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Sensitivity Analysis of Geometrical Parameters on a
Double-Sided Linear Switched Reluctance Motor

J. G. Amoros, Member, IEEE, and P. Andrada, Member, IEEE

Abstract—This paper presents a detailed sensitivity analysis of
the effect of several geometrical parameters on the performance
of a double-sided linear switched reluctance motor (LSRM). The
analysis was conducted in two dimensions using finite-element
method and takes into account only one part of the LSRM.
This paper first investigates the powerful influence of stator- and
translator-pole widths on force profiles. It then shows how these
performance parameters are influenced by stator-pole length,
translator-pole length, stack length, yoke length, and air gap. Ex-
perimental results confirm that the 2-D finite-element sensitivity
analysis proposed in this paper may prove to be a useful tool for
optimizing the geometry of a double-sided LSRM.

Index Terms—Analytical force calculations, end effects,
finite-element analysis, linear switched reluctance machines,
machine design, sensitivity analysis.

NOMENCLATURE

bp Stator-pole width (in meters).
cp Stator-slot width (in meters).
Tp Stator-pole pitch (in meters).
Np Number of active poles per side (stator).
lp Stator-pole length (in meters).
bs Translator-pole width (in meters).
cs Translator-slot width (in meters).
Ts Translator-pole pitch (in meters).
Ns Number of passive poles per side (translator).
ls Translator-pole length (in meters).
hy Yoke height (in meters).
LW Stack length (in meters).
g Air-gap length (in meters).
PS Stroke (in meters).
S Distance between aligned and unaligned positions

(in meters).
m Number of phases.
αp Normalized stator-pole width.
βp Normalized stator-pole length.
αs Normalized translator-pole width.
βs Normalized translator-pole length.
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δy Normalized yoke length.
γw Normalized stack length.
x Translator position (in meters).
N1 Number of coils per pole.
Lau Unsaturated aligned inductance (in henries).
Lu Unaligned inductance (in henries).
Las Saturated aligned inductance (in henries).
L′

as Saturated aligned incremental inductance (in henries).
IB Flat-topped current peak (in amperes).
JB Current density peak (in amperes per square meter).
Bp Magnetic flux density in the stator pole (in teslas).
Ks Slot fill factor.
Npp Number of stator poles per phase.
M Number of modules series connected.

I. INTRODUCTION

L INEAR SWITCHED reluctance motors (LSRMs) are be-
coming attractive candidates for use as linear drives for

several reasons: they only have concentrated windings on the
stator or translator; they are ruggedly built; they have low
expected manufacturing costs; and they have a good fault-
tolerance capability [1]. LSRMs can be classified as transverse
or longitudinal flux. With transverse flux, the plane that con-
tains the flux lines is perpendicular to the line of movement.
Reference [2] presents a design procedure for transverse-flux
LSRMs. In longitudinal flux, the plane that contains the flux
lines is parallel to the line of movement. Reference [3] de-
scribes a design procedure for longitudinal-flux LSRMs. Other
types of longitudinal-flux LSRMs are presented in [4], with
coupled flux paths, and in [5] with uncoupled flux paths for
a magnetic levitation system. Reference [6] analyzes a high-
force longitudinal-flux double-sided double-translator LSRM.
Recently, longitudinal-flux LSRMs have been proposed for
applications such as precise motion control [7], [8] and as
propulsion systems for railway vehicles [9] or vertical elevators
[10]–[12].

The sensitivity of geometry in the performance of rotating
SRMs has been extensively described in the literature [13]–
[16]. The sensitivity of pole arcs on average torque is studied
using an analytical method and 2-D finite-element analysis
(2-D FEA) in [13]. In [14], the sensitivity analysis is conducted
by means of an analytical model based on air-gap permeance
and the equivalent magnetic circuit. Reference [15] studies the
sensitivity of pole arcs and air-gap length on the average torque
using 2-D FEA. In [16], the sensitivity of the stator and rotor
pole arcs is studied to minimize torque ripple.
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Up to now, very little has been published on the sensitivity of
geometrical parameters in LSRM performance. However, it is
important to mention the work presented in [17] on the feasible
stator- and translator-pole arrangements in longitudinal- and
transverse-flux LSRMs. This paper intends to address this gap
in the literature by studying how several geometrical parame-
ters influence the inductance and force profile of an LSRM.
The study focuses on longitudinal-flux LSRMs for high-force-
density applications, and therefore, transverse-flux LSRMs are
out of the scope of this paper. Although the sensitivity analysis
has been created for a double-sided LSRM, because ideally it
does not produce a net normal force on the translator, the study
can be also applied to different kinds of LSRMs such as single-
sided or modified high-force-density LSRMs [12].

This paper first presents an analytical approach to the av-
erage propulsion force determined using the nonlinear energy
conversion loop, in which the unaligned magnetization curve
is assumed to be a straight line and the aligned magneti-
zation curve is represented by two straight lines [18], [20].
This first approach shows the influence of several geometrical
parameters—stator-pole magnetic flux density, current density,
and inductance relationships—on average force. In order to
study the problem in greater depth, a 2-D FEA including
end effects was conducted with the aim of completing former
research which focused only on the influence of stator-pole
width (bp) and translator-pole width (bs) [21]. Thus, this paper
also includes a sensitivity analysis of stator-pole length (lp),
translator-pole length (ls), stack length (LW ), yoke length
(hy), and air gap (g) in order to determine how these affect
linear motor performance.

The main contribution of this paper, apart from compen-
sating for the absence of consistent sensitivity analyses in
the literature, is to provide some guidelines for the design
of longitudinal-flux LSRMs. As a result of this research, a
prototype has been built for which experimental tests show a
good correlation of force with the proposed 2-D finite-element
sensitivity study.

This paper is organized as follows. Section II describes the
LSRM and presents an analytical approach to average propul-
sion force. Section III gives the basis of the 2-D sensitivity
analysis. Section IV presents the sensitivity analysis and is
divided into five parts. The first part deals with the influence of
pole width, the second studies the influence of pole height, the
third studies the influence of stack length, the fourth studies the
influence of yoke length, and the last studies the influence of air
gap. Section V describes the experimental validation. The con-
clusions drawn from this research are presented in Section VI.

II. ANALYTICAL APPROACH

This study was conducted on a high-force-density LSRM.
This LSRM consists of three series-connected modules (M =
3), each one formed by a four-phase double-sided magnetic
structure with eight active poles per side (Np = 8) and six
passive poles per side (Ns = 6). One module of the LSRM
is shown in Fig. 1 along with the geometrical parameters
considered in this paper, which are bp, cp, lp, bs, cs, ls, LW ,
hy , and g. The number of phases (m) and the stroke (PS) can

Fig. 1. Three-dimensional view of one module and main dimensions of the
LSRM.

Fig. 2. Idealized nonlinear energy conversion cycle.

be taken as design parameters to determine Tp, Ts, Np, and Ns

by means of the following:

TP = 1
2 · NS · PS = bp + cp

TS = 1
2 · NP · PS = bs + cs

}
(1)

where

NP = 2 · m
NS = 2 · (m ± 1)

}
. (2)

Average propulsion force can be calculated using an ideal-
ized nonlinear energy conversion loop in which the unaligned
magnetization curve is assumed to be a straight line and the
aligned magnetization curve is represented by two straight
lines [18].

This simplified model accounts for the saturation effect and
is shown in Fig. 2 by means of the lines OA (OA slope = Lu),
EB (EB slope = L′

as), and OE (OE slope = Lau). Assuming a
flat-topped current waveform, the area OABEO is the energy
conversion area (W ). Excluding iron and friction losses, the
average propulsion force per phase (FX,avg) is then obtained by

FX,avg =
W

S
(3)
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where S is the distance between aligned and unaligned
positions given by

S = (bs + cs)/2. (4)

One of the limitations of the model is that the lines OA and
EB are parallel and usually have saturated conditions L′

as <
Lu. From Fig. 2, the following can be derived:

W = ψ0 ·
(

IB − 1
2
· IS

)
(5)

ψ0 = IB · (Las − Lu) (6)

IS · (Lau − Lu) = (Las − Lu) · IB. (7)

By substituting (6) and (7) into (5) and operating

W = I2
B · Las · KL (8)

where KL is a dimensionless coefficient defined by

KL =
(

1 − Lu

Las

)
·
(

1 − 1
2
· Las − Lu

Lau − Lu

)
(9)

where (9) is studied in [18] and [19] for rotating SRMs.
At point B (see Fig. 2), the poles are fully aligned, and

therefore

ψS = Las · IB = Bp · N1 · Npp · bp · LW . (10)

The total ampere-turns per slot (N1 · IB) can be expressed
by means of the current density by

N1 · IB = Ks ·
cp · lp

2
· JB . (11)

By substituting (10) and (11) in (8),

W =
1
2
· (KL ·Ks) · (cp · bp · lp · LW · Npp)·(Bp · JB). (12)

Considering a double-sided LSRM (see Fig. 1), the number of
poles per phase (Npp) is four (Npp = 2 in single-sided LSRM).
The double-sided LSRM has the advantage that the translator
does not support electromagnetic normal force; therefore, the
mechanical losses due to friction are minimal, whereas, in
the single-sided LSRM, the normal force between stator and
translator can reach more than ten times the propulsion force.

By substituting (12) in (3) and considering (1), the average
propulsion force per phase is

FX,avg =Npp ·
(

Ns

Np

)
· (KL · Ks)

×
(

cp · bp · lp · LW

TP

)
· (Bp · JB). (13)

In order to obtain dimensionless variables, the geometrical
variables shown in Fig. 1 are normalized by the stator-pole pitch

Fig. 3. Main dimensions and boundary conditions. (a) Main dimensions.
(b) Boundary conditions.

(TP ), obtaining

αp = bpTP (14)

αs = bs/TP (15)

βp = lp/TP (16)

βs = lsTP (17)

γW =LW /TP (18)

δy =hy/TP . (19)

Rewriting (13),

FX,avg = Npp ·
(

Ns

Np

)
· (KL · Ks)

×
((

αp − α2
p

)
· βp · γW

)
· T 3

P · (Bp · JB). (20)

The average propulsion force (20) is parabolic for αp

and therefore has a maximum of αp = 0.5 which can be
found by fixing the remainder of the parameters and applying
∂FX,avg/∂αp = 0. Equation (20) is a parametric expression
that has the drawback that the coefficient KL must be chosen
by experience; nevertheless, it can be useful as a first step in the
design of LSRMs.

III. BASIS OF TWO-DIMENSIONAL FINITE-ELEMENT

SENSITIVITY ANALYSIS

A 2-D finite-element solver was used to study the influence
of different geometrical parameters on the inductance and force
profile of the LSRM. Translator position is referred to as the x
variable, as shown in Fig. 3(a). In order to save computing time,
the LSRM is broken down into the minimum repetition pattern
that guarantees similar results to those obtained with the com-
plete LSRM. To do this, the following two boundary conditions
were established, as shown in Fig. 3(b). The first condition is
the homogeneous condition (Dirichlet) and generally equals the
magnetic vector potential A at zero. This condition is equiva-
lent to an external material with null magnetic permeability;
therefore, any flux line can cross this boundary. The second
condition (Neumann) imposes a value on the normal derivative
of A on the boundary. When this value is zero, it is equivalent
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to an external material with infinite magnetic permeability.
Because this study was carried out with a minimum repetition
pattern, this sensitivity analysis can also be applied to different
kinds of LSRMs such as single-sided or modified high-force-
density LSRMs [12].

End effects are not included in the 2-D FEA even though
these effects increase inductances. Unaligned inductance, in
particular, can be increased by up to 20%–30%. The conse-
quence of this is a decrease in the energy conversion area
predicted by 2-D FEA and, therefore, a reduction in the per-
formance calculations. End effects appear at the end of the
laminations stack and are basically the consequence of extra
flux linkages produced at the head or the end of the winding.
This extra flux produces an axial fringing flux which, along
with the steel imaging effect of the laminations, contributes to
increasing these effects.

The most accurate manner of estimating end effects is prob-
ably by means of 3-D-FEA software packages, although they
still require high computation time. In this paper, end effects
are taken into account by means of a current- and position-
dependent factor Kee [22], an end-effect coefficient that cor-
rects the results obtained by 2-D FEA in accordance with the
following:

ψ3D = Kee · ψ2D (21)

L3D = Kee · L2D (22)

where Ψ2D and L2D are the flux linkage and the inductance
obtained by 2-D FEA and Ψ3D and L3D are the 3-D flux linkage
and the inductance approaches that account for the end effects.
End-effect coefficient Kee is defined as [23]

Kee = (1 + Lend/L2D) · Kf . (23)

Lend is the end-winding inductance, and Kf is the axial
fringing factor. The axial fringing flux is due to the tendency
of magnetic flux to bulge out in an axial direction. This effect
depends on the translator position and is stronger when the
poles are fully unaligned (x = 0) and weaker when they are
completely aligned (x = S). The axial fringing factor can
therefore be calculated by [24]

Kf (x) = 1 + lg(x)/LW (24)

where lg(x) is the length of the effective air gap. For the
aligned position, lg(S) = g, and for the unaligned position,
lg(0) = g + ls. For intermediate positions (0 < x < S), lg(x)
can be modulated by a function fm(x), which results in

lg(x) = g + ls · fm(x). (25)

The modulation function that produces the most fitted
results is

fm(x) = (1 + cos(π · x/S)) /2. (26)

Therefore, the axial fringing factor results as

Kf (x) = 1 + [g + 0.5 · ls · (1 + cos(π · x/S))] /LW . (27)

Fig. 4. Triangle for (dark) feasible configurations and (dots) scanning area.

IV. SENSITIVITY ANALYSIS

A. Influence of Pole Widths (bp, bs)

In the following analysis, the variables are αp, αs, and x.
The other normalized geometrical parameters and the current
density are held constant (βp = 30/TP , βs = 7/TP , γw =
120/TP , δy = 8/TP , J = 15 A/mm2, and g = 0.5 mm). The
interval of variation for αp and αs is limited by the Lawrenson
criterion for feasible configurations [25] which defines a
triangle as

αp ≤αs (28)
αp ≥ 2/Ns (29)

αp + αs ≤TS/TP . (30)

These conditions are shown in Fig. 4 by the dark area.
In order to obtain a wider scanning area, the dark triangle
is framed in a dotted rectangle, as shown in Fig. 4. Each
combination αp and αs is represented by a dot. The intervals
are αp ∈ [4/TP , 8/TP ] and αs ∈ [4/TP , 12/TP ] with Δαp =
Δαs = 1/(4 · TP ). The values of the translator position x ∈
[0, S] with δx = S/32 are also implicit in each dot.

In the previous work [21], static force Fx = f(αp, αs, x) and
inductance L = f(αp, αs, x) were analyzed in detail. Average
force (FX,avg) and inductance ratio (La/Lu) were introduced
in order to evaluate the goodness of each static force and
inductance profile

Fx,avg(αp, αs) =
1
S

S∫
0

Fx(αp, αs, x) · dx (31)

La/Lu(αp, αs) = L(αp, αs, S)/L(αp, αs, 0). (32)

For brevity, only the average force results are shown in Fig. 5.
The inductance ratio did not reach a maximum within the
feasible configurations. Fig. 5 shows that the average force is
parabolic for αp and that the maximum is near αp = 0.5, as
(20) predicts.

The average force results suggest that it could be optimized
for the unit of copper mass (MCu) defined by

MCu = VCu · γCu (33)

where γCu is the density of the copper and VCu is the to-
tal copper volume, which, for a semicircular end-winding
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Fig. 5. Average force versus αs and αp. Fx,avg = f(αp αs).
J = 15 A/mm2.

Fig. 6. Average force per unit of copper mass versus αs and αp.
J = 15 A/mm2.

shape, is

VCu =βp ·(1−αp)·
(
γW +

π

4
·(1+αp)

)
·T 3

p ·Npp ·m·M ·Ks.

(34)

The average force per unit of copper mass is shown in
Fig. 6, which shows that the maximum is placed higher than
the maximum of average force for values of αp (see Fig. 5).

The influence of current density (J) is shown in Figs. 7
and 8, where the contour lines for several current densities
are represented. The bright areas can be considered as optimal
values of αp and αs. As the figure shows, the optimal region
goes up, increasing the value of αp in proportion to the increase
in current density.

B. Influence of Pole Lengths (lp, ls)

In this part of the analysis, the variables are βp, βs,
and x. The other normalized geometrical parameters and
the current density are held constant (αp = 5.75/TP , αs =
6/TP , γw = 120/TP , δy = 8/TP , J = 15 A/mm2, and g =
0.5 mm). The scanning intervals are βp ∈ [4/TP , 40/TP ],

Fig. 7. Contour lines of average force for several current-density values.

Fig. 8. Contour lines of average force per unit copper mass for several current-
density values.

Δβp = 1/TP , βs ∈ [1/TP , 25/TP ], Δβs = 1/TP , and x ∈
[0, S], Δx = S/16.

The results are shown in Fig. 9. In order to plot the
results Fx(βp, βs, x), one of the variables has to be fixed.
Fig. 9(a) shows the sensitivity of force profiles to βs fixing
βp, Fx(3.333, βs, x). Fig. 9(b) shows the sensitivity of force
profiles to βp fixing βs, Fx(βp, 0.5833, x). Stator-pole length
has a much greater influence because it is related to the winding
area; therefore, a longer stator pole means a higher peak and
average force.

Fig. 9(c) shows the sensitivity of the average force
Fx,avg(βp, βs) for a fixed current density. As can be inferred
from Fig. 9(c), the influence of the translator-pole length on
force profiles is significant for values of βs lower than 0.5
(6/TP ). Above this value, there is no influence on average
force. Fig. 9(d) shows the influence of the current density on
the average force fixing βs higher than 0.5 (βs = 1). As can be
seen, values of βp higher than 2.5 do not produce any gain in
the Fx,avg for high-current-density values (J ≥ 15 A/mm2).
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Fig. 9. Sensitivity of pole lengths.

C. Influence of Stack Length (LW )

In this part of the analysis, the variables are γw and x.
The other geometrical parameters and the current density are
held constant (αp = 5.75/TP , αs = 6/TP , δy = 8/TP , J =
15 A/mm2, and g = 0.5 mm). The scanning intervals are γw ∈
[10/TP , 120/TP ], Δγw = 5/TP and x ∈ [0, S], Δx = S/32.
Fig. 10 shows the results for Fx(γw, x) and Fx,avg(γw, J).
Fig. 10(a) shows the sensitivity of γw on force profiles.
Fig. 10(b) shows the sensitivity of γw on the average force
for several current densities, which shows that average force
increases linearly with stack length.

D. Influence of Yoke Length (hy)

In this part of the analysis, the variables are δy and
x. The other geometrical parameters are held constant
(αp = 5.75/TP , αs = 6/TP , βp = 30/TP , βs = 7/TP , γw =
120/TP , and g = 0.5 mm).

The scanning intervals are δy ∈ [2/TP , 12/TP ], Δδy =
1/(2 · TP ) and x ∈ [0, S], Δx = S/32. The results of the

analysis are shown in Fig. 11. Fig. 11(a) shows the sensitivity
of δy on force profiles Fx(δy, x) for a current density of J =
15 A/mm2. The influence of the yoke length on force for several
current densities Fx,avg(δy, J) is significant for values of δy

lower than 0.5417 (6.5/TP ) [Fig. 11(b)]. Above this value,
there is no influence on the average force.

E. Influence of Air-Gap Length (g)

In LSRMs, the air gap does not condition any other dimen-
sion; therefore, the air gap does not need to be normalized. The
variables in this part of the analysis are air-gap length g and
the position of the translator x. The other geometrical parame-
ters and the current density are held constant: αp = 5.75/TP ,
αs = 6/TP , βp = 30/TP , βs = 7/TP , γw = 120/TP , and J =
15 A/mm2. The scanning intervals are g ∈ [0.3 mm, 1.4 mm],
Δg = 0.1 mm and x ∈ [0, S], Δx = S/32. Fig. 12(a) shows
the sensitivity of force profiles Fx(g, x). The sensitivity of air-
gap length g on the average force Fx,avg(g, x) can be seen in
Fig. 12(b) and emphasizes the importance of air-gap length
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Fig. 10. Sensitivity of stack length.

Fig. 11. Sensitivity of yoke length.

Fig. 12. Sensitivity of air-gap length.
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TABLE I
LSRM PROTOTYPE MAIN DIMENSIONS

TABLE II
LSRM PROTOTYPE NORMALIZED MAIN DIMENSIONS

Fig. 13. View of LSRM prototype and load cell detail.

since a smaller air gap results in higher average force values,
but there has to be a minimum air gap to allow for clearance
and tolerances.

V. EXPERIMENTAL VALIDATION

An LSRM prototype was built and tested in order to provide a
better illustration of the proposed 2-D finite-element sensitivity
analysis and to evaluate the results.

The main dimensions of the LSRM prototype are shown in
Table I. Table II shows the normalized main dimensions of the
prototype optimized for the average force per unit copper mass
and J = 10 A/mm2.

Static propulsion force was measured directly by a load cell.
A photograph of the LSRM prototype and a detailed view of
the load cell are shown in Fig. 13. Fig. 14 shows a comparison
of the force profiles obtained by 2-D FEA accounting for end
effects and considering the minimum study pattern, those ob-
tained by 2-D FEA accounting for end effects and considering
the complete LSRM, and the measured values.

Fig. 14. Static propulsion force for J = 15 A/mm2. Comparison results.

TABLE III
AVERAGE FORCE RESULTS (J = 15 A/mm2)

TABLE IV
INTERVALS FOR KL

The average force results are listed in Table III. The KL co-
efficient defined in (9) depends on the geometrical parameters
and the current density. Table IV shows the results obtained by
the sensitivity FE analysis.

VI. CONCLUSION

This paper has investigated the influence of several geomet-
rical parameters on the force profile of a double-sided LSRM.
Experimental results confirm a good correlation between force
and the proposed 2-D finite-element sensitivity study. If the
maximum average force has to be an optimizing factor, the
following rules concerning the geometrical parameters involved
in the study could be useful.

1) Primary pole width: αp =0.4167 or bp =TP /2.4 (see
Fig. 7).

2) Secondary pole width: αs =0.5 or bs =TP /2 (see Fig. 7).
3) The relation bs = 1.2bp is a suitable design criterion for

the pole widths.
4) Translator-pole length: βs = 0.5 or ls = TP /2 [see

Fig. 9(c)].
5) Stator-pole length: lp = 2.5 · TP [see Fig. 9(d)].
6) Stack length (LW ) is made to match the average force to

the values expected from the design because the average
force is proportional to LW [see Fig. 10(b)]. Neverthe-
less, an excessive stack increases the mass and iron losses.
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7) Yoke length: δy = 0.5417 or hy = TP /1.846 [see
Fig. 11(b)] to avoid saturation and loss of average thrust.
Higher values do not have any influence and only increase
the stator mass.

8) The air-gap length (g) should be as small as possible to
maximize the average force compatible with tolerances
and manufacturing facilities [see Fig. 12(b)].

9) If the average force per unit of copper mass has to be
considered, then the best value for the primary pole width
is αp = 0.5 or bp = TP /2 (see Fig. 8).
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