-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by HAL-IN2P3

HAL

archives-ouvertes

Phase operators, phase states and vector phase states
for SU(3) and SU(2,1)
Mohammed Daoud, Maurice Robert Kibler

» To cite this version:

Mohammed Daoud, Maurice Robert Kibler. Phase operators, phase states and vector phase
states for SU(3) and SU(2,1). Journal of Mathematical Physics, American Institute of Physics
(AIP), 2011, 52, pp.082101. <10.1063/1.3620414>. <in2p3-00587897>

HAL Id: in2p3-00587897
http://hal.in2p3.fr /in2p3-00587897
Submitted on 21 Apr 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/46768052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.in2p3.fr/in2p3-00587897

Phase operators, phase states and vector phase states $@r; and SU, ;

M. Daoud!?>34 and M. R. Kibler 123

! Université de Lyon, 69361 Lyon, France

2 Université Claude Bernard Lyon 1, 69622 Villeurbanne nes

3 CNRS/IN2P3, Institut de Physique Nucléaire, 69622 Villmnne, France
4 Département de Physique, Faculté des Sciences, Agaoigddo

E-mail : m.daoud@hotmail.com and m.kibler@ipnl.in2p3.fr

Abstract

This paper focuses on phase operators, phase states aodplexde states for the;
Lie algebra. We introduce a one-parameter generalizedlaiscialgebraA, (2) which
provides a unified scheme for dealing witly; (for ~ < 0), sug; (for k > 0) andhy ® hy
(for k = 0) symmetries. Finite- and infinite-dimensional represéons of .4, (2) are
constructed for < 0 andx > 0, respectively. Phase operators associated Mjtf2) are
defined and temporally stable phase states (as well as y#wiee states) are constructed
as eigenstates of these operators. Finally, we discusatiorebetween quantized phase
states and a quadratic discrete Fourier transform and slewt use these states for
constructing mutually unbiased bases.



1 INTRODUCTION AND MOTIVATIONS

It is well known that defining an Hermitian (or unitary, by nmseof an exponentiation
trick) phase operator for the Fock space of the isotropicioaic oscillator and, more
generally, for an infinite-dimensional Hilbert space is anteasy probleﬁﬁ Pegg and
Barnetim solved it by replacing the oscillator algebra by a truncatedillator algebra
and thus were able to give a description of the phase pregeofi guantum states for
the single modes of the electromagnetic field. In this sp}’dUrda@ introduced phase
operators and phase states (i.e., eigenvectors of a phasgan forsu, andsu, ;; for the
suy; Lie algebra, he noticed that the infinite-dimensional cbeof the representation
space prevents to define a unitary phase operator. Phasgapaand phase states for
other symmetries were also studied. In particular, Klireoal L3 obtained phase states
for some specific representationssaf.

Recently, a generalized oscillator algebta, depending on a real parametgrwas
introduced to cover the cases of Lie algebsas (for x < 0) andsu,; (for x > 0)
as well as Weyl-Heisenberg algebra (for x = 0).@7 3) Temporally stable phase states
were defined as eigenstates of phase operators for finitergiional £ < 0) and infinite-
dimensional representations ¢ 0) of the A, algebra@ In the finite-dimensional case,
corresponding either ta < 0 or to x > 0 with truncation, temporally stable phase
states proved to be useful for deriving mutually unbiasests8 B such bases play an
important role in quantum information and quantum crypagdry.

In this paper, we introduce an algebra, not#d?2), which generalizes thd,, alge-
bra. Forkx < 0, this new algebra is similar to that considered in the sehvimak of
PaleV8 I3 in the context of4,, -statistics. Thed,(2) algebra allows to give an unified
treatment of algebras:; (for x < 0), suq (for & > 0) andhy ® hy (for £ = 0). When we
started this work, our aim was to study in an unified way: (agdoperators fofus, sus 1
andh, ® hy and (ii) the corresponding phase states. We discovered, £of), that phase
states can be defined only for partitions of the relevantétilspaces and that a global
definition of phase statesequires the introduction ofector phase statesa concept that
is closely related to that of vector coherent states. Thenaif vector coherent states
was strongly investigated by Hetand Zhanget al B9 at the end of the nineties. This
notion was subsequently developed in Refs[]1]] 4, ¥, 22] ejitplications to quantum
dynamical systems presenting degeneracies. In parti¢h&aauthors of Ref[]2] defined
a vectorial generalization of the Gazeau-Klauder cohestzedd leading to vector co-
herent states. Recently, this notion of vector coheretésimas extensively investigated



(see the works in Refd][[,]22]).

This paper is organized as follows. Thk,(2) generalized algebra is introduced in
Section 2. We then define a quantum system associated vsthlggbra and generalizing
the two-dimensional harmonic oscillator. In Section 3, gghaperators and temporally
stable vector phase states for tAg(2) algebra withx < 0 are constructed. The phase
operators and the corresponding temporally stable phasessior A, (2) with x > 0
are presented in Section 4. Section 5 deals with a truncafitime 4,.(2) algebra, with
x > 0, necessary in order to get unitary phase operators. Indde6tiwe show how
a quantization of the temporality parameter occurring snghase states fod, (2) with
r < 0 can lead to mutually unbiased bases.

2 GENERALIZED OSCILLATOR ALGEBRA A,(2)

2.1 The algebra

We first define the4, (2) algebra. This algebra is generated by six linear operators
a; andN; with i = 1, 2 satisfying the commutation relations

[CLi ClJr] =17 + K,(Nl + N2 -+ Nl)a [Nz CL:E] = i5i7ja?:, ’l,j = 1, 2 (1)

7 Y ) j

and
[aF,aF] =0, i}, (2)

complemented by the triple relations

[a’z:‘tv [aiia af“ =0, 1 3& J- (3)
In Eq. (1), denotes the identity operator ards a deformation parameter assumed to
be real.
Note that thed,, algebra introduced in Ref/][5] formally follows from, (2) by omit-

ting the relationa, , a3 ] = I + x(N; + 2N,) and by taking
a; =af =Ny=0, af =a, af=a", Ny=N

in the remaining definitions afi,.(2). Therefore, generalized oscillator algeb4a in
Ref. [] should logically be noted.,(1).

Forx = 0, the4y(2) algebra is nothing but the algebra for a two-dimensionatdgoc
harmonic oscillator and thus corresponds to two commuiipiss of the Weyl-Heisenberg
algebranh,.



For v # 0, the A,(2) algebra resembles the algebra associated with the salcalle
A, —statistics (fom = 2) which was introduced by Pall@ and further studied from the
microscopic point of view by Palev and Van der Je@t.ln this respect, let us recall
that A,,—statistics is described by thé, ., Lie algebra generated by pairs of creation
and annihilation operators (of the type of #jeanda; operators above) satisfying usual
commutation relations and triple commutation relationsctta presentation of,,,; is
along the lines of the Jacobson approach according to whigll t Lie algebra can be
defined by means @, rather tham(n + 2), generators satisfying commutation relations
and triple commutation relatiotd These2n Jacobson generators correspond fuairs
of creation and annihilation operators. In our case,4h€) algebra forx # 0, with two
pairs of Jacobson generatofs{, a; ) for i = 1,2), can be identified to the Lie algebras
sug for k < 0 andsus; for x > 0. This can be seen as follows.

Let us define a new paii; , a3 ) of operators in terms of the two paits;, a; ) and
(af,ay ) of creation and annihilation operators through

ai =[a3,a7], a3 =[af,a3]. (4)

Following the trick used in Ref[]3] for thel,. (1) algebra, let us introduce the operators

= af, B ,=——a,, a=123
K

L4 k2N, + N

R

1
Hy= [+ 52N+ o), H,
with k # 0. It can be shown that the séf/.,; H; : « = 1,2,3;i = 1,2} spanssus for

k < 0 andsug, for x > 0.

2.2 Representation of4,(2)

We now look for a Hilbertian representation of tdg(2) algebra on a Hilbert-Fock space
F,. of dimensiond with d finite or infinite. Let

{|n1,n9) i n1,ne =0,1,2,...}
be an orthonormal basis &, with
(ny,naln’,nb) = O Oy -
Number operatord/; and N, are supposed to be diagonal in this basis, i.e.,
Ni|ni,no) = niny,ng), i=1,2 (5)
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while the action of the creation and annihilation operatgrainda; is defined by

af|ni, ne) = V/Fi(ng + 1, 712)e_i[H(n1+1’n2)_H(nl’n2)]¢|n1 + 1, n9), (6)

aj |ny,ng) = \/Fi(ny,ng)etitHmma)=Hm=tna)loy, 1 00 a7]0,n5) =0 (7)

and

ag |ni,na) = /Fa(ny,ns + 1)e_i[H(m’nHl)_H(m’m)]@|n1, ng + 1), (8)

ay |n, ne) = /Fy(ny, ng)et ) =Hnma=ble, o 1) a7|ng,0) =0. (9)

In Egs. [B){P).» is an arbitrary real parameter and the positive valued fanstF; :
N2 - Ry, F; : N> - R, andH : N> — R, are such that

H=F+F.

It is a simple matter of calculation to check thgt (B)-(9) giexte a representation of the
A..(2) algebra defined by[|(1]{(3) provided th&t(n, n,) and F»(ny, ns) satisfy the re-
currence relations

Fl(n1+1,n2)—F1(n1,n2) :1+/<;(2n1+n2), Fl(o,ng) =0 (10)
Fg(nl,n2+1) —Fg(nl,n2> = 1+/<;(2n2+n1), FQ(TLl,O) =0 (11)

The solutions of Eqs[{10) anfl{11) are
Fy(ny,ng) = i1+ k(ny +ng —1)], i=1,2. (12)

To ensure that the structure functiofisand F;, be positive definite, we must have
1+m(n1+n2—1)>0, n1+n2>0, (13)

a condition to be discussed according to the sigm.ofin the representation ofl,,(2)
defined by Eqs[[5)F(13), creation (annihilation) operstgr (a; ) and number operators
N; satisfy the Hermitian conjugation relations

(N =N, i=1,2

as for the two-dimensional oscillator.
Thed dimension of the representation spa&gcan be deduced from conditign}13).
Two cases need to be considered according toad) or x < 0.
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e Forx > 0, Eq. (I3) istrivially satisfied so that thidimension ofF,, is infinite. This
is well known in the case = 0 which corresponds to a two-dimensional isotropic
harmonic oscillator. For > 0, the representation corresponds to the symmetric
discrete (infinite-dimensional) irreducible represeaotabf the SU, ; group.

e Forx < 0, there exists a finite number of states satisfying condific}). Indeed,
we have

1
nl—i—nz:O,l,...,E(—;),

whereE(z) denotes the integer part of In the following, we shall take-1/x inte-
ger whernx < 0. Consequently, for < 0 thed dimension of the finite-dimensional
spacer, is

1 1
d=S(k+)(k+2), k=——€N" (14)
K

We know that the dimensiaf(\, 1) of the irreducible representati@n, 1) of SU;
is given by

1
dA )= A+ D+ DA+ +2), AeN, pel.

Therefore, the finite-dimensional representationdpf2) defined by [(6){(13) with
—1/k = k € N* corresponds to the irreducible representatiark) or its adjoint
(k), 0) of SUs.

2.3 Generalized oscillator Hamiltonian

Since theA, (2) algebra can be viewed as an extension of the two-dimensiscélator
algebra, it is natural to consider thga; + aJ a, operator as an Hamiltonian associated
with A4, (2). The action of this operator on the spaggis given by

(afay +ayay)|ni,ne) = [Fi(n,ng) + Fa(ni, ne)llng, no)
= (ny+n2)[1 + k(ny + ny — 1)]|ng, no)
or
(afay + aj ay)|ny, na) = H(ng, ny)|ng, na).
Thus, theafa; + a3 a; Hamiltonian can be written

+ - 4+ — _
aja; +asa, = H,

6



with
H = H(Nl,NQ) = (N1 + NQ)[I + I{(Nl + N2 - 1)]

modaulo its action or¥F,..
The H Hamiltonian is clearly a nonlinear extension of the Hanmiém for the two-
dimensional isotropic harmonic oscillator. The eigenealu

M=n[l+kn—-1)], n=n+ny, n €N, nyeN

of H can be reduced fot = 0 to the energies of the two-dimensional oscillator (up to
additive and multiplicative constants). For£ 0, the degeneracy of the, level isn + 1
and coincides with the degeneracy of thievel corresponding te = 0.

3 PHASE OPERATORS AND PHASE STATES FORA,(2)
WITH < <0

3.1 Phase operators in finite dimension
3.1.1 TheE,4 and F,, phase operators

For x < 0 the finite-dimensional spack, is spanned by the basis
{|n1,n2) : n1, ny ranging | ny + ne < k}.

This space can be partitioned as

k
Fn = @Ali,h
=0

whereA,, ; is spanned by
{In,l) :n=0,1,....k—1}.
We have
dmA,; =k—-1+1
so that [B){Jr) must be completed by
af|k —1,1) =0,
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which can be deduced from the calculation(bf— [, l|a; a] |k — ,1). The operatora;
anda; leave each subspagg, ; invariant. Then, it is convenient to write

with the actions

ai (D|n, ')y = dpp/Fi(n + 1, [)e HHALD=HmDle |, 4 7 ),
af(l)|k3 =11 =0,

ay (D)|n, 1"y =4 VvV Fi(n l)e”[H(”’l)_H("_l’l)]“"|n — 1,10,

ay (1)]0,1") =

which show that (1) anda; (1) leaveA,; invariant.
Let us now define thé;; operator by

Eyglng,ng) = ei[H("l’m)_H("l_1’”2)}‘p|n1 —1,ng), 0<ni+ny<k, n #0
and
E14)|0,ny) = eHOn2)=Hlknama)lef o nyy o 0<ny <k, ny=0.
Thus, it is possible to write

a7 = Eig/Fi(Ny, Ny) & af = /Fi(Ny, No)(Eg)'. (15)

The E, operator can be developed as

k
By = Z Eyq(1)
1=0

with

Eld(l)|n7 ll) - 5[ 116 HH ()= H (n~ 17l)]¢|n - 17 l>7 n 7& 07 (16)
E(D)0,1) = §,pHOO-HEDle e 71y n=0. (17)

OperatorE (1) leavesA, ; invariant and satisfies

Era(D)(Erg(IN = (Era() Ew(l) —&yz]nlnﬂ



Consequently, we obtain

k k-l

K
Era(Bra)" = (B1a) Brg = Z (Bra(1) Ew(l) = ZZ In, 1){n,1] =1,

=0 =0 n=0

which shows that’,, is unitary. Therefore, Eq[ (JL5) constitutes a polar decasitjpm of

a; anda;.

Similar developments can be obtained dgranda; . We limit ourselves to the main

results concerning the decomposition
ay = Bag/Fao(Ni, No) & af = v/ Fo(Ny, No)(Faq)'.

In connection with this decomposition, we use the partition

k
fn = @Bn,la
=0
where theB,; ; subspace, of dimensign— [ + 1, is spanned by the basis
{|l,n) :n=0,1,....k—1}.

We can write

k
By =Y El(l)
=0

where theF,,(1) operator satisfies

EQd(l)”/v TL) = 5[ l’6 H @)= (l,n—l)]go|l’n - ]->7 n 7& 07
Ey(D|I,0) = §,pelHGO=HUE=Dle 1y p =0,

and
Eaa(D)(Bag(I) = (Baa(I) Esq(l) _5”/2\1 n)(l,n|.
This yields
k
Bi(E2a)' = (B2a) Eag = > (Eaa(l)) Eag(l) = 1

and the operatak,, like E14, is unitary.

(18)
(19)



3.1.2 ThekFEs,; phase operator

Let us go back to the paifas,a;) of operators defined by[](4) in terms of the pairs
(af,ay) and(ad, ay ). The action ofzj anda; on F, follows from (@)-(3). We get

ag|ni,ne) = —ky/ni(ng+ 1)|ng — 1,0y + 1),
as|ni,ne) = —k\/(n1+ 1)ngjng + 1,0y — 1).

From Egs.[(3) and]4), it is clear that the two pair$ (a;) and @ , a;) commute when
x = 0. We thus recover that thd,(2) algebra corresponds to a two-dimensional har-
monic oscillator.

Here, it is appropriate to use the partition

k
fn - @Cn,la (20)
=0

where the subspack ;, of dimension + 1 (but notk —[+1 as for A, ; andB,; ;), spanned
by the basis

{{l—=n,n):n=0,1,...,1}

is left invariant byas anda; . Following the same line of reasoning as f6r; and E»,,
we can associate an operafoy; with the ladder operators] anda; . We take operator
Es, associated with the partitiof {20) such that

az = Fs3g\/F3(Ni, No) & a3 =/ F3(N1,N2)(E3d)T7
where
Fg(Nl,NQ) = —K (N1 + 1)N2

The Es,4 operator reads

k
Esq =Y Esal(l),
=0

whereF3,4(l) can be taken to satisfy

Esq(D[I' =n,n) =8|l —m+1,n—1), n#0,

E3d(l)|l/, 0> = 5l,l’|07 l>, n = 0.
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Finally, we have

Esa(D)(Esq(I') = (Esq(I') Esq(l) = 6, ,Z 1 —n,n){l —n,nl|.

As a consequence, we obtain

k
Esa(Esa)' = (Fsa) Esq = Y (Esa(l)) Esa(l) = I,
a result that reflects the unitarity propertyiof,.

3.1.3 TheFE,; phase operator

OperatorsFEi4(1), Eaq(l) and Es4(1), defined fors < 0 as components of the operators
Eyq, Eyq and E34, leave invariant the setd,. ;, B, andC, ;, respectively. Therefore,
operatorstyyy, Foy and E3; do not connect all elements @, i.e., a given element of
F,. cannot be obtained from repeated application®'gf, F»,; and E3; on an arbitrary
element ofF,..

We now define a new operataéi; which can connect (by means of repeated applica-
tions) any couple of elements in tHedimensional spacé&,, corresponding ta < 0. Let
this global operator be defined via the action

Eyln, 1) = HmD=HO=1leyy 11y p=1,2. . k=1, 1=0,1,....,k (21)
and the boundary actions

E40,1) = HOO-HE=HL=0le e 141 1-1), 1=1,2,....k (22)
E4]0,0) = HO0=HORIe|g L), (23)

The E,; operator is obviously unitary.
By making the identification

@%I(Qk_l+3)+n5|n,l>, nzo,l,...,k—l, lZO,l,...,k‘,
the set

{(®,:7=0,1,...,d—1}

11



constitutes a basis for thedimensional Fock spacg,. Then, the various setd,,; can
be rewritten as

Aco o {Po, @1, ., Pry, Pi}
Aci 0 {Prg1, Prga, .., Poi}

An,k . {(I)d—l}-

Repeated applications &f; on the vector®; with j = 0,1,...,d—1 can be summarized
by the following cyclic sequence

E;: Py 11— Py o—...>P = Pyg— dy_; — ete.

The E, operator thus makes it possible to move inside edghset and to connect the
various sets according to the sequence

Ed : .A,.;,k — An,k—l — ... .A,.i?o — An,k — etc.

Similar results hold for the partitions &f, in B, ; or C,,; subsets.

3.2 Phase states in finite dimension
3.2.1 Phase states foF,(l) and Ey4(1)

We first derive the eigenstates bf,(!). For this purpose, let us consider the eigenvalue
equation

k—1
Ewu(l)a) = zla), |a) = awq'in,l), =z €C.
n=0

Using definition [16){(T7), we obtain the following recumoe relation for the coefficients

Qp,
a, = e HOD=He=1L0leq —  p =12 ... k-1
with
g = e~ IHOD-HE=LDle,
and the condition
(Zl)kflJrl —1.
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Therefore, we get
an = e HOD=HODIeq =y —0.1,.. . k—1
and the complex variablg is a root of unity given by
a=q", m=01,....,k—1,

where

271
= - 24
@ =exp (k—l+1) (24)

is reminiscent of the deformation parameter used in theyh&fagquantum groups. The,
constant can be obtained, up to a phase factor, from the tiaatian condition(z;|z;) =
1. We take

1 —iH(0,l)¢
an = ——¢€ v ’ s 25
T VE—I+1 (29)

where the phase factor is chosen in order to ensure tempatility of the |z;) state.

Finally, we arrive at the following normalized eigenstadég; ;(1)

1
=|l,m, ) = ——
2) = ) = =

The|l, m, ¢) states are labeled by the parametets{0,1,..., k}, me€ Z/(k -1+ 1)Z
andy € R. They satisfy

k-1
Y e e, 1), (26)
n=0

2

P =0,1,..., k=1 27
k’—l+1’ m ) ’ ’ ( )

Elda)‘l?ma(p) :ewm|l7m7gp>7 em:m

which shows that’; () is a phase operator.
The phase states m, v) have remarkable properties:

e They are temporally stable with respect to the evolutiorraipe associated with
the H Hamiltonian. In other words, they satisfy

e M, m, ) = |l,m, o +1)

for any value of the real parameter

13



For fixedy andl, they satisfy the equiprobability relation
1
7l l7 ) = T/
.11, )| = e

and the property

k—I k—1
S ol = 3 ) o, ]
m=0 n=0

The overlap between two phase stdtésr’, ') and|l, m, ¢) reads

k—1

1 e
(om, ol 1) = b g D,
n=0

where
k—1+1
27@ — ¢V H(n, 1)

m
with ¢, defined in [24). As a particular case, for fixedve have the orthonormality
relation

p(m —m'sp— ¢ sn) = —(m —m')n +

<l7 m, 90‘1/7 mlu ()0> = 5l,l’5m,m’-
However, not all temporally stable phase states are ortiaigo

Similar results can be derived for tli&,(/) operator by exchanging the roles played

by n and!. It is enough to mention that the;) eigenstates of’»,,(!) can be taken in the

—HEme g1 )

k—l
1
El’ Y =
) = lm ) = =g e

and present properties identical to those of the statd<n (2

3.2.2 Phase states foFs,(1)

The eigenstates of thig;,(/) operator are given by

l
Esa(D)|wy) = wilwy), |w) =Y cawp|l = n,n), w €C.
n=0

The use of[(1]8){(19) leads to the recurrence relation

Cni1=Cny, n=0,1,...1—1

14



with the condition

co = c(wy).
It follows that
Cn =20y, n=0,1,...,1
and thew, eigenvalues satisfy
(w)H = 1.

Therefore, the admissible values forare

m
w=w", m=0,1,...,1

211
w; = exp I 1 .

As a result, the normalized eigenstatedigf(/) can be taken in the form

with

l
1 ‘

lw) = [[l,m, ) = ﬁe—m(o,z)@gwlmn“ —n,n). (28)
The||l,m, ¢)) states depend on the parameters {0, 1,...,k}, m € Z/(l + 1)Z and
¢ € R. They satisfy

E3d(l)||l7ma ()0>> = eiGmHZ’m’ ()0>>7 Hm =m—-:r, (29)

so thatFs,(!) is a phase operator.

For fixed!, the set{||/,m,0)) : m = 0,1,...,l}, corresponding tp = 0, follows
from the set{|l — n,n) : n =0,1,...,1} by making use of a (quantum) discrete Fourier
transformB3 Note that forp = 0, the||l, m,0)) phase states have the same form as the
phase states fafU, derived by Vourda&3 In the case where # 0, the||l, m, v)) phase
states forF;,(1) satisfy properties similar to those of them, ) phase states fat4(1)
and for Ey4(1) modulo the substitution8:, 1) — (I — n,n), ¢ — w; andk — [ — 1.

15



3.2.3 Phase states foE,

We are now in a position to derive the eigenstates offheperator. They are given by
the following eigenvalue equation

Eqlv) = AlY), (30)
where
k k-1
) => > Culn, 1) (31)
=0 n=0

Introducing [3]1) into [(30) and using the definition in](2BBJ of the £, operator, a
straightforward but long calculation leads to followinguerence relations

CnJrl lei[H(nJrl,l)fH(n,l)}ga _ )\Cn : (32)
CO l+1ei[H(O,lJrl)fH(k:fl,l)]ap _ )\Ckfl . (33)

fort=0,1,...,k— 1. Forl = k, we have
Coo HOO=HORI = \C . (34)

(Note that [3B) withl = & yields (34) if C .1 is identified toC; o.) From the recurrence
relation (32), it is easy to get

le — )\nefz'[H(n,l)fH(O,l)}gaCO’l’ (35)
which, forn = k — [, gives
Chy) = )\kflefi[H(kfl,l)fH(O,l)]apCOl (36)
in terms ofCy ;. By introducing [3p) into[(33), we obtain the recurrenceatiein
CO l+1€i[H(0,l+1)fH(0,l)]<p — )\k*lJrlCO . (37)

that completely determines th&,; coefficients and subsequently thg ; coefficients
owing to (35). Indeed, the iteration of E¢. [37) gives

Co; = )\%l(2kfl+3)efi[H(O,l)fH(O,O)}gaCO0. (38)
By combining [3p) with[[38), we finally obtain
C,, = )\%l(2kfl+3)+nefiH(n,l)<pCO 0. (39)
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Note that forl = k (= n = 0), Eq. (39) becomes
Cojo = A2FFF) O (40)
The introduction of[(40) in[(34) produces the condition
M= 1.
Consequently, tha eigenvalues are

o
Azexp(%m), m=20,1,...,d—1.

Finally, the normalized eigenvectors of thg operator read

k k—1
| > |m,<p Z LImi(2k— l+3)qun —anl)go‘n l> (41)
=0 n=0
where
o
q = exp <%) ) (42)

The|m, ) states are labeled by the parameters 7Z/dZ andy € R. They satisfy
2
d )
As a conclusionF, is a unitary phase operator.
The|m, ¢) phase states satisfy interesting properties:

E4lm, p) = ei9m|m, ©), On=m

e They are temporally stable under time evolution, i.e.,
e M'm, ) = [m, o +1)
for any value of the real parameter

e For fixedy, they satisfy the relation

1
|<n7l|m7 90>| = %
and the closure property
d—1 k k=l
Do Imoehmopl =D > I ) {n,l| = 1.
m=0 =0 n=0
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e The overlap between two phase stdte§ ') and|m, @) reads

k k=l

Z Z qT(m’—m,cp—go’,n,l)’

=0 n=

<mv 90|m/7 90,> =

Ul

where

T(m' —m, o — ¢’ n,l) = (m"—m) [%Z(Zk —1+3)+ n] + 2d (o —¢"VH(n,l)

2
with ¢ defined in [4R). As a particular case, we have the orthondtyalation
<mv 90|m/7 90> = 5m,m’-

However, the temporally stable phase states are not athgotial.

3.2.4 Thek =1 particular case

To close Section 3.2, we now establish a contact with theltseesfi Klimov et E:
which correspond t& = 1 (i.e., x = —1). In this particular case, th&, Fock space is
three-dimensionald(= 3). It corresponds to the representation spacgof relevant for
ordinary quarks and antiquarks in particle physics and @iritg in quantum information.
For the purpose of comparison, we put

|¢1> = |070>7 |¢2> = |170>7 |¢3> = |071>'

Then, the operatorB;;, Fs»3, F33 and E3 assume the form

E13 = €%|¢1) (2| + e | pa) (1] + |d3) (B3]
Eoz = €|¢1) (3| + € | pa) (1] + |p2) (d2]
B33 = |¢a) (93| + [¢3) (2] + |h1) (1]

E3 = €w|¢51><¢2| + |d2) (93| + eii@‘¢3><¢1"

Operatorst, 3, 3 and E33 have a form similar to that of the phase operators

Erp = 1) (2| — |d2) (1] + |d3) (5]
Ers = 1) (3] — |d3) (01| + [d2) (]
Egs = |do) (3] — |d3) (2] + [61) (1]

introduced in Ref.[[15] in connection with qutrits. Althduthe E,3, F»; and E53 opera-
tors derived in the present work cannot be deduced fronftheE, s and s operators
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of Ref. [I5] by means of similarity transformations, the tagts of operators are equiv-
alent in the sense that their action on the), |¢,) and|¢s) vectors are identical up to
phase factors. In addition, in the case where we do not takeaiccount the spectator
state (¢s), |¢2) or |¢1) for Ey3, Eag Or Esg, respectively), ouSU; phase operators are
reduced toSU, phase operators which present the same periodicity conditie., their
square is the identity operator) as tf&, phase operators of Ref.]23]. In the= 0 case,
our SU, phase states turn out to be identical to the phase state:dday VourdadZ3
Finally, note that theé”; (and, more generallyy,;) operator is new; it has no equivalent in

Ref. [I5].

3.3 \Vector phase states in finite dimension

We have now the necessary tools for introducing vector phtdes associated with the
unitary phase operators,,;, F»; and F5;. We give below a construction similar to the
one discussed in Ref][2].

3.3.1 Vector phase states foF';; and Es,
To define vector phase states, we introducgthe 1) x (k + 1)-matrix
Z = diag(zo, 21, -+, 2k), 21=q"

and the(k + 1) x 1-vector

0

=1 Inl) |,

0

where then, [) entry appears on theth line (with/ = 0,1, ..., k). Then, let us define

k—1
1 :
[lu m, 90] Y Z e*ZH(n,l)gozn[n’ l] (43)
VEk—1+1=
From Eq. [2B), we have
0
Lm, el = | |Lm,e) |, (44)
0
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where|l, m, p) occurs on thé-th line.
We shall refer the statef (44) to as vector phase statessiméirix presentation, it is
useful to associate the matrix

E1q = diag (E14(0), F14(1), ..., E1a(k))

with the unitary phase operatdf,;. It is easy to check thak,4 satisfies the matrix
eigenvalue equation

2T

i,
[ E—1+1

Eld[lamagp] =e l,m,gp], em:m

(cf. Eq. (27)).

Other properties of vector phase stdtes, ¢| can be deduced from those of phase
stateg/, m, p). For instance, we obtain

e The temporal stability condition
e Ml m, o] = [l,m, ¢ +1]
for ¢ real.

e The closure relation
k—1

k
@Zl m, [l m,<p] =14,

=0 m=0

wherely is the unit matrix of dimension x d with d given by (I#).

Similar vector phase states can be obtaineddgrby permuting the: andi quantum
numbers occurring in the derivation of the vector phasestttr £y ;.

3.3.2 \Vector phase states fofs,
Let us define the diagonal matrix of dimensign 1) x (k + 1)
W = diag(wg, wy, ..., wg), w;, =w]"
and the column vector of dimensi¢oh+ 1) x 1
0

n—tal=| [—nmny |,
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where thel — n, n) state occurs on thieth line (with! = 0,1, ..., k). By defining

m o 1 e—iH(l,O)cp l n —n.n
we obtain
0
mell = | Ime) | (45)
0

where the||l, m, ¢)) phase state appears on th# line.
Equation [4b) defines vector phase states associated vétisthphase operator.
These states satisfy the eigenvalue equation

E3d[[l> m, ()OH = eiem[[la m, 90]]7 Hm =m-—-r,
where
Esq = diag (E34(0), Es4(1), ..., Eq(k)) .

The[[l, m, ¢]] vector phase states satisfy properties which can be dedraradhose of
the [l, m, ] vector phase states owing to simple correspondence rules.

4 PHASE OPERATORS AND PHASE STATES FORA,(2)
WITH < >0

4.1 Phase operators in infinite dimension

In the case: > 0, we can decompose the Jacobson operatomnda;” as

a7 = Biso\/E(N, Ny),  af = VF (N, Ny) (Bino)', i=1,2, (46)

where
Bioo= 3 3 elrttna =il ) (ny + 1,y (47)
n1=0mno=0
Ba = Y 30 M 000y ) (g mg +1). (48)

n1=0n2=0
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The operators’;.., i = 1, 2, satisfy

Bioo (Bioo) =1, (B1o)' Broo =T =) [0,12)(0,ms (49)
no=0

By (Baoe)' =1, (Bae)' Face =T =) |n1,0)(ny,0]. (50)
n1=0

Equations[(49) and (50) show tha}.., : = 1, 2, are not unitary operators.
In a similar way, operatorg; anda; can be rewritten

ag = _HEBOOV (Nl —+ 1)N2, CL;— = —RY/ (Nl + 1>N2 (E?;oo)Tv

where

Egoo = Z Z |7’Ll + 1,7’LQ><’I’L1,’I’L2 —+ 1|

n1=0n2=0

The E5,, operator is not unitary since

Es (E?,oo)T =1 Z 10, 1n2)(0, na, (E?,oo)T Esoo =1 — Z |n1,0)(nq, 0],

no=0 n1=0

to be compared witH (#49) anf {50).
The F5,, operator is not independent 6f ., and Es».. Indeed, it can be expressed as

E3oo = <E100>T E2<>07 (51)

a relation of central importance for deriving its eigenes{see Section 4.2).

4.2 Phase states in infinite dimension

It is easy to show that operatofs., and E,,, commute. Hence, that they can be simul-
taneously diagonalized. In this regard, let us consideeitpenvalue equations

Bioolz1, 20) = 21|21, 22),  Easol21, 22) = 22|21, 22), (21, 22) € C?, (52)

where

oo o0

‘21722) = Z Z Dnl,nQ‘n1,n2>-

n1=0n2=0
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By using the definitions of the nonunitary phase operafor$ &hd [4B), it is easy to
check from the eigenvalue equatiofs (52) that the compleficentsD,,, ,,, satisfy the
following recurrence relations

Dn1+1’n2ezH(n1+1,n2)<p _ Zanl’TmezH(nl,ng)@ (53)

i H 1 i H
Dn1,n2+1ez (n1,n2+1)p ZQDnl,n2€Z (m,m)so’ (54)
which lead to
Dypyny = G_iH(nl’n2)¢Z?lzgzD0’0.

It follows that the normalized common eigenstates of theratpes £, and Es., are
given by

21, 20) = V(L= [z P) (1= [22) Y Y 2ragze H0m2ing ny)
n1=0n2=0
on the domain{(z;,z3) € C? : |z1] < 1,]22| < 1}. Following the method developed in
Refs. [24[26] for the Lie algebrsu, ; and in Ref. [b] for the algebral,.(1), we define
the states

1
01,02,) = lim  lim e
101,02, ) a1t zgmvei®2 /(1 — |2 2) (1 — |22|2)| 1, 22)

whered,, 6, € [—r, +x|. We thus get

o0 o0
|91’ 0, 4,0) _ E E 621110162112926721*1(111,112)@‘”17 n2>.

n1=0n2=0

These states, defined 6t x S*, turn out to be phase states since we have

Eloo|917‘927 <P) = €i€1\91,92790)7 E2oo\91792790) = €i92|917927 <P)-

Hence, the operatois;., : = 1, 2, are (nonunitary) phase operators.
The main properties of thé,, 0, ¢) states are the following.

e They are temporally stable in the sense that
e 101,05, 0) = (61,02, 0 + 1),
with ¢ real.
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e They are not normalized and not orthogonal. However, fodfixethey satisfy the
closure relation

+m
2 / d91/ d92|91,92, (91,92,<P| =1
) _

In view of Eq. (51), we have
Es3s)01, 02, 0) = ¢®716,,60,, o),

so that theé,, 0, ) states are common eigenstatediq,, Fo., and Es...

To close, a comparison is in order. Fpr= 0, the |6, 0,,0) states have the same
form as the phase states derived in Rgf. [6] which preserdltseire property but are not
temporally stable.

5 TRUNCATED GENERALIZED OSCILLATOR ALGE-
BRA

For x > 0 the F, Hilbert space associated with, (2) is infinite-dimensional and it is
thus impossible to define a unitary phase operator. On ther dilind, for« < 0 the
F,. space is finite-dimensional and there is no problem to defiitany phase operators.
Therefore, forx > 0 it is appropriate to truncate thg, space in order to get a subspace
F... of dimension(o + 1) (o + 2)/2 with o playing the role of. Then, it will be possible
to define unitary phase operators and vector phase vectotsefdr, , truncated space
with > 0. To achieve this goal, we shall adapt the truncation proeediscussed in
Ref. [20] for theh, Weyl-Heisenberg algebra and in Ré1.[B, 5] for thg(1) algebra with
k > 0.

The restriction of infinite-dimensional spagé (x > 0) to finite-dimensional space
F.o With basis

{|n1,n9) : n1,ny ranging | ny + ny < o}

can be done by means of the projection operator

o o—nj o o—n2
Moo= > namah(na,mal = D g, ma)(na, mal.
n1=0 no=0 ns=0n1=0

Let us then define the four new ladder operators
bE =1l,a,, i=1,2.
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They can be rewritten as

o—1 o—no—1

b= () = 3. 0 Vil L ngje IO H Oy )

n2=0 n;=0

o—1 o—mn1—1

bf = (by)" = Z Z V Fa(ny,ny + 1)e HmmtD=Hmwmle iy, ) 1) (0, ny)

n1=0 n2=0
A straightforward calculation shows that the actiorbpfon 7, is given by
bf|n1, n2> _ /Fl (nl 11, nQ)e—i[H(m-l—l,ng)—H(m7n2)]90|n1 +1, n2>
for ni4+n,=0,1,...,0—1
bilo —ng,me) =0 for ny=0,1,...,0

bi|ni,ne) =0 for ni+mny=o0,0+1,0+2,...

and
by [ny, o) = /Fi(ny, ng)etHmma)=Hm=tnle;n - p)
for ny#0 and ny=0,1,...,0 -1

b;10,n0) =0 for ny=0,1,...,0
by |ni,ng) =0 for ny+ny=0+1,04+2,0+3,....

Similarly, we have

by |n1,no) = \/Fo(ni, ny + 1) Hmmmath)=Hmm)le |, ) 4 1)
for ni4+n,=0,1,...,0—1
byni,c—ny) =0 for n;=0,1,...,0

by|ni,ne) =0 for ni+mng=o0,0+1,0+2,...

and
by |n1,ng) = /Fa(na, n2)e+i[H("1’"2)_H("1’"2_1)]“"|n1, ng — 1)
for no#0 and n;=0,1,...,0 -1
by |n1,0) =0 for ny=0,1,...,0
by |ny,no) =0 for ny+ny=0+1,04+2,0+3,....

Therefore, the action of operatdss (i = 1, 2) on F, , with x > 0 is similar to that of;"

(:=1,2)onF, with k < 0.
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We may ask what is the algebra generated by operafoand N; (i = 1,2)? Indeed,
the latter operators satisfy the following algebraic rieled when acting on th&,, , space

by bf] =T+ k2N + No) = Y Fio — 1+ 1L1)|o — 1, 1){o — 1,1

=0

by ,b5] = I + K(2Ny + Ny) — g F(l,o =1+ 1D|l,oc —1){l,0 -1
=0
[Ni, b7] = 0,567, i, =1,2

bE0E) =0, [EBEBT] =0, i)

AR AR

Operatorsb;y and N; (i = 1,2) acting onF,, generate an algebra, notetl, ,(2).
The A, ,(2) algebra generalized,, (1) which results from the truncation of thé, (1)
algebra[.E] By using the trick to pass fromi,(2) to A,(1), see section 2.1, we get
A s-1(2) = A, 5(1). The A, 4(1) truncated algebra gives in turn the Pegg-Barnett trun-
cated algebr{@ whens — 0.

As a conclusion, the action of (i = 1,2) on the complement aoF, , with respect
to F,. leads to the null vector while the action of these operatarthe 7. , space with
k > 0 is the same as the action @f (i = 1,2) on the F, space withx < 0 modulo
some evident changes of notations. It is thus possible tty @pe procedure developed
for F,. space withx < 0 in order to obtain unitary phase operators®y, with x > 0
and the corresponding vector phase states. The derivdtithee wector phase states for
the A, ,(2) truncated algebra can be done simply by replagibg o. In this respect, the
o truncation index can be compared to thguenching index (or Chen index) used for
characterizing the finite-dimensional representatior) or (£, 0) of SU?,.

6 APPLICATION TO MUTUALLY UNBIASED BASES

We now examine the possibility to produce specific baseswkress mutually unbiased
bases (MUBSs) in quantum information, for finite-dimensioH#bert spaces from the
phase states o' ,;(1), F24(l) and E34(1). Let us recall that two distinct orthonormal
bases

{laca) :a=0,1,...,N — 1}
and
{|pB)y : p=0,1,...,N — 1}
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of the N-dimensional Hilbert spaces” are said to be unbiased if and only if

1
Va=0,1,...,N—=1, ¥V6=0,1,...,N =1 : |[{ac|bfB)| = —=
VN

(cf. Refs. [9[IB[T7,27]).

We begin with theél, m, ¢) phase states associated with fig(/) phase operator (see
(28) and [2]7)). In Eq.[(26),can take the values 1, ..., k. Let us putl = 0 and switch
to the notations

k=N-1, m=a, [n,0)=|N—-1-n)

(with a,n = 0,1,..., N — 1) for easy comparison with some previous works. Then,
Eq. (Z6) becomes

N-1 .
1 1 2mi
=—> - N — o nal [N —1—n).

For ¢ = 0, Eq. (5%) describes a (quantum) discrete Fourier trandfGHrihat allows
to pass from the sef|N — 1 —n) : n = 0,1,...,N — 1} of cardinal N to the set
{]0,,0) : « = 0,1,..., N — 1} of cardinal N too. In the special case whegeis
guantized as

N —1
p=-—r—0 a=0,1,...,N —1, (56)
equation[(55) leads to
1 N—-1
0,0, ) = Jaa) = == Y~ gg "N — 1 =), (57)
\/N n=0

where

271
qo = €XpP W .

Equation [(5]7) witha # 0 corresponds to a (quantum) quadratic discrete Fouriestran
form.L3 E2 I3 |y this regard, note that thea) state in [5]7) can be identified with the

lacy; ) state withr = 0 discussed recently in the framework of the quadratic discre
Fourier transformitd Following Ref. [14], we consider the set

By={|[IN-1-n):n=0,1,2,...,. N—1} ={|n) :n=0,1,2,...,N -1}
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as an orthonormal basis for thé-dimensional Hilbert space. This basis is called compu-
tational basis in quantum information. Then, the sets

Boa:{|a0z>:a:0,1,2,,,,,N_1}’ a:0,1,2,...,N—1

constituteN new orthonormal bases of the space. Hyg basis is a special case, corre-
sponding tor = 0, of the B,, bases derived in Refl_J[L4] from a polar decomposition of
the su, Lie algebra. The overlap between two baggs and By, is given by

N—

1
(ac|bB) = NZ Jbma)/zen(s a),
-0

a relation which can be expressed in term of the generalimﬁ;@surﬂl

|w|—1
S(u,v,w) = Z eim(uk?tvk)/w,
k=0
In fact, we obtain
1
(aalbB) = < S(u, v, w), (58)

with
u=a—-0b, v=—(a—bN—-2a—-p), w=N.

In the case wher&/ is a prime integer, the calculation 8{u, v, w) in (B8) yields

1
[{aa|bf)| = —=, a#b, «,=0,1,...,N—1, N prime. (59)
VN
On the other hand, it is evident that
1
|(n|aa)|:\/—ﬁ, n,a=0,1,...,N—1 (60)

holds for any strictly positive value df. As a result, Eqs[($9) anfl (60) shows that bases
By and By, witha = 0,1,..., N — 1 provide a complete set &f + 1 MUBs whenN is
a prime integer.

A similar result can be derived by quantizing, accordingB8)( they parameter
occurring in the eigenstates 6%,(0).

The form of theF,(1) phase operator being different from those®f (/) and Ex4(1),
we proceed in a different way for obtaining MUBs from them, ¢)) eigenstates of
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Es4(1) (see [28) and(29)). We pyt = 0 in (£8) and apply the#3(N:N2)¢ gperator on
the resultant state. This gives

eV, N2)“"||l m, 0))

[—z—n I+1— )cp} W™l —n,n).
For the sake of comparison, we introduce

o
I=N-1, m=aq, lezexp<%), l—n,n)=|N—-1-n)

and we quantize» via

/{ZQ
@z—ﬂﬁa, a=0,1,...,N —1.

Hence, the vector
e PNIL 1, 0)) = [aa)

reads

N—
lact) = Z " a/2+"a|N 1—n), (61)
n=0
which bears the same form 4s](57). ConsequentlyMa prime integer, Eq[($1) gener-
atesN MUBs By, witha =0,1,..., N — 1 which together with the computational basis
By form a complete set aV + 1 MUBs.

7/ CONCLUDING REMARKS

The main results of this work are the following.

The sus, sus; andhy ® hy algebras can be described in an unified way via the intro-
duction of theA, (2) algebra. A quantum system with a quadratic spectrumxfgr 0)
is associated withd,(2) ; for k = 0, this system coincides with the two-dimensional
isotropic harmonic oscillator.

In the case: < 0, the unitary phase operatois,(;, F», and E3,) defined in this paper
generalize those constructed in R¢f.][15] for an three-level system (corresponding
to d = 3) ; they give rise to new phase states, namely, vector phasessivhich are
eigenstates obtained along lines similar to those devdlop&ef. [2,[2P] for obtaining
a vectorial generalization of the coherent states intredur Ref. [¥]. Still forx < 0, a
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new type of unitary phase operatdf, ) can be defined ; it specificity is to span all vectors
of the d-dimensional representation spacef(2) from any vector of the space.

In the casex > 0, it is possible to define nonunitary phase operators. Thaybea
turned to unitary phase operators by truncating (to somi finit arbitrarily large order)
the representation space.4f (2). This leads to a truncated generalized oscillator algebra
(A, -(2)) that can be reduced to the Pegg-Barnett truncated osciﬂlagebr@ through
an appropriate limiting process whetre— 0.

Among the various properties of the phase states and veletmepstates derived for
k < 0andx > 0, the property of temporal stability is essential. It has gaiealent in
Ref. [23]. In last analysis, this property results from thigaduction of a phase factor
() in the action of the annihilation and creation operatorsigf2). As an unexpected
result, the quantization of this phase factor allows towdemutually unbiased bases from
temporally stable phase statesfox 0. Thisis a further evidence that “phases do matters
after aII”[@ and are important in quantum mechanics.
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