonormal bases
{In1) :m1 =0,1,...,k — 1} and{|ny) : no = 0,1,...,k — 1}, respectively. We easily
obtain the representations defined by

Tiln) =|m+1) aylk—-1)=0
z-|ni) =[], fn—1)  2-[0) =0
Nx|n1) = n1|n1) (191)
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and

Yilne) = e+ 1] na+1)  yylk—1)=0
y-Ina) = na—1)  y-[0)=0
Ny|n2) = n2|n2) (192)

for A,(z) andA,(y), respectively.
The cornerstone of this approach is to define the two linearaiprs

h:= /N, (N, +1) Urq 1= S4Sy (193)
with
Sp = ¢ WetNi/2p 4 ei¢r/2ﬁ(m_)k_l (194)
sy = yeg T g e _11]q! ()" (195)
where
a€R ¢ =m(k—1)r r e R. (196)
The operator# andv,, act on the states
|ni,no) :=|n1) @ no) (197)

of the k*-dimensional spac&; := F(z) ® F(y). Itis immediate to show that the action
of h andv,, on F;, is given by

hlni,ne) = v/ni(ng + 1)|ny, noy) n;=0,1,2,--- k—1 1=1,2 (198)

and
Upa|n1,m2) = ¢ i+ 1L,ng—1)  mp#Fk—1  np#0 (199)
Upalk — 1,ny) = ei¥r/2galk=1=n2)/2|() ) 1) ny # 0 (200)
Upa|ny, 0) = e@r/2gak4n0/2 ) 4 1k — 1) n #k—1 (201)
Vyalk — 1,0) = €7(0, k — 1). (202)
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The operatoré andv,, satisfy interesting properties: the operaias Hermitian and the
operatom,, is unitary.

We now adapt the trick used by Schwinggr[[L23] in his appraa@ngular momen-
tum via a coupled pair of harmonic oscillators. This can beedoy introducing two new
guantum numberg and M defined by

1 1
J = 5 (n1 +n2) M = 5 (n1 —ng) = |JM> = |J+M,J— M) = |n1,n2)(203)
Note that
1
ji=5k=1) (204)

is an admissible value fof. Then, let us consider tHedimensional subspaeéj) of the
k*-dimensional spacg (z) ® F(y) spanned by the bas{$j, m) : m =j,7—1,...,—j}.
We guess that(j) is a space of constant angular momentunfs a matter of fact, we
can check thad(y) is stable undeh anduv,,. In fact, the action of the operatoksandv,,,
on the subspacsj) of F;, can be described by

hlj,m) = /(G +m)(j —m+1)|j,m) (205)

and
Vrald,m) = €™ |j, =) + (1 = 6pnyy) ¢V, m + 1) (206)

in agreement with EqQ[(I83) and with the master equafipn (6).
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