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Evolutionary Algorithms (EAs) have been widely employed to solve water resources problems for nearly
two decades with much success. However, recent research in hyperheuristics has raised the possibility of
developing optimisers that adapt to the characteristics of the problem being solved. In order to select
appropriate operators for such optimisers it is necessary to first understand the interaction between
operator and problem. This paper explores the concept of EA operator behaviour in real world appli-
cations through the empirical study of performance using water distribution networks (WDN) as a case
study. Artificial networks are created to embody specific WDN features which are then used to evaluate
the impact of network features on operator performance. The method extracts key attributes of the
problem which are encapsulated in the natural features of a WDN, such as topologies and assets, on
which different EA operators can be tested. The method is demonstrated using small exemplar networks
designed specifically so that they isolate individual features. A set of operators are tested on these
artificial networks and their behaviour characterised. This process provides a systematic and quantitative
approach to establishing detailed information about an algorithm's suitability to optimise certain types
of problem. The experiment is then repeated on real-world inspired networks and the results are shown
to fit with the expected results.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Evolutionary algorithms (EAs) have been applied to a countless
number of problems across a wide variety of disciplines. Their
relative simplicity and ability to work well on new problems have
led to them being adopted in fields as diverse as engineering,
economics and robotics. As one would expect, EAs have also been
applied to water resources problems with a large degree of success,
for example in the fields of groundwater remediation (Piscopo
et al., 2014), controlling channel bed morphology (Nicklow et al.,
2003), determining the hydraulic characteristics of production
wells (Jha et al., 2004) and in particular to the field of water dis-
tribution network optimisation (e.g. Savic and Walters, 1997, Bi et
al., 2014). A key aspect of EAs is that they have a number of pa-
rameters to set when first considering a new problem (e.g.
ll).
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population sizes, mutation and crossover rates, selection pressure
etc.) and this usually means that a period of parameter tuning is
necessary to deliver acceptable performance. To alleviate this
research has been carried out on algorithms to adapt these
parameter settings automatically, removing the need for the
parameter tuning period. A natural extension to this process then is
to consider whether not just the parameters, but the operators
themselves might be selected in an adaptive fashion, leading to the
field known as selective hyperheuristics (Burke et al., 2013). In
essence, this field explores the potential for algorithms to function
beyond the strict application of selection, mutation and crossover
phases and aims to develop a more dynamic approach with a
greater number of operators to produce better results with less
human intervention. However, to develop a suitable pool of oper-
ators from which a set might be chosen we must first understand
the relationship between problem characteristics and operator
function. The work herein introduces a process for exploring this
interaction, and provides empirical results on a range of different
artificial and real-world problems using water distribution net-
works as an example case study.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

e interface between evolutionary algorithm operators and problem
tion network design, Environmental Modelling & Software (2015),

https://core.ac.uk/display/43094947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by/4.�0/
mailto:E.C.Keedwell@ex.ac.uk
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2014.12.023
http://creativecommons.org/licenses/by/4.�0/
http://dx.doi.org/10.1016/j.envsoft.2014.12.023
http://dx.doi.org/10.1016/j.envsoft.2014.12.023


K. McClymont et al. / Environmental Modelling & Software xxx (2015) 1e112
1.1. Water distribution network design problem

Water distribution networks (WDNs) represent one of the most
complex and key infrastructures in use today and are responsible
for the transportation of clean drinking water from reservoirs and
storage tanks to industrial and residential consumers. Failure of
these networks to adequately supply the demand can cause sig-
nificant problems in the day-to-day running of businesses and
homes.

A standard WDN is comprised of pipes, nodes (junctions and
demand points), hydraulic devices (such as pumps) and sources
(tanks and reservoirs) that constitute the entire infrastructure that
delivers water from the source (e.g., reservoir) to various locations
where it is drawn from the network for consumption (e.g., resi-
dential housing or industrial sites). With increasing demand and
tighter regulation, water companies continue to search for more
optimal operations and improvements in their networks and so
have in the last two decades looked towards emerging optimisation
methods to help solve their problems. Real-world WDNs are
complicated structures that require constant operational manage-
ment, maintenance and rehabilitation. In order to satisfy consumer
demand, the networks must be constructed with a good layout that
connects to all points of demand and should provide the best
possible hydraulic conditions and operational requirements all
whilst minimising network cost. This is known as the WDN design
problem.

The WDN design problem is known to be an NP combinatorial
problem (Yates et al., 1984). Even for relatively small networks, the
number of possible combinations of pipes is very large which
makes enumeration of all the possible designs impossible. If, for
example, therewere six potential sizes for each pipe in a network of
just thirty pipes, there would be 630 ¼ 2.21 � 1023 possible com-
binations e far more than is possible to fully enumerate within a
reasonable time. This basic complexity is further compounded
when advanced controls such as pump scheduling and valve op-
erations are considered in combination with the much larger
models (e.g. 1000s of pipes) that are likely to be found in the real
world. Finally, when the potential for independency in looped
structures and the non-linearity of the hydraulic equations is
included, it becomes clear theWDN design problem is difficult non-
linear, multi-modal problem. It is because of this that researchers
and practitioners look to more advanced meta-heuristics to opti-
mise their WDN designs.

1.2. Optimisation of WDNs

Since the first application of optimisation methods (Blum and
Roli, 2003) to the problem of water distribution network (WDN)
design researchers have collectively established a large body of
literature on the subject (Marchi et al., 2014). The majority of these
studies are focused on the application of novel optimisation
methods to this problem, novel formulations of the problem
(McClymont et al., 2013), or case studies of real-world instances. In
addition, these studies have often employed or proposed new
meta-heuristic methods; predominantly those from Evolutionary
Computation (EC) (Coello et al., 2007) and variants of Evolutionary
Algorithms (EAs) (Laumanns et al., 2000). More recently, there has
been a shift in focus to hybrid (Keedwell and Khu, 2005) or more
adaptive methods (Afshar, 2006) for the optimisation of these
problems such as multi-method search (Vrugt and Robinson, 2007;
Vrugt et al., 2009; Raad et al., 2010) and selective hyper-heuristics
(McClymont et al., 2013).

Thework presented here investigates search operators and their
interaction with features in the fitness landscape for water distri-
bution network optimisation, the first time this has been
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attempted, although attempts have been made to undertake
studies of a similar nature in other domains (Franchini and Galeati,
1997). In a similar study, Zecchin et al. (2012) investigated Ant
Colony Optimisation Algorithms in relation to Water Distribution
Network problem characteristics and also highlighted the impor-
tance of these studies. Indeed, the optimisation of WDNs by
Evolutionary Algorithms (EAs) in the early 1990s (Walters and
Lohbeck, 1993; Simpson et al., 1994; Savic and Walters, 1995) was
the start of a wider effort to find new, more efficient and effective
optimisation techniques for this difficult real-world problem.

1.3. Performance analysis

In the search for better optimisation methods, papers frequently
attempt to analyse the performance of meta-heuristics by applying
them to a set of large, realistic WDNs (Walters et al., 1999; Cheung
et al., 2003) or other water networks, such as in Fu et al. (2008). This
experimental method provides vital information on the scalability
of the proposed techniques. However, when considering the use of
adaptive techniques to select operators it is important to under-
stand the impact that individual search space features have on the
behaviour and suitability of a method to that type of search space.
What is required is to establish a fundamental understanding of the
effect of different WDN features and landscape attributes on opti-
misation methodologies and lay the ground work for the new ap-
proaches described later. To make confident assertions about the
true behaviour, such as the explorative or exploitative search of an
algorithm, quantitative analysis of the algorithms is required (Deb
and Jain, 2002; Merz, 2004).

Furthermore, while these works are important in developing
better techniques for solving this class of difficult and constantly
evolving real-world problems (McClymont et al., 2013), there has
been relatively little work conducted on the analysis of the
fundamental rules of how these optimisation methods behave
under different conditions in the context of the WDN problem.
Consider, for example, the significant differences in the hydraulic
properties of a looped network versus a dendritic network (Walters
and Lohbeck, 1993) or, similarly, a gravity fed network versus a
network of pumps with tank storage. These variations in structural
and hydraulic properties will result in very different optimisation
search space landscapes for operators to traverse. Therefore, while
one optimisation method might perform well on certain types of
network, it is equally likely that it will perform less well on others.
It is important to understand this relationship, between optimiser
and problem, in order tomakewell-grounded claims about any one
method's suitability for solving the WDN problem, or certain var-
iants of it. This understanding will also help to guide algorithm and
operator selection for this class of problems.

1.4. Problem and operator linkage

It is clearly shown by the No-Free-Lunch theorem (Wolpert and
Macready, 1997) that not all optimisers are well suited to solving all
problems. Similarly, it can be said that not all operators in an
optimiser are well suited to solving all problems. This statement
can be generalised somewhat to say that not all optimisation op-
erators behave in the same way and therefore are not suited to all
problems. The question therefore is: to what extent is it possible to
ascertain a profile detailing the behaviour of an optimiser or its
operator(s) and to determine how this profile relates to specific
problems and problem features?

Malan and Engelbrecht (2013) provide some insight into the
concept of characterising generalised fitness landscapes and the
early work by Kauffman (1989) suggests adaptation based on these
variances in the landscape is feasible. Furthermore, studies such as
e interface between evolutionary algorithm operators and problem
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Moraglio and Poli (2004) show how specific operators can have
definite and identifiable attributes and behaviours (which has also
been commented upon in the traditional evolutionary literature
(Wright, 1932)).

This work addresses some of the current challenges facing EA
research and specifically EAs for hydroinformatics as outlined in
Maier et al. (submitted for publication) and is primarily concerned
with exploring methods for the “development of knowledge of the
underlying searching behaviour of different searchmethodologies”.
The work also touches on the “development of knowledge of the
fundamental characteristics of the problem being optimised at the
level at which optimisation algorithms operate” a concept that is
inextricably linked with that above, as noted by Maier et al. in the
section “Interaction between behaviour and fitness landscape
characteristics”. The behaviour of an optimiser (or part thereof) is
always in response to the landscape and features of the problem
being explored. One does not climb a downhill and roll up a cliff-
face.

The work presented below constitutes a novel approach to
quantitatively analysing and comparing different Evolutionary Al-
gorithm operators on the WDN design problem. The method ex-
tracts key generic attributes of the WDN problem which are
encapsulated in the natural features of the problem, such as
network topologies and variable types, on which different EA op-
erators can be tested. The method is demonstrated using small
exemplar networks designed specifically so that they isolate indi-
vidual features. A set of operators are tested on these artificial
networks and their behaviour characterised. The method provides
results that can be used to understand what, if any, linkages exist
between the performance of an operator and certain features of a
WDN, for example, the presence of pumps or the existence of
looping topology. Finally, the operators are tested using real-world
inspired networks for which the presence of each WDN feature is
assessed. The test is a means of providing a level of confidence in
the accuracy of the information learned about each operator.

2. Method

This section details the method used to compare and analyse the behaviour of
EA operators and their relationship to problem features, described in general terms.
The method described below is applied in this study to the WDN design problem.

2.1. A common approach to comparing methods

The majority of studies in the literature approach algorithm analysis and com-
parison in the same way, following from early studies and their proposed meth-
odologies (Whitley et al., 1996; Zitzler et al., 2000). Usually, a set of benchmark
problems are selected; either real-world examples or manufactured mathematical
constructs and the algorithms to be compared are configured to operate effectively
on the selected problems. This can be achieved by control parameter tuning on a
subset of the problems or by using standard parameter values. The algorithms are
then applied to (i.e., optimise) each problem and the results are collected. If the
algorithm is a stochastic optimisation method, such as a meta-heuristic, then it is
applied multiple times (known as trial runs) to each problem in order to collect a set
of results that provide statistical information about performance. The median result
is usually used for comparison for sets of trial run results. This process is illustrated
in Fig. 1.

The comparative run setup is common to most studies and provides a practical
and easily repeatable means for collecting data about algorithm performance. Any
measure can be used, from mean or best objective value to the distribution of
Fig. 1. A common algorithm testing process. See Fig. 3 in e
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solutions in parameter space. The algorithms can be compared using their final
solutions alone or by comparing metrics over the whole optimisation process, such
as their rate of convergence, if their optimisation scales (i.e., both generational) are
compatible. The benefit of this setup is that the comparison is easily understood and
reflects the actual optimisation process used when practically applied to real-world
problems.

The methodology presented in this paper takes this experimental approach and
extends it to include preliminary steps to characterise the optimisers' performance
in relation to specific features.
2.2. Method for characterising optimisers

Rather than applying the optimisers directly to problems and comparing overall
performance, the method proposed here first attempts to characterise which
problem features, if any, are related to an algorithm or operator's performance to
provide a better insight into the underlying causes of that performance.

Unlike the common approach shown in Fig. 1, this method follows a preliminary
testing phase. The method is as follows: (1) select operators, (2) select problems, (3)
identify problem features, (4) synthesize artificial problems, (5) test on artificial
problems, (6) analyse results and determine linkages, (7) select themost appropriate
operators for selected problems, (8) test on actual problems, (9) analyse results. This
is conceptually shown in Fig. 2.

Selecting the operators and problems are common tasks and not described here.
The process of identifying problem features is somewhat problem dependent. For
example, the WDN problem examined in this study allows for easy categorisation of
problem features as the different assets and topologies of the network are the
driving force between the hydraulic differences and so objective function
landscapes.
2.3. Defining problem features

It is common to use mathematical test problems in addition to using real-world
benchmarks. These are well defined problems with known features and can be
quickly evaluated to enable large scale studies. There are many test problems
available in the literature, from those identified by Van Veldhuizen (Van Veldhuizen
and Lamont, 1998; Van Veldhuizen, 1999) through to more complex problem suites
like the BBOB test functions (Hansen et al., 2010). This study is focused on the
specifics of a real-world problem and so does not employ these test problems,
although the notion of breaking down the problem into elements to construct new
theoretical test problems is used here.

Furthermore, as is specified in Maier et al. (submitted for publication) (and
outlined above), problem features are often described in terms of fitness landscapes:
which can been seen to be the general properties of the functionalmapping between
parameter space and objective space. These features and themethods used to detect,
analyse and capitalise on them are highly important in both the specific research of
hydroinformatics but also to EA research and optimisation at large. This paper takes
an alternative approach, exploring the specific features associated with the con-
struction of a WDN. This is for two reasons: (1) the features are easily identifiable
and understood by the general practitioner; and (2) the physical features of the
WDN define the fitness landscape and so can be used interchangeably with those
generalised features. Indeed, it should be noted that the categorisation of problems
can be done on any set of features (including general ones) and is not limited to
those used in this study.
2.4. Artificial problems

Synthesis of the artificial problems is similarly problem dependent. The aim is to
take the set of identified features and synthesise artificial networks that represent
each of these features independently and in combination with other features. For
example, the presence of pumps and valves in a network present two key features in
theWDN problem. Using these two features, four artificial networks can be created:
no pumps or valves; valves but no pumps; pumps but no valves; both pumps and
valves. These problems provide the basis for a systematic analysis of the affinity of
any method to specific problem features. I.e., an EA may be well suited to problems
with pumps, while others may perform better without pumps. By separating the
features and selectively recombining them, it becomes possible to identify corre-
lations in performance.
xperimental setup for the process used in this study.
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Fig. 2. Illustration of the method for characterising EA operators given different problem features encapsulated in artificial water distribution networks.
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2.5. Characterising & selection of optimisers

Using the set of artificial problems, each optimiser is applied to each problem
(over a number of trial runs for a fairer comparison) to produce a matrix of results.
Thematrix of optimisers against problems (and by proxy, features) provides ameans
for detecting patterns between optimisers and problem features. Given thematrix of
results, it becomes possible to make a more informed selection of optimisers to
apply to the larger, more expensive real-world or benchmark problems. For
expensive to evaluate problems, like the WDN problem, testing large numbers of
optimisers on these problems is often unfeasible given the usually limited resources.
The artificial problems, by contrast, should be smaller instances of the problem and
faster to execute. Indeed, in this study, the artificial problems were orders of
magnitude faster in computing time to evaluate which made the wider comparison
of pairs possible.
Table 1
Diameter and associated costs for pipes in the artificial
networks.

Diameter (mm) Cost ($/m)
3. The water distribution network design problem

As stated above, in its basic form, a WDN is made up of pipes,
junctions, demand points, hydraulic devices (such as pumps) and
water sources (tanks and reservoirs). The network transports water
from sources to various locations where it is drawn from the
network for use. A topological illustration of an example network is
given in Fig. 3.

Ideally, WDNs are constructed with a layout that connects to all
demand points and provides the best possible pressure and water
quality to satisfy demand. The design problem is primarily con-
cerned with the sizing (diameters) of pipes in the network as well
as scheduling of pumps and valve operations. Changing pipe sizes
affects the hydraulic conditions in the network and the ability to
serve the various demand points. Large pipe diameters are more
expensive and so the aim of the WDN design problem is to reduce
the cost of the network (minimize pipe sizes) while still satisfying
customer demands (i.e., maintaining adequate pressure throughout
the network). Similarly, turning pumps on and off alters the flow of
the network and can increase the flow and pressure in areas of the
network which are not well serviced by gravity feed alone,
although the running of pumps has an additional operational cost
in terms of energy consumption.

The single-objective WDN design problem is traditionally
formulated as follows:

Minimise : cost¼
Xk

i¼0
ðci� liÞþ

Xn

a¼0

Xm

b¼0

�
pa;b�eb

�

Given: head>30m; and head <40m; and velocity <2:5ms�1

This formulation aims to minimise the combined cost of the
pipe infrastructure and the energy costs associated with running
Fig. 3. An example of a water distribution network schematic (topological illustration).
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each pump. The symbols are as follows: k ¼ number of pipes in the
network, ci ¼ is the cost per metre of the selected diameter of pipe i
(e.g. as shown in Table 1), li ¼ the length of pipe in metres, n ¼ the
number of pumps in the network,m¼ the number of timesteps in a
simulation, pa,b ¼ a binary value determining whether pump a is on
at timestep b, and eb ¼ the cost of running a pump at timestep b in
US dollars. Additional constraints on the feasibility of a design are
given by head pressure and velocity requirements on the network.
The head and velocity constraints are considered violated if, at any
time point, the network exhibits values outside of the given con-
straints. As noted later, the network is solved using EpaNET and
these values taken from the solver's results.
3.1. WDN features

While much of the optimisation literature (beyond hydro-
informatics) is concerned with the mathematical features of a
problem, such as the mapping between parameters and objectives,
and the landscape this creates, this study looks at the practical
features present in the WDN problem. There are methods for
testing for general landscape properties (multi-modality, deceptive
minima, etc.) but this study looks at the base properties of the
problem (topology and assets) that gives rise to these landscapes.
The aim is to relate the operators to the problem, not general
landscape properties. The WDN problem has a number of practical
features, such as the topology of the network and the presence of
different WDN assets, which directly relate to how easily the
problem can be solved. The different topological features and assets
are described below with a brief description of their impact on the
problem.
3.1.1. Topology
There are two overarching or contrasting types of network to-

pology: dendritic and looped networks. These extremes are
described below, however it should be noted that most real-world
networks are a combination of the two and are shown as ‘hybrid’
networks in the experiments below.
150 25
200 75
250 125
300 175
350 225
400 275
450 325
500 375
550 425
600 475
650 500
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Fig. 4. Illustration of a simple Evolutionary Algorithm (where circles represent solu-
tions and black arrows the process flow).
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Dendritic networks have one or more water sources at the
“centre” of the network. The network then extends from this source
with pipes splitting into separate branches (like a tree) and serving
different areas. The branches are not interconnected and so hy-
draulically separate to a degree. Each branch eventually terminates
in an isolated end node or terminus. These networks are relatively
simple to optimise as different areas have little effect on others.

Looped networks, in contrast, do not have end nodes and there
are few branches in the network. Instead, the nodes are connected
by “loops” that creates multiple routes of flow between the source
and each demand node. These networks have more complex hy-
draulics and changing any one pipe can have a significant effect on
many other pipes. The problem is therefore more complex with
interdependencies between parameters. The networks are more
robust than dendritic networks as demand nodes are not reliant on
one route to the source and so can sustain a greater number of pipe
failures and still function effectively. The types of loops can vary,
with the most common being grid like structures that reflect the
modern designs of cities.

The placement of water sources also has an effect on the
network type. A network could be supplied by a single source or a
concentration of sources in the same area. Equally, the sources to a
network can be distributed across the network. The latter being
more common when tanks are introduced in to a network.

3.1.2. Assets
Modern WDN systems are built with a wide variety of different

assets each of which will have an effect on the hydraulic conditions
in the network, from the essential pipes, junctions and valves to
more complex units such as strainers, valves, tanks, metres and
detection units. This study explores the effect of core assets which
are common to most urban WDNs, which are: reservoirs, tanks,
flow control valves, and time controlled pumps.

Reservoirs and tanks provide the source water to a network and
dictate much of the network structure and base flow conditions of
the network. Gravity fed networks (where no pumps are required
to maintain adequate pressure in the network) are entirely
dependent on the placement and number of water sources in the
network. Reservoirs represent the most common water source in
the UK whereas tanks are often used (in combination with pumps)
to introduce a greater level of resilience in a network which has
pressure issues and or potential for water outages from the sup-
plying reservoir(s). Networks with more than one source are often
more robust to failure and able to provide more stable pressure
conditions in the network.

Valves and pumps are devices designed to manage water flow
and pressure in the network to improve conditions over those given
by basic gravity fed systems. Pumps allow water to be pumped up-
stream to areas of the networkwhichmaynot be serviced bygravity
fed systems or have a reduced pressure. Pumps can also be timed to
accommodate increased demand at certain periods in the daily cy-
cle. Valves are used to prevent cyclical back-flow in looped systems
and control water flow, being able to restrict flow at low demand
periods and opening during higher demand periods. Both of these
assets make the hydraulics of a network more complex and have an
effect on the pipe diameters that are optimal for the network.

The artificial networks used in this study are built from a com-
bination of secondary reservoirs, a tank, a flow control valve, and
time controlled pumps. The diameters of the pipes and the
pumping schedule are used as decision variables in the search.

4. Evolutionary algorithm

An elitist Evolutionary Algorithm (EA) was used in this experi-
ment to test different genetic operators. An EA is an iterative
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optimisation process which uses a population of candidate solu-
tions which are varied to explore the search space. A standard EA
takes a random initial population and then iterates through the
three following processes: variation, evaluation, and selection
(shown in Fig. 4). Variation is the process by which each of the
existing candidate solutions are altered to create a new solution to
be considered. These alterations are made using genetic operators
and are most commonly mutation and/or crossover. The evaluation
step assigns the objective value to each of the new candidate so-
lutions by evaluating them on the problem (in this case the WDN
problem). The selection step chooses which of the previous
(parent) solutions and the new (child) solutions are kept for the
next iteration to form the new set of parent solutions. This exper-
iment varies the genetic operator in the variation step. The oper-
ators are described in a section below.

The EA used in this study used an elitist selection strategy,
ranking all of the parent and child solutions and selecting the best
half (minimal cost). The parents selected for crossover operators
were selected at random from the elitist parent population. The EA
was given a population of 20 solutions (i.e., 20 parents to produce
20 children) and was run for 1000 generations on each problem
(artificial and benchmark). The EAs were trialled 100 times on each
problem and the median values were taken for the results to create
a more fair comparison of results and reduce the impact of outlier
results in the study.
4.1. Genetic operators

As explained above, the genetic operators in an EA provide the
operational process for taking one or two existing solutions and
generating new candidate solutions based on these pre-existing
solutions. Mutation operators take one solution, for example, and
perturb the existing parameter values to create a variation on the
parent solution. Crossover, on the other hand, takes two parent
solutions and swaps some of the parameter values between the two
parents to create two new solutions which are recombined values
from both parents. The latter being an emulation of the natural
mating process. In addition to these traditional operators, this
study explored operators designed specifically for the WDN design
problem. Each of these six operators are described below.
4.1.1. Mutation (variants)
Two mutation operators were used that mutate only one pipe

diameter selected at random from the solution's parameter vector.
The mutation operators were: random and 1 step size variation.
The random mutation replaced the existing pipe size with a uni-
formly random selected pipe diameter from the set of valid pipe
diameters. The 1 step mutation increased or decreased the pipe
diameter (chosen at random) by one pipe size. If the pipe was the
e interface between evolutionary algorithm operators and problem
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smallest possible size it automatically increased it. Conversely, if it
was the largest possible size it decreased it.

4.1.2. Crossover (variants)
The crossover operator selected two solutions at random and

recombined their values to create a new solution. There were two
variants of the crossover operator: n-point crossover and uniform
crossover.

The n-point crossover placed a random number of crossover
points in the parameter vector and swapped the parameter values
between the odd and even points to create two new solutions. The
number of crossover points was between 1 and one quarter of the
parameter vector length (i.e., one quarter of the number of pipes in
the network). The crossover points were selected at random.

The uniform crossover operator generated a mask of random
Boolean values of the same length as the parameter vector. For
every parameter position that contained a true value, the param-
eter values were swapped. By randomly swapping parameter
values, this crossover operator generated two new solutions.

4.1.3. Pipe smoothing
The locally adaptive operator (inspired by the work of Johns

et al., 2013) which has a pipe smoothing effect was the first of
the two specialised operators for the WDN design problem. Firstly,
this operator randomly mutated a pipe size using the 1 step mu-
tation operator. Next, the pipe smoothing operator calculated
which nodes had excess head (i.e., more pressure than necessary)
and placed them in a list. It then selected one of these nodes at
random and decreased the upstream pipe diameter by one size, to
reduce the excess head at that node. This operator therefore pro-
vided a corrective operation to the 1 step mutation operator.

4.1.4. Pipe expander
The pipe expander operator (employing an opposing operation

to the pipe smoothing operator) again took the 1 step mutation
operator and applied an additional pipe expansion operation. The
operator worked by selecting a pipe at random and, if the down-
stream node had a head deficit or head less than 40 m it would
increase the pipe size by one step.

5. Experimental setup

Two experiments were conducted in this study where a stan-
dard EA was used to optimise two sets of networks e one set of
artificial networks and one set of benchmark networks.

In the first experiment, shown in Fig. 3, a set of different genetic
operators were tested, each embedded in individual EAs. The first
experiment tested each of the operators on the artificial problems
to determinewhich features, if any, had an impact on the efficacy of
the operator for optimising the single objective cost minimization
problem. After each of the operators were tested, the operators
were tested on the benchmark problems and the results analysed in
the context of the earlier results. A second experiment was then
conducted which examined the effect of pairing operators. The
pairs of operators were compared on artificial problems and the
impact on each of the operator's performance was analysed.

5.1. Network simulation

The hydraulics for the networks were simulated using the well-
known EPANet 2.0 hydraulics solver (Rossman, 2000). All the re-
sults were calculated using the full period simulation and the worst
pressure values from thewhole period taken for the objective value
(i.e., the lowest head for each node over the whole period).
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In this experiment, 60 networks were used which varied the
presence of loops, dendritic branches, combined loops and den-
dritic branches (hybrid), single source, double sources (close),
double sources (spread), valves, and pumps. Each combination of
these features were used based on the three network structures,
given in Fig. 5 below. The position for the optional elements
(additional sources, valves and pumps) are also shown for
reference.

All the problems are constructed of 24 pipeswith the same set of
potential diameters and costs. The maximum total and minimum
total costs for all of the artificial networks are the same, $600 to
$1200 range. The diameters and associated costs per metre are
given in Table 1.

For networks with pumps, the pumping costs were fixed at $50
per hour with schedules controlling the activation of pumps every
3 h allowing for a total of 8 changes to the pumping schedule in a
24 h period.

5.2. Benchmark problems

Three benchmark networks were used in the second experi-
ment: Two Loops, Hanoi, and Anytown (Walters et al., 1999). These
three networks can be downloaded from: http://emps.exeter.ac.uk/
engineering/research/cws/resources/benchmarks/ and were
selected as they represented well known benchmarks to compare
the algorithms. Anytown presents the most complex network and
is the only benchmark to include features such as pumps and tanks.

5.3. Parameter structure

The WDN problem is concerned with minimizing the cost of the
network's construction with a constraint on valid values. The
structure of the network, placement of sources, valves and pumps
are fixed. Only the pipe diameters and, where applicable, pumping
schedules could be altered in the network and as such are pre-
sented to the evolutionary algorithm as decision variables. A solu-
tion represented a list of the selected pipe size for each pipe in the
network. This was represented as a vector of pipe diameter values,
where the value at a given position related to a specific pipe in the
network. I.e., a solution K with N pipes and 8 pump activation
points is represented as K ¼ {d1, d2, d3, …, dn, p1, p2, …, p8}. The
diameters were stored as integer numbers representing the index
of the pipe size (i.e., 0¼ smallest pipe,1¼ second smallest pipe, and
so on). The pipe activation values were stored as integers in the set
{0, 1} where 1 indicates the pump is on for the next 3 h period and
0 indicates the pump is off for the next 3 h period. Three hour
periods were selected as it reduced the size of the parameter string
and fitted well with the diurnal pattern of the network.

5.4. Experimental settings

The settings for the two experiments, including evolutionary
algorithm parameters are given in Table 2 below.

6. Results

6.1. General performance

Fig. 6 shows themedian final objective value obtained by each of
the six operators on all of the 60 artificial problems. The problems
are given on the x-axis and the median final objective value on the
y-axis (to be minimized). (Note: all the artificial problems objective
value ranges are the same). Each of the operators are indicated with
the same symbol for each objective.
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Fig. 5. The three network structures used to create the artificial networks for testing different problem features. Open boxes represent reservoir sources, circles are junctions and
demand nodes, the pump is shown by a circle with an outlet, the valves as arrows and the tank as a rounded rectangle with outlet. One source is fixed while all others are optional
depending on the feature(s) needed in the artificial problem.
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The 1-Step Mutation operator performs the best across all the
problems with the exception of some of the branched networks.
This is to be expected as themutation operator does not employ any
problem specific mechanisms or make large perturbations in the
search space. The crossover operators perform poorly when applied
alone and this can be explained by the fact that they make large
perturbations in the search space which makes it more difficult for
them to converge on good solutions as they are less capable of “fine
tuning” existing good solutions. Additionally, the crossover oper-
ator is limited to the set of potential solution parameter values
randomly generated at the start of the search as those operators do
not introduce new parameter values but rather rearrange the
existing values which limits the areas of the search space that can
be searched.

The specialist operators do not have a fixed performance across
all the problems. As is noted later, they are better at solving the
branched networks (first 20 problems) than the looped networks.
This is to be expected, especially for the pipe smoothing operator,
which attempts tominimize excessive pipe diameters. The operator
is based on the principle that the further downstream from the
source the pipes are, the smaller the diameter is required asmore of
the demand is upstream (although only rudimentarily imple-
mented). The pipe expander is comparable, in performance terms,
with the random mutation operator whereas the pipe smoothing
operator is very efficient at solving the simpler branched networks
and obtains the best results across those problems with fewer
problem features.

The introduction of the pumping schedule (the last 10 sets of
results in each block of 20 results) can be seen to have a visible
effect on the ability of the optimisers to converge on a good result.
The pipe smoothing operator is visibly affected by this on the
branched networks.
Table 2
Experimental settings.

Setting Experiment 1 Experiment 2

Number of Operators/Combinations 6 15
Artificial Networks 60 60
Trials per network 100 100
Generations 1000 1000
Population Size 20 20
Selection strategy Elitist (truncate) Elitist (truncate)
Archive Size 1 (best found) 1 (best found)
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6.2. Convergence rates

To examine the convergence rates for each of the operators,
Fig. 7 shows the number of generations taken for each operator to
obtain their best objective value (averaged over all trials). As in
Fig. 6, the x-axis displays each problem. The median number of
generations to converge is given on the y-axis.

The standardmutation and 1-pt crossover operators converge at
a similar rate across all the problems, although mutation operators
converge more slowly than the crossover operator in general. The
fast converging, relatively poorer results produced by the crossover
operator suggests it converges early and is not able to effectively
move about the search space. The mutation operators, however, are
more explorative and hence converge more slowly and ultimately
find better solutions than the crossover operator as is expected.

As expected, the pipe smoother converges quickly across the set
of problems. Although, interestingly, it takes longer to converge on
the branched networks. This is due to the continual fine tuning of
the branched network to obtain the best possible network. The
faster convergence on the hybrid and looped networks coupled
with the worsened performance suggests the pipe smoother con-
verges early on a poor result and is unable move away from the
false optima it locates.

6.3. Loops and branches

As can be seen in Fig. 6, the predominant effect of introducing
loops is to increase the final costs of the solutions discovered by all
operators. In terms of relative performance among operators, the 1-
step mutation remains fixed as the best performer and random
mutation second across all problems. This indicates that the stan-
dard mutation operators are both robust methods for solving any
WDN structure, which is expected as the operators do not employ
any domain specific knowledge and only apply small perturbations
to existing solutions. The presence of loops in the network did not
affect the relative performance of crossover operators with respect
to mutation. After examining the results produced by the crossover
operator it is clear that the looped networks are more robust to
large changes (due to the natural hydraulic robustness of the loo-
ped structure). However, as can be seen in Fig. 7, the looped net-
works are more slowly optimised by all the mutation and specialist
operators (the first 20 problems).

As expected, the two specialist operators are more effective at
solving the branched networks than those with loops and show a
clear deterioration in performance when loops are introduced.
However, the specialist operators are marginally more effective for
e interface between evolutionary algorithm operators and problem
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Fig. 6. Plot of the median objective value obtained by each operator on each artificial problem. The x-axis relates to each problem and the y-axis the median objective value
(averaged over all the trial runs). The first 20 problems are the branched networks, the second 20 the hybrid network and the last 20 the looped networks. In each set of 20, the first
10 networks do not use pumping, in contrast to the second 10, which do.

Fig. 7. A plot showing the median number of generations for each operator to find their best objective value result (converge).
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solving the branched artificial problems than the standard muta-
tion operators.

6.4. Multiple sources, pumps and valves

The presence of multiple sources does not seem to affect any of
the operators in terms of convergence rates. Pumps, in contrast,
significantly affect the final results for the majority of operators,
particularly on the looped networks where most of the highest
objective values are seen. This is not the case for the pipe
smoothing operator though which shows worse performance on
pumped hybrid networks, but slightly better performance on
pumped looped networks. For hybrid and branched networks this
can be explained as pumps interrupt the normal hydraulic condi-
tions found in gravity fed systems and so disrupt the assumptive
basis of the pipe smoothing operator (pipes further downstream
generally need to supply less demand and so can be smaller).

The presence of valves (first four networks in each set of 20
results) improves the performance of the two specialist operators
Table 3
The averaged differential values between final objective function values depending
on the presence of pumps in the network. Values below 1 indicate an overall
reduction in performance when pumps are present in the network. Values greater
than 1 indicate an improvement in performance.

Pump
differential

Random
mutation

1-Step
mutation

Pipe
smoother

Pipe
expand

Uniform
crossover

1-pt
Crossover

Branched 0.81 0.89 0.76 0.83 0.75 0.72
Hybrid 0.72 0.94 0.65 0.74 0.58 0.53
Looped 0.77 0.91 1.07 0.77 0.77 0.81
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as it introduces flow restrictions on the looped networks which
simplifies the network hydraulics. Furthermore, the presence of
pumps in the looped network improves the performance of the
pipe smoothing operator, as shown in Table 3. Here we can see that
generally, the introduction of pumps reduces the performance of all
the operators on all the networks with the exception of the pipe
smoothing operator which receives a small improvement when
pumps are present in the looped network. In effect, the pump
provides a similar effect to the valves in these looped networks,
restricting flow. The addition of the pumps increases the
complexity of the problem and the length of the chromosome.
Adding pumps introduces additional parameters to be optimised
and makes the search space more complex. As such, the reduced
performance of the operators within a fixed computational budget
is to be expected.
6.5. Combinations of operators

After examining each operator in isolation, testswere conducted
to explore the effect of combining pairs of operators. Table 4 below
shows the results from these tests. Each combination of operators
were tested on each artificial problem for 100 trial optimisation
runs. The final population median objective value from each trial
was compared with the median result obtained by each operator in
isolation in the previous experiment. Table 4 shows the count of
trial runs that obtained better results than the median from the
previous experiment.

The better than average results for operator is given in each row.
For example, the row for Random Mutation shows the number of
better than average results obtained by that operator when applied
e interface between evolutionary algorithm operators and problem
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Table 4
Frequency of improved results from combining operators over the sets of branched,
hybrid and looped networks. Improvement relates to the operator given in each row
when applied in conjunction with the operator assigned to each column. For
example, the first row (Random Mutation) had improved results in 1815 trial runs
out of 2000 when applied with the second row (1-Step mutation).

Table 5
Median objective value obtained by each pairing of operator on the Branched_1
network, averaged over 100 trial runs. The best objective value is highlighted in bold.

Network:
Branched_1

1-Step
Mutation

Pipe
Smoother

Pipe
Expand

Uniform
Crossover

1-pt
Crossover

Random
Mutation

3488.24 2884.102 3788.862 3889.922 4362.794

1-Step Mutation 2811.675 3260.32 3516.47 3859.401
Pipe Smoother 2850.433 2983.779 3196.36
Pipe Expand 4002.19 4214.962
Uniform

Crossover
4720.72

1-pt Crossover
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in conjunction with each operator assigned to each column. I.e.,
Random Mutation and 1-Step Mutation together obtained 62.15%
better than average Random Mutation alone when applied on all
networks. From this it can be observed that, across the range of
problems, Random Mutation performed better on average when
paired with 1-Step mutation.

The results for all networks show the better than average results
from a total of 6000 trial runs (accumulated across all the prob-
lems). The results for each of the three types of networks show the
percentage of better than average results over an accumulated
2000 trial runs from all the networks of that type. A result of over
50% indicates the operator performs better when paired with the
counter-part operator. Less than 50% indicates the operator is
hindered by the other operator.

Based on the results in the previous experiment, we can see that
all the operators were generally improved when applied in
conjunction with 1-Step Mutation and the Pipe Smoother operator.
Interestingly, 1-Step mutation was not generally improved by the
addition of any other operator; with the exception of the Pipe
Smoothing operator. This is an interesting result as it shows that the
1-Step Mutation was not (across the whole set of problems)
improved by the addition of a crossover operator as might be ex-
pected. In contrast, the crossover operators benefitted from the
addition of every other type of operator; especially the 1-pt
Crossover.

The Pipe Smoothing operator is a particularly interesting case as
the results highlight the “tuning” behaviour of the operator. The
random perturbations created by the other operators are then
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“fixed” or “enhanced” by the Pipe Smoother and so it boosts the
performance of these more stochastic operators. Likewise, the Pipe
Smoothing operator greatly benefits from random disruptions to its
early converging search behaviour and is able to better search the
solution space.

When these results are examined more closely it is clear that all
the stochastic operators perform better on the branched networks
when applied in isolationwhereas all the operators were improved
by pairing when applied to the looped networks. The branched
network has weaker parameter interdependencies and is therefore
a simpler search space and set of problems to solve. The looped
network is more difficult to solve as the loops create stronger hy-
draulic interdependencies between the pipes and so presents a
more difficult problem. The 1-Step mutation is the only operator
that has the least enhancement when applied with every operator.
For example, it is not significantly improved by the addition of the
1-pt Crossover. Indeed, on the hybrid network, the 1-pt Mutation is
disadvantaged by the addition of every other operator (with the
exception of Pipe Smoothing). These results indicate that the
generally better performance of the 1-Step Mutation is maintained,
even when compared with pairings of other operators.

It is interesting to note that the 1-pt Crossover operator per-
forms poorly across all the problems and, as shown in Table 4,
provides the least improvement when applied in conjunction with
other operators. This suggests that this operator is notwell suited to
this class of problem. Indeed, the 1-pt crossover operator is
dependent upon the length and encoding type used by the problem
and its application may not be well suited to the structure of this
problem; as indicated by the results. That is not to say it is a bad
operator, rather that it is not well suited to the problems examined
here.

Tables 5 and 6 below show the median result obtained by each
combination of operators on the Branched_1 and Looped_1 net-
works. These networks represent the 1st network of the branched
and looped topologies with gravity fed systems, without pumps or
tanks. In both cases the 1-Step Mutation with Pipe Smoother
operator obtains the best average value compared to the other
pairs. These two example sets of results are indicative of the ma-
jority of results found across all the problems.

The results show in Tables 5 and 6 demonstrate how different
operators can be combined to beneficial (and detrimental) effect.
Additionally, the combination of the random mutations provided
by the 1-Step Mutation with the converging and problem specific
action of the Pipe Smoother is a clear example of how two behav-
iours can be applied together in a complementary way to improve
the search.

6.6. Benchmark problems

This section examines the results from the second experiment
on the benchmark networks. Fig. 8 shows the median objective
e interface between evolutionary algorithm operators and problem
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Table 6
Median objective value obtained by each pairing of operator on the Looped_1
network, averaged over 100 trial runs. The best objective value is highlighted in bold.

Network:
Looped_1

1-Step
Mutation

Pipe
Smoother

Pipe
Expand

Uniform
Crossover

1-pt
Crossover

Random
Mutation

6492.854 6124.922 6574.066 6835.196 6950.607

1-Step
Mutation

6003.437 6410.029 6554.535 6664.378

Pipe Smoother 6060.344 6206.595 6315.911
Pipe Expand 6657.225 6818.499
Uniform

Crossover
7059.035
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value at the final generation for the six operators on the three
benchmark networks. The assumed performance (prior to the
experiment) are shown below followed by an analysis of their
performance.

6.6.1. Two loops
The two loops system contains loops but no pumps and tanks

and is most similar to Network 14 from the artificial problems. All
the operators are expected to perform reasonably well on this
network, although the two specialist operators are not expected to
perform better than the normal mutation operators. As can be seen
by the results, all the operators perform as expected, with the two
crossover operators performing better than expected. The Two
Loops network is simpler than the artificial networks and so ac-
counts for this improved performance as the search space is smaller
and the disruptive effect of the crossover operator is relatively
lower compared to the single point mutation operators.

6.6.2. Hanoi
The Hanoi network contains loops and no dendritic branches.

The larger number of pipes suggests the highly disruptive crossover
operators will perform less well compared to the mutation opera-
tors and specialist operators due to the greater number of pertur-
bations to the solution that will occur as a result of crossover. The
gravity fed nature of this network actually produces an almost
branched hydraulic system, as the pipes further away from the
source need to feed only the demand of those nodes downstream.
Due to the single source and this effect, there is often no require-
ment for flow to circulate around a loop, creating the ‘branched’
effect. This effective branching suggests the specialist operatorswill
perform better on this problem.

As is shown by the results in Fig. 8, the specialist operators
perform the best on this problem. These operators combine the
Fig. 8. The median of the final objective value obtained by each operator on the three
benchmark networks. Results are shown as a percentage of the maximum cost for that
network to normalise across the three networks to allow for comparison of results.
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explorative power of the mutation operator and also the faster
converging properties of the functions that modify the network in
line with its hydraulic properties (e.g. pipe smoothing and pipe
expand). The pipe smoothing operator, in particular, works very
effectively on this network. As expected, the crossover operators
are not able to optimise this problem in isolation. The large
parameter string prevents the large perturbations of the crossover
operator from converging on a solution. The mutation operators
perform reasonably well again on this problem, although conver-
gence is slower than the specialist operators as expected.

6.6.3. Anytown
This network is the most complex of the three networks tested

and highly loopedwith the presence of additional tanks and pumps
(which were scheduled as part of the optimisation). The specialist
operators are not expected to perform particularly well on this
problem and, similarly, the crossover operator is also not expected
to perform well.

As can be seen in the results (see Fig. 8), the crossover operator is
not able to effectively optimise this problem. The two specialist
operators perform better than expected but converge early. The
two standard mutation operators are slower to converge but pro-
duce better results by the final generation. Again, this network
demonstrates how the assessment of the operators on the artificial
problems enables an effective prediction of performance prior to
optimising the larger, real-world or benchmark networks.

7. Conclusions

This paper has presented and given a practical demonstration of
a method for assessing Evolutionary Algorithm operator behaviour
in the context of specific WDN design problem features, such as
pumps, tanks and loops. Themethod isolates the structural features
of a WDN network and systematically assesses whether any cor-
relation occurs between an operator and a feature. This method
provides a means for establishing a prior understanding of an
operator's efficacy on different WDN networks and aids in the
development of new specialist operators and the selection of the
most appropriate operators for a given network.

The paper demonstrates the method by testing six EA operators
on 60 artificial networks that contain specific features. The per-
formance of the six operators are observed and analysed and show
how the more general 1-Step mutation operator performs well
across the different artificial networks in comparison to the oper-
ators specialised for specific topologies (dendritic systems).

A similar comparison of the combination of operators is then
conducted and the effect of combining different operators analysed.
The results demonstrated how combining operators can be effec-
tive in improving EA search results in some situations. However, it
is also shown that the mutation operators are more effective at
solving the WDN problem on the simpler dendritic systems
compared to the looped systems where combined operators are
more effective. Overall, the combination of the 1-Step mutation
operator and Pipe Smoothing operator is shown to be the most
beneficial combination of operators.

The results presented in this paper provide evidence for the idea
that operator performance and problem search spaces are linked in
water distribution network optimisation, a notion that has been
shown to be true in other problem spaces.
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