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Abstract 
The Vulnerability Index Method, in its version developed in the framework of the European project Risk-
UE, has been adapted and applied in this article, to evaluate the seismic risk for the city of Barcelona 
(Spain) through a GIS based tool. According to this method, which defines five damage states, the action 
is expressed in terms of the macroseismic intensity and the seismic quality of the buildings by means of a 
vulnerability index. The probabilities of damage states are obtained considering a binomial or beta-
equivalent probability distribution. The most relevant seismic risk evaluation results obtained, for current 
buildings and monuments of Barcelona, are given in the article as scenarios of expected losses.  
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1. Introduction  
Urban physical seismic vulnerability is an internal risk factor which describes the intrinsic 

predisposition of an urban area to be susceptible to damage when affected by an earthquake. It 

is basically related to the degree of exposure and the fragility of the elements to cope with the 

seismic action. Seismic hazard is an external risk factor which can be expressed as the 

probability of occurrence of an earthquake of certain severity in an urban area during a given 

period of exposure. It defines the level of severity of the ground motion that can be expected in 

a region. Urban seismic risk is the convolution of hazard and vulnerability; it describes the 
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potential expected loss which can be represented in maps showing the expected damage of the 

urban area due to a specified earthquake. Although these definitions make reference only to 

physical aspects, vulnerability can also include economic, social or political aspects (Carreño et 

al. 2007a; Barbat et al. 2009). In this case, risk expresses the probability of exceedance of a 

given level of economic, social or environmental consequences, at a certain site and during a 

certain period. It has to be mentioned that social aspects of the vulnerability can be the causes of 

physical dimension of the vulnerability. For management purposes, the objective of risk studies 

is to improve decisions making, contributing thus to the effectiveness of risk management 

(Carreño et al. 2007b).  

The seismic hazard can be evaluated at both regional and local scales using two principal 

approaches: one deterministic and the other probabilistic. The deterministic approach is based 

on the assumption that historical seismicity gives enough information to know the seismic 

hazard expected in the region, while the probabilistic one analyses the seismicity and the 

seismotectonic characteristics of a region to obtain its seismic hazard associated to a certain 

probability of occurrence. Soil effects should be also included in the evaluation of the seismic 

hazard, that is, the effects of the local geology on the ground motion generated by the seismic 

event should also be considered. Soft or non-consolidated soils cause amplifications of the 

ground motion that increment the damages caused by seismic events. In this concern, 

seismically oriented geological/geotechnical studies are useful, allowing identifying the 

dynamic properties of soils susceptible to relatively high amplifications. The seismic hazard of a 

region can be expressed in several ways, usually depending on the data available and on the 

purpose of the seismic hazard evaluation. In this sense, seismic hazard is usually measured in 

terms of macroseismic intensity and response spectra. 

 Faccioli (2006) considers that the deterministic seismic hazard should be consistent with the 

seismic history of the site being studied and suggesting that the earthquake used to define the 

deterministic seismic hazard should be the actual or true maximum historical earthquake, that is, 

the strongest closest event that had affected the site. 
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Deterministic seismic hazard maps can be obtained for the studied site by using appropriate 

intensity and spectral attenuation relationships. In any case, the intensity attenuation relationship 

must be compatible with the history of the felt intensities in the region. 

The probabilistic hazard evaluation approach is based on the Probabilistic Seismic Hazard 

Assessment (PSHA) using the algorithm established by Cornell (1968) with his proposal of a 

program for the calculation of the seismic hazard that was later enhanced by others such, for 

instance, McGuire (1976). The definition of the seismic sources can be accomplished through 

the study of the spatial distribution of the seismicity and the geological, geophysical and seismic 

characteristics of the influence zone of the site (Grellet et al. 1993; Fleta et al. 1996). A seismic 

model must be defined for each seismic source describing the temporal occurrence of 

earthquakes in the zone (Poisson model, Kallberg and Cornell, 1969) as well as the frequency of 

occurrence of earthquakes according to its magnitude (Gutenberg–Richter law, Gutenberg and 

Richter (1954)). Once the seismicity of the sources is characterized, the distribution of the 

parameter indicating the seismic hazard at the site must be obtained for each zone using an 

appropriate attenuation relationship. Finally, the seismic hazard for the site studied is defined as 

the annual probability of exceedance of a certain level of the seismic hazard parameter as a 

result of the contribution to of each one of the sources to the seismic hazard of the site. 

Several methodologies are available for the seismic vulnerability and risk evaluation in urban 

areas (e.g. Benedetti and Petrini (1984); ATC-13 (1985); HAZUS99 (1999)). Thus, the 

evaluation of the physical seismic vulnerability of structures can be carried out by using: 

qualitative descriptors (low, medium, high, etc. or A, B, C, etc.) as in certain macroseismic 

scales (MSK-81 1981; Grünthal 1998); physical vulnerability indices like in the Vulnerability 

Index Method (VIM); and capacity curves (Milutinoviç and Trendafiloski 2003). The expected 

physical damage can be obtained by using: damage probability matrices, vulnerability functions 

and fragility curves. It is worth to note that vulnerability and fragility curves allow 

characterizing the damage of a structure for any severity of the earthquakes while damage 

probability matrices correspond to a concrete point of the fragility curves (Barbat et al. 2008).  
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Damage probability matrices, vulnerability functions and fragility curves have been obtained in 

the past from structural damages observed during earthquakes (Benedetti and Petrini 1984; 

Kappos et al. 1995; Singhal and Kiremidjian 1996; Barbat et al. 1996). In areas with limited or 

incomplete data, expert opinions have been used to support or completely replace the 

probabilistic processing of the observed data (ATC-13 1985; Anagnos et al. 1995). Nonlinear 

structural analysis procedures have been used as an alternative to the lack or shortage of data 

(Milutinovic and Trendafiloski 2003; Barbat et al. 2006a; Barbat et al. 2006b). Monte Carlo 

simulation has been also used to complete the earthquake damage information (Kappos et al. 

1995; Singhal and Kiremidjian 1996; Barbat et al. 1996; Barbat et al. 1998). 

The Geologic Institute of Catalonia (IGC) and the International Centre for Numerical Methods 

in Engineering (CIMNE) participated together with the Municipality of Barcelona in the Risk-

UE project, An advanced approach to earthquake risk scenarios with application to different 

Europeans towns, financed by the European Commission in 1999 (Mouroux et al. 2004). The 

main objective of this article focuses on the adaptation and application to the city of Barcelona 

of the Vulnerability Index Method (VIM) in the version developed in the framework of Risk-

UE project. In the VIM, the seismic action is defined in terms of macroseismic intensity and the 

fragility of the buildings is defined by means of a vulnerability index.  

It is worth to be mentioned that even if Barcelona is located in an area of low to moderate 

seismic hazard (Egozcue et al. 1991), its buildings have a high degree of vulnerability and, 

consequently, a significant probability of damage can be expected even in the case of not 

excessively severe earthquakes. 

Although the methodological aspects of this study were mainly developed in the framework of 

the Risk-UE project, the present article is a compilation of results leading to new high resolution 

seismic risk scenarios for Barcelona by using the vulnerability index method. The results here 

reported concerning the seismic hazard and the vulnerability of cultural heritage buildings are 

based on the work of Irizarry (2004) but definitive risk scenarios of the city, including the 

current buildings, were not available before the work of Lantada (2007), in which a specific GIS 

platform was developed for the management of a sophisticated data base. The information 
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contained in this database was collected, arranged and improved during more than a decade and 

it allows calculating and depicting building-by-building risk scenarios for any zone of the city. 

Updated information about the population of the city and the actual prices of current buildings 

allowed also assessing the most important aspects concerning the socioeconomic effects. In this 

way, the VIM has been applied to the studied urban area. Starting from realistic earthquake 

scenarios and taking into account the seismic zonation of the city, damage probability matrices 

have been obtained for the four soil types and for more than 95% of the residential buildings.  

The main results and conclusions of the study of the seismic risk of the cultural heritage of 

Barcelona, which considers about 70 monuments of the city, are also a relevant original 

contribution of this article. 

2. The city of Barcelona and its elements at risk 
Barcelona, situated on the northeast coast of Spain, is the political and economical capital of 

Catalonia region and the second city of Spain after Madrid. It has an approximate area of 100 

km2 and it concentrates a high percentage of the total population of the region. According to the 

official statistics of Barcelona (Departament d’Estadistica 2007), in 2006 the city had about 

1.606 million inhabitants and an average density of 15,903 inhabitants per square km. 

According to the Statistic Institute of Catalonia, in 2006 Barcelona had 757,928 housing units, 

and 75,932 residential buildings, with an average of about 2.53 inhabitants in each. Barcelona is 

divided into 10 districts. Each district consists of a small number of neighbourhoods that sum up 

to 38 for the entire city. Each neighbourhood is subdivided into census zones (238 in total), as 

these zones constitute the basis for the census (FIGURE 1). These zones are composed by a set 

of blocks and are used for administrative purposes.  
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FIGURE 1 Administrative zones of Barcelona: districts, neighbourhoods and distribution of the 
population density among census zones. 
 

The development of reliable risk scenarios for Barcelona has been possible thanks to the details 

and quality of the database of the buildings of the city, improved even more during the Risk-UE 

project. Great amount of information has been collected and completed along years by the 

Municipality of the city and the Technical University of Catalonia.  

2.1 Residential buildings 

The most important data source, used in the risk assessment at urban scale of Barcelona is the 

cadastre information. The total number of cadastre units or lots in the city is 80,715 and each 

one may contain a building or be empty. This information was used to obtain the geometry and 

the core features of the buildings of the studied area, like areas and numbers of storeys of each 

built lot (INFOCCA 2002). The collected data allowed completely characterizing geometrical 

features and geographical location together with the type, year of construction and state of 

preservation of about 70,905 buildings, which represent the 92.4% of the total number of 

residential buildings, according to the official statistic of the city in 2001. The residential 

buildings of Barcelona have been classified in different groups characterized by a similar 

seismic behaviour. More than 60,600 residential buildings have masonry and reinforced 
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concrete structure and the average year of construction of the buildings for each district ranges 

from 1894 to 1956. 

The districts of Ciutat Vella and Eixample are the oldest of the city and they show the greatest 

expected vulnerability and damage. Ciutat Vella means Old City and is the downtown of 

Barcelona, with the oldest buildings; the Eixample district, which means widening, was built in 

the XIXth century. This district includes the urban area designed in order to organize the growth 

of the city between the downtown and the neighbouring small towns or villages. The Eixample 

district has the maximum average density and some census zones reach a density of 75,000 

inhabitants per km2.  

The most representative buildings of Ciutat Vella and Eixample districts are unreinforced 

masonry structures. The majority of these unreinforced masonry buildings are tall and with 

openings of considerable size and number, which affect their vulnerability, increased even more 

by long walls without perpendicular stiffening. The floors of these unreinforced masonry 

buildings are made of wood, steel or of precast concrete beams with small ceramic vaults in 

between (FIGURE 2), showing a poor stiffness both for bending moment and axial forces 

(Paricio 2001; Castelló and Mañà 2003).  

Almost all of these buildings have two storeys due to the considerable difference between 

height of their ground and first floor (about 4 m each one), and the others (about 3 m) (see 

FIGURE 2a). Similar masonry buildings can also be found in many other European and 

Mediterranean cities. In some of them, certain seismic protection measures have been applied in 

the past, but there are also many buildings in such poor conditions that they have to be classified 

in the highest vulnerability class of the European Macroseismic Intensity Scale, EMS-98 

(Grünthal 1998). 

Since mid twentieth century, the number of reinforced concrete buildings has increased 

significantly in Barcelona, becoming nowadays the most frequent typology for new buildings. It 

has to be pointed out that most of the reinforced concrete buildings of Barcelona are not 

moment-resisting frames, but they consist of columns with waffled slabs floors (see FIGURE 

3). The reinforced concrete buildings of Barcelona fall within the high vulnerability section of 
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the EMS-98 scale for which significant damage for relatively low seismic intensities is expected 

(Barbat et al. 2006a). 

 

 a) 

  

 

b) 
 

 

FIGURE 2 a) Traditional unreinforced masonry building b) steel beams with ceramic tiles vaults in 
between (above) and a small ceramic vault (below) 
 
a) 

 

b)  

 

 

FIGURE 3 a) Reinforced concrete building under construction, b) Typical waffled slabs floors 
 

2.2 Monumental buildings 

The Catalogue of Historic and Artistic Heritage of Barcelona contains a total of 3400 buildings 

with the purpose of conserving the characteristic traits of the city. Among these buildings are 

historical, cultural, religious and architectonic monuments that embrace the cultural and 
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historical heritage of the city of Barcelona. The catalogue classifies the monuments in two 

levels of protection and only those included in level A of protection were considered in this 

study. The vulnerability analysis of the 68 monuments of this category was carried out using the 

vulnerability indices for monumental typologies developed by Lagomarsino et al. (2003). 

FIGURE 4 shows their distribution according to the century in which they were built. 60 % of 

the monuments were built during the XIX and XX centuries. FIGURE 5 shows that the 76% of 

all monuments considered are classified as palaces while the rest of monuments are churches, 

monasteries, theatres, statues, castles and chapels.  
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FIGURE 4 - Century of construction for the 
studied monuments. 

FIGURE 5 - Monuments distribution according to 
their typology. 

3. Seismic action assessment in terms of intensity for 
Barcelona 
In the Risk-UE project, it was decided to evaluate the seismic hazard using two different 

approaches.  The first one, called Level I approach, refers to the evaluation of seismic hazard in 

terms of intensity using a deterministic approach; the Level II approach performs the seismic 

hazard evaluation in terms of spectral values using both deterministic and probabilistic methods. 

For the two hazards evaluation approaches considered, site effects have been evaluated by using 

a geotechnical zonation of the studied area and by calculating the responses of 1D linear 

equivalent model in order to obtain the amplification that can be expected at the studied site 

(Faccioli 2006).  
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3.1 Deterministic seismic scenarios  

The Risk-UE project established guidelines for defining a deterministic hazards scenario in 

terms of intensity (Faccioli 2006). According to these guidelines, a deterministic scenario 

without zones is preferred instead of the usual deterministic scenario based on seismic source 

zones. The deterministic scenario based on seismic source zones allows moving the epicentre of 

the maximum historical earthquake within the limits of its seismic source zone, to locate it at the 

closest distance to the studied site. The deterministic scenario without seismic source zones is 

more representative for the actual seismic history of the region, as it does not change the 

original location of the maximum historical earthquake considered. The reference earthquake 

for the city of Barcelona was defined as the closest event with the highest epicentral intensity 

that had affected the city. This event corresponds to the 1448 historical earthquake in the 

Cardedeu region (Susagna and Goula 1998) that caused several damages in Barcelona city. 

With an epicentral intensity of VIII (MSK), the 1448 event occurred at an epicentral distance of 

25 km from the centre of the city and had been assigned a depth of 7 km.  

The attenuation relationship in terms of intensity corresponds to the adjustment of the 

parameters of the Sponheuer (1960) attenuation model using intensity data from Catalonian 

earthquakes felt during the XX century performed by Secanell et al. (2004), in which the values 

of b, γ and k for the Catalonia region were stated as 1.0, 0.001 km-1 and 3.0, respectively. 

( )( ) 22
10

b

100 hxrhrelogk
h
rlogkII +=−γ+⎟
⎠
⎞

⎜
⎝
⎛−=  (1) 

The 1448 earthquake epicentral intensity, I0, and the intensity attenuation relationship were used 

to construct a GIS map with the deterministic intensity expected for a mean soil in the city of 

Barcelona, shown in FIGURE 6. Based on these results, the maximum intensity for a mean soil 

expected in the city of Barcelona varies from VII degrees to the north of the city to VI degrees 

in the southern area. 
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FIGURE 6 Deterministic intensity map for mean soil conditions. 
 

3.2 Probabilistic seismic scenario 

The assessment of the probabilistic seismic hazard in terms of intensity was not addressed by 

the Risk-UE project, but the probabilistic seismic hazard for the Catalonian region had been 

previously obtained in terms of intensity (Secanell 1999; Secanell et al. 2004).  

FIGURE 7 shows the probabilistic seismic hazard in terms of intensity for a return period of 500 

years obtained by Secanell et al. (2004) for a mean soil.  Based on these results, the city of 

Barcelona can be expected to be affected by an intensity of VI-VII degrees for a return period of 

500 years (an exceedence probability of 10% in 50 years). For a return period of 500 years, the 

Spanish Seismic Normative NCSE-02 (2002) assigns to Barcelona a basic acceleration of 0.04 g 

which corresponds to an intensity of VI degrees, according to the relation between intensity and 

acceleration provided by NCSE-94 (1994). Therefore, in this case, the results of Secanell et al. 

(2004) are higher than the recommended by the NCSE-02 for the city of Barcelona. 
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FIGURE 7 Probabilistic seismic hazard in terms of intensity for a return period of 500 years for a mean 
soil (Secanell et al. 2004). 
 

3.3 Seismic scenario assessment with site effects  

The soils effects included in the seismic hazard in terms of intensity are considered following 

the concepts exposed by Secanell (1999) where a geotechnical characterization of Catalonia by 

Fleta et al. (1996) was used to apply the soil effects in terms on intensity levels. Depending on 

the type of soil, the intensity is incremented. The increments used in Secanell (1999) were 

decided through expert opinions based on empirical correlations like the ones shown in Bard 

(1997). This way for introducing soil effects in terms of intensity was also recommended within 

the Risk-UE project (Faccioli 2006). 

From Secanell (1999) four soil types where distinguished: hard rock (R), compacted materials 

(A), semi-compacted materials (B), and non-cohesive material and Sands (C). For soil types R 

and A, no increment in intensity is applied, while for soil types B and C an increment in 

intensity of 0.5 degrees was applied to construct the deterministic intensity map with soil 

effects. 
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Taking into account the seismic zonation of Barcelona based on local effects from Cid et al. 

(2001) shown in FIGURE 8, this increment was applied to soil zones I, II and III. FIGURE 9a 

shows the map for deterministic seismic hazard with soil effects in terms of intensity for the city 

of Barcelona (Irizarry 2004), while FIGURE 9b presents the map for the probabilistic seismic 

hazard for a return period of 500 years including soil effects for the city of Barcelona (Lantada 

et al. 2008). As can be seen, for both scenarios, the most frequent intensities expected for 

Barcelona are VI-VII and VII. However, in the deterministic scenario, a smaller portion of the 

city that is closer to the reference earthquake epicentre has an intensity of VII-VIII. 

 

FIGURE 8 Seismic zonation of Barcelona based on local effects (Cid et al. 2001). 
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FIGURE 9 a) Deterministic intensity map with site effects for the city of Barcelona (Irizarry 2004). b) 
Probabilistic intensity map for a return period of 500 years including site effects for the city of Barcelona 
(Lantada et al. 2008). 

4. Seismic risk evaluation using the Vulnerability Index 
Method 

4.1 Vulnerability Index Method for residential buildings 

The Vulnerability Index Method (VIM) proposed by Benedetti and Petrini (1984) was 

developed based on the extensive damage survey data corresponding to several strong 

earthquakes in Italy. This method allows identifying differences among buildings with the same 

structural typology by means of a vulnerability index. Therefore, it has some advantages over 

the ATC-13 method (ATC-13 1985), which classifies the building according to their typology, 

material or year of construction. The most important eleven parameters controlling the damage 

in buildings caused by earthquakes are identified and qualified by means of coefficients affected 

by weights which try to emphasize their relative importance.  

The VIM used in Italy by Gruppo Nazionale per la Defesa dai Terremoti (GNDT 1994; 

Bernardini 2000) identifies the existing building typologies within an area and defines their 

class of vulnerability (i.e. A, B, C) (Giovinazzi and Lagomarsino 2002). The VIM version 

developed in RISK-UE and applied in this article to evaluate the vulnerability and risk of 

Barcelona is based on observed damage data and on the European Macroseismic Scale EMS’98 

classification of buildings (Grünthal 1998). This method requires the seismic action to be 
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defined in terms of macroseismic intensity, the seismic quality of the buildings to be described 

by means of a vulnerability index, and it makes use of the classical probability theory and of the 

fuzzy-set theory (Giovinazzi and Lagomarsino 2002; Lagomarsino and Giovinazzi 2006). 

According to the fuzzy set theory, the trapezoidal membership functions χ of the six 

vulnerability classes have a plausible (χ=1) and two linear possible ranges, defining the 

transition between two adjacent classes. VI* is the most probable or plausible value of the 

vulnerability index (χ=1);    [VI -;VI +] are bounds of the plausible range of the vulnerability 

index (χ=;0.6); [VI min; VI max] are upper and lower bounds of the possible values (χ=0.2)(TABLE 

1).  

The Risk-UE VIM establishes a typological classification system in order to group structures 

with a similar seismic behaviour. TABLE 1 shows vulnerability indices for some of theses 

typologies through the Building Typology Matrix or BTM, which essentially corresponds to that 

adopted by EMS-98. 

TABLE 1 Vulnerability index values for several cases of the building typology matrix, BTM, proposed 
by Risk-UE (Milutinovic and Trendafiloski 2003). VI* is the most probable or plausible value and VI -/VI 
+ and VI min/ VI max  are the probable and less probable vulnerability index ranges, respectively 

Vulnerability Indices  Typology Description 
min
,BTMIV −

BTMIV ,
*
,BTMIV  

+
BTMIV ,  

max
,BTMIV

M3.1 Unreinforced masonry bearing walls  
with wooden slabs 0.460 0.650 0.740 0.830 1.020

M3.2 Unreinforced masonry bearing walls  
with Masonry vaults 0.460 0.650 0.776 0.953 1.020

M3.3 Unreinforced masonry bearing walls  
with composite steel and masonry slabs 

0.460 0.527 0.704 0.830 1.020

M34 Reinforced concrete slabs 0.300 0.490 0.616 0.793 0.860

RC3.1 Concrete frames with regular  
unreinforced masonry infill walls 0.460 0.650 0.740 0.830 1.020

RC3.2 Concrete frames with unreinforced masonry 
infill walls with irregularly frames (i.e., 
irregular structural system, irregular infills, 
soft/weak story) 

0.060 0.127 0.522 0.880 1.020

S1 Steel moment frames. -0.020 0.467 0.363 0.640 0.860

S2 Steel braced frames -0.02 0.467 0.287 0.480 0.700

S3 Steel frames with unreinforced  
masonry infill walls 0.140 0.330 0.484 0.640 0.860
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Vulnerability Indices  Typology Description 
min
,BTMIV −

BTMIV ,
*
,BTMIV  

+
BTMIV ,  

max
,BTMIV

S4 Steel frames with cast-in-place concrete 
shear walls -0.02 0.047 0.224 0.350 0.540

S5 Steel and RC composite systems -0.020 0.257 0.402 0.720 1.020

W Wood structures 0.140 0.207 0.447 0.640 0.860
 

The vulnerability index has been conventionally defined ranging from −0.02 to 1.02 

(Lagomarsino and Giovinazzi 2006). However, vulnerability indices are normalized taking 

values between 0 (least vulnerable buildings) and 1 (most vulnerable buildings). The method 

identifies the existing building typologies within the studied area and defines their vulnerability 

class. For each vulnerability class, the relationship between intensity and damage is defined by 

using Damage Probability Matrices (DPM) (Whitman 1973).  

Further refinements of the vulnerability index Vl come from behaviour modifiers which are used 

to evaluate a final vulnerability index of each building as follows: building
IV

1

n
building class

I I R
j

V V M V
=

= + Δ + jm∑
 

 
(2) 

where  is the vulnerability index corresponding to the category of the building, class
IV RMΔ is a 

regional modifier which takes into account the peculiarities of the region or building period 

while  are vulnerability factors or behaviour modifiers that incorporate other aspects of the 

building affecting its seismic behaviour. Two kinds of  modifiers are considered in Eq. 

jVm

jVm (2): 

building modifiers and location modifiers.  

This RISK-UE VIM version uses six damage states: a no-damage state (denoted as None), 

Slight, Moderate, Substantial to Heavy, Very Heavy and Destruction (Grünthal 1998). A sort of 

mean damage grade, μD, permits to characterize completely the expected damage for a building, 

known its vulnerability (VI) and for a given intensity (I) by the following equation:.  

6.25 13.12.5 1 tanh I
D

I Vμ
φ

⎡ ⎤⎛ ⎞+ ⋅ −
= ⋅ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (3) 
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The parameter φ in Eq. (3) is the ductility index, which is evaluated taking into account the 

building typology and its constructive features (Lagomarsino and Giovinazzi 2006); it controls 

the slope of the curves and assumes different values to fit the data obtained through damage 

surveys. For residential buildings, it takes a value of 2.3. Then, damage probability matrices can 

be easily obtained by assuming that the damage probability follows a binomial or beta-

equivalent probability distribution (Giovinazzi and Lagomarsino 2002).  

A weighted mean damage index, DSm, can be calculated by using the following equation: 

[ ]
5

0
m k

k
DS k P DS

=

= ⋅∑  (4) 

where k takes the values 0, 1, 2, 3, 4 and 5 for the damage states k considered in the analysis and 

P(DSk) represents the corresponding probabilities of occurrence for the damage state k. It can be 

considered that DSm is close to the most likely damage state of the structure. This damage index 

is equivalent to the mean damage grade, μD, and it is useful for mapping and analyzing damage 

distributions by using a single parameter. Of course, alternative maps may plot the spatial 

distribution of the probability of occurrence of a specified damage state DSk, that is P(DSk). 

4.2 Vulnerability Index Method for monumental buildings 

Within the Risk-UE project, vulnerability indices were also developed for monumental 

buildings. From the structural point of view, many monuments are special and unique structures 

that cannot be fitted into the typologies proposed by Milutinovic and Trendafiloski (2003) for 

residential buildings. For these reason, Lagomarsino et al. (2004) recommends the application 

of the vulnerability index method using a different set of typologies, shown in TABLE 2, that 

are not necessarily related to the structural system of the monument. The characterization of the 

seismic behaviour of some of the monumental typologies was made using statistical analysis of 

observed damages, like in the case of buildings and churches. Numerous statistical data was 

available for ancient buildings and churches from damage surveys performed during the Friuli 

(1976) and Umbria-Marche (1996-1997) earthquakes (Lagomarsino 2006). Like no observed 

damage data was available for all other monument typologies, Lagomarsino (2006) derived its 
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vulnerability indices based on expert knowledge and using the vulnerability curves developed 

for churches and buildings as reference.  

TABLE 2 Values of the vulnerability index and ductility index for monument typologies (Lagomarsino et 
al. 2004). 

Vulnerability Index, VI  Monument 
typology Lower Mean Upper 

Ductility 
index, φ 

Palaces/Buildings 0.496 0.616 0.956 2.3 

Monasteries 0.616 0.736 1.076 2.3 

Castles 0.356 0.456 0.766 2.3 

Churches 0.770 0.890 1.260 3.0 

Chapels/Oratories 0.650 0.770 1.140 3.0 

Mosques 0.670 0.730 0.940 2.65 

Theatres 0.616 0.736 1.086 2.65 

Towers 0.636 0.776 1.136 2.3 

Bridges 0.216 0.296 0.566 2.3 

Walls 0.396 0.496 0.746 2.3 

Triumphal Arches 0.376 0.456 0.706 2.3 

Obelisks 0.396 0.456 0.746 1.95 

Statues/ Fountains 0.236 0.296 0.606 1.95 

 

The variability of the vulnerability indices was also considered, and therefore their upper and 

lower limits are also given in TABLE 2 for each typology. The highest vulnerability index 

belongs to the churches but towers, chapels, oratories, monasteries, theatres, mosques, palaces 

and buildings also are very vulnerable as it can be seen in FIGURE 10. 

After assigning a vulnerability index to a monument as a function of a given typology, the 

monument vulnerability is modified in function of the specific characteristics of the 

monumental building using vulnerability modifier specifically defined for monuments 

(Lagomarsino 2006). The final vulnerability index of each monument is used to calculate its 

expected mean damage grade using the vulnerability function shown in Eq. (3). 
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FIGURE 10 Mean vulnerability curves for the different monument typologies. 
 

5. Seismic risk scenarios for the city of Barcelona 
All the available data have been integrated into a Geographic Information System (GIS) which, 

in this case, was ArcView GIS. This tool and the information on the city allowed performing a 

building by building analysis. However, in order to display the results in a clearer way, the 

building by building results have been summarized using the administrative zones of the city 

(especially census zones).  

5.1 Physic direct damage for residential and monumental buildings 

According to the classification of buildings proposed in handbook of Workpackage 1 of Risk-

UE Project (Lungu et al. 2001) (see TABLE 1), the predominant typologies in Barcelona are the 

masonry with wooden slabs M3.1 (16,972 buildings) and the masonry with composite steel and 

masonry slabs M3.3 (15,389 buildings). Further refinements of the vulnerability index VI come 

from behaviour modifiers, which are used to evaluate a global vulnerability index of each 

building according to Eq. (2). TABLE 3 shows the Vulnerability Index VI
class modified with 

∆MR based on earthquake resistant considerations and on the seismic codes changes produced in 

Spain. The buildings have been classified into different ranges of the year of construction. 

Almost the 80% of the building stock of Barcelona was constructed prior to the implementation 

of the first Spanish Seismic Code (PGS-1 1968). 
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TABLE 3 Vulnerability index for building typologies and periods of construction according to 
the Spanish seismic code level. 

Vulnerability Index (VI) 
Period of 
construction 

Spanish seismic 
code 

Lateral bracing in 
constructive 
practice 

Code 
level 

Buildings 
(%) 

M3.1 
M3.2 
M3.3 

M3.4 RC3.2

Before 1950 ----- Absent Pre-code 50.7 0.94 -- -- 
1950-1962 ----- Deficient Pre-code 17.3 0.88 -- -- 

1963-1968 
Recommendation 
MV101 (1963) 

Deficient Pre-code 10.9 0.81 0.75 0.75 

1969-1974 
Seismic code 
P.G.S-1 (1968) 

Acceptable Low 9.8 0.75 0.63 0.63 

1975-1994 
Seismic code  
P.D.S.-1 (1974) 

Acceptable Low 11.1 0.69 0.56 0.50 

1995 until 
now 

Seismic code 
NCSE-94 (1994) 

Acceptable Low 0.2 0.69 0.56 0.50 

 

The building modifiers refer to isolated buildings, quantifying: the number of floors; the 

preservation state; vertical irregularity that depends on the areas with different number of floors 

in the building; the length of the façade of masonry buildings with façades longer than 15 

meters; and horizontal irregularity that is based on the compactness ratio RC of the building 

(Udwin 1981) according to the following equation: 

CA
ARC =  (5) 

where A is the area of the building and AC the area of the circle with the same perimeter that the 

building. The value of RC is equal to 1 for circular buildings and ranges from 1 to 0 for other 

shapes. This modifier takes values of 0.02 and 0.04 units for buildings with RC values lower 

than 0.7 and 0.5 respectively. 

The location modifiers that take into account: the difference in height between each building 

and the adjacent buildings, but only when this different is greater than or equal to two floors 

(FIGURE 11); and the position of building in the aggregate or the block they belong. 

Particularly, this modifier penalises corner buildings and buildings located at the ends of an 

aggregate, increasing their vulnerability index in 0.04 and 0.06 units, respectively. The 

vulnerability index of buildings placed in the middle of the aggregates is reduced in 0.04 units.  
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FIGURE 11 Location modifiers for each building according to the difference between its height and the 
height of the two adjacent buildings. 
 

The vulnerability indices of masonry buildings show values ranging from 0.7 to almost 1, with a 

mean value of 0.87, while indices in reinforced concrete buildings are smaller, ranging from 0.4 

to 0.85 (mean value of 0.65). The mean vulnerability index of masonry and reinforced concrete 

buildings obtained for each census zone is shown in FIGURE 12a and FIGURE 12b, 

respectively. In the first case a radial pattern is observed, with the greatest vulnerability indices 

located in the historic city centre. Many old buildings with a deficient seismic quality are 

concentrated downtown. In the second figure a slight decrease on vulnerability can be observed 

but the radial pattern has disappeared. This vulnerability analysis shows the low seismic quality 

of the residential buildings in the city, which is typical of those cities located in areas with low 

to moderate hazard because there is no concern about the seismic hazard that affect its.  

 
FIGURE 12 Mean vulnerability indices by census zones for (a) masonry buildings and (b) reinforced 
concrete buildings. 
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The mean damage grade for each district can be seen in FIGURE 13 for both the deterministic 

and probabilistic hazard scenarios. The distribution of damage follows a radial pattern from 

downtown to the outskirts of Barcelona. A higher damage in the proximity of the epicentre of 

the considered earthquake (northern part of the city) is observed in the deterministic hazard case 

of FIGURE 13a.The mean damage grade μD for the entire city (Eq. (3) is 1.65 and 1.59 for the 

deterministic and probabilistic hazard scenario, respectively, which correspond in both cases, to 

a moderate damage state according to TABLE 4. In both cases, the highest damage expected is 

located in the downtown, for which damages close to Substantial to Heavy (a value 2.4 for the 

mean damage index) can be expected in both cases. 

TABLE 4 Mean damage index values and damage states. 
 

Mean damage  
index intervals (DSm) 

Most probable damage state 

0.0-0.5 None 
0.5-1.5 Slight  
1.5-2.5 Moderate  
2.5-3.5 Substantial to Heavy 
3.5-4.5 Very Heavy 
4.5-5.0 Destruction 

 

   
FIGURE 13 Mean damage grade for each district for a) deterministic seismic hazard scenario b) 
probabilistic seismic hazard scenario 
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The selected monumental buildings were integrated in the GIS system to determine the level of 

intensity affecting them according to the deterministic scenario based on the 1448 Cardedeu 

earthquake. The distribution of monuments according to the level of intensity expected to affect 

them, shows that 51 of the 68 monuments are expected to experience an intensity of VII degrees 

when soil effects are considered, while only a few of them would be affected by an intensity VII-

VIII. 

An inventory of the 68 monumental buildings included in the level A of protection was carried out, 

gathering all the possible information in order to evaluate their vulnerability considering the 

maximum possible number of modifiers.  FIGURE 14 shows the distribution of monuments 

according to their final vulnerability index for the three levels considered.  For both, the lower and 

mean values of the vulnerability index, the greater part of the monumental buildings considered has 

a vulnerability index between 0.50 and 0.70. For the upper values of the vulnerability index, the 81 

% of the monumental buildings have a vulnerability index between 0.90 and 1.1. The intervals of 

vulnerability index with the higher number of monuments correspond to those intervals containing 

the palace vulnerability index, the most abundant typology of the monuments set considered. The 

dispersion of the obtained vulnerability index distributions is large due to the differences between 

the lower, mean and upper values of the initial vulnerability indices shown in TABLE 2.  

Once the vulnerability indices were obtained for each monument, the expected mean damage, μd, 

was calculated for each monument using the lower, mean and upper vulnerability indices.  As 

expected, churches, monasteries, chapels and theatres show the higher levels of mean damage 

grade. Maximum mean damage grades of 2, 3 and 4 were obtained using the lower, mean and 

upper vulnerability indices, respectively. 

The percentage of monumental buildings expected to have a given mean damage grade is shown in 

FIGURE 15 for the considered values of the vulnerability indices (lower, mean and upper). Once 

again, great differences are observed between the mean damage distributions due to the 

dispersion presented by the lower, mean and upper values of the vulnerability indices proposed 

by Lagomarsino et al. (2004). Considering the mean values of the vulnerability index, over 70 % 

of the monuments are expected to have a mean damage grade of 1, or a mean damage grade of 0 if 
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the lower vulnerability indices are used. Based on the upper vulnerability indices, the majority of 

the monuments are expected to have mean damage grade of between 2 and 3 but there is a 12 % 

with a mean damage grade of 4 implying very heavy damages.  

 

 

FIGURE 14 Distribution of monuments based on 
their vulnerability index. 

FIGURE 15 Monuments distribution according 
to their mean damage grade. 

 

FIGURE 16 shows the ten monuments with the highest values for the mean damage grade.  Using 

the mean and lower values of the vulnerability index, some monuments obtained mean damage 

grades of 2 and close to 3, meaning that light to medium damages can be expected in their 

structures.  Due to the nature of many monuments, even minor damages can imply loosing their 

patrimonial value. Using the upper limits, the higher mean damage grades grow up to passed 4. 

Some monuments can even have a probability of collapsing due to their high mean damage grade.  

A Sagrada Familia
B Església Sta Maria del Mar
C Església Sta Maria del Pi
D Església Betlem
E Catedral de Barcelona 
F Ateneu Barcelonès
G Palau de la Musica Catalana
H Monestir Sant Pau del Camp
I Capella Sta Agueda
J Gran Teatre del Liceu  

FIGURE 16 Monuments with the highest mean damage grade. 
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As the mean damage grade represents a damage distribution, damage probabilities can be 

calculated for each mean damage grade of each monument. Damage probability distributions for 

each monument using the lower, mean and upper values of the vulnerability indices have been 

calculated using the binomial distribution (Irizarry et al. 2004). As examples, the damage 

distributions for the Sagrada Familia and the Santa Maria del Mar churches are shown in FIGURE 

17. Based on the upper values of the vulnerability indices, these two monuments have the collapse 

condition as the most probable damage degree. For the mean and lower values of the vulnerability 

indices, the collapse probability (damage grade 5), although being small, is not negligible. 

 

FIGURE 17 Damage distributions for Sagrada Familia (left) and Santa María del Mar (right) churches. 
 

The expected damage for the Santa María del Mar church was also evaluated by Irizarry et al. 

(2004) using the capacity spectrum method and considering the same deterministic scenario 

based on the 1448 Cardedeu Earthquake. Results from the capacity spectrum method reveal that 

a slight to moderate damage condition can be expected for this church under such hazard 

scenario. The mean damage grade obtained using the vulnerability index method is 2.78, which 

is between damage grades 2 and 3 that correspond to of light and moderate damage conditions, 

respectively. So, the results from the two methods are quite similar. In addition this church 

suffered damages during the 1373 historical earthquake when it was still under construction 

(Olivera et al. 1994). The description of these damages also corresponds to a slight to moderate 

damage conditions. 
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5.2 Damage to population 

 

The direct physical damage obtained is the starting point for other aspects of risk, such as 

damage to population, institutions and services, as well as to the economical and social system 

functions of the city. ATC-13 (1985), Coburn and Spence (2002) or Vacareanu et al. (2004) 

provide models to incorporate to the physical risk analysis, the number of casualties and deaths, 

homeless population and the economic cost, among others. These models, in general, use 

empirical functions, developed starting from observed data during past earthquakes and are 

usually based on the knowledge of the occurrence probabilities of the physical damage state.  

 

To evaluate the expected number of deaths and injured people, the casualty model given by 

Coburn and Spence (2002) has been applied. The occupancy rate of each building has been 

evaluated by assuming that reinforced concrete buildings contain more dwelling units and 

therefore more people due to their bigger size. Concerning the total floor area of masonry and 

reinforced concrete buildings, reasonable weights of 45% and 55% were assumed for masonry 

and concrete buildings, respectively. Thus, from the number of inhabitants for each census area, 

the number of inhabitants for each type of building has been estimated.  

 

Two different scenarios have been assumed for the occupancy at time of the earthquake ( 

 

 

 
TABLE 5) based on electric consumption in each district (Martí 2000). The first scenario 

on of population during a work day in winter, with the 

maximum population in the city (111%).The second one (scenario 2) corresponds to the lowest 

ccupation (79.5%) for a holiday in winter (day or night, as both have the same distribution). 

 

(scenario 1) corresponds to the distributi

o
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TAB utio ation by dist o 1 (a working day i
Scenario y or night nter 0
 

Scenario 1.Population i  
uildings

Scenario 2.Population i  
buildings

LE 5 Distrib n of the popul ricts for Scenari n winter) and 
 2 (da of a wi holiday) (Martí 20 0).  

DISTRICTS n
 b

n
  

 

Po
Thousand of 
inhabitants Percentage Thousand of 

inhabitants Percentage 

 

pulation 
1996 

 
1  Ciutat Vella 83800 122.0 145.58 75.5 90.10 

2  Eixample 
o

248800 344.8 138.59 175.8 70.66 
3  Sants-M ntjuïc 

rdó 
  

 135600 130.4 96.17 116.2 85.69 
1

 BARCELONA 1508800 1674.9 111.00 1200.0 79.53 

167400 209.2 124.97 149.0 89.01 
4  Les Corts 81900 137.2 167.52 54.0 65.93 

5  Sarrià-
St.Gervasi 129600 143.2 110.49 88.3 68.13 

6  Gràcia 115800 115.9 100.09 89.5 77.29 
7  Horta-Guina 169800 153.3 90.28 141.1 83.10 
8
9  Sant Andreu

Nou Barris 170800 133.9 78.40 143.6 84.07 

0  Sant Martí 205400 185.0 90.07 167.0 81.30 

 

FIGURE 18a and FIGURE 18b depict the total casualties by census zones, evaluated for the 

probabilistic hazard scenario occurs in a working winter day (scenario 1) or in a day or night of 

a winter holiday (scenario 2), respectively. The difference between scenario 1 and scenario 2 

when referring to casualties and injured people is about 1.5 ‰. Note that this difference can be 

 Spence 2002). Expected 

casualties in an urban area are strongly correlated not only with the severity of the hazard 

scenario but also with the density of population and of the built area. 

observed in several census zones of the centre of city, which have more population in a working 

day in winter than in a winter holiday. 

The cause of most of the casualties and injured people is the collapse of reinforced concrete 

buildings. This is mainly due to the differences between the coefficients proposed by Coburn 

and Spence (2002), that in fact reveals the actual effect of the collapse of certain types of 

reinforced concrete buildings during past earthquakes (Coburn and
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FIGURE 18 Distribution of fatalities (º/ºº) for the probabilistic hazard case: a) Scenario 1: a working day 
in winter and b) Scenario 2: day or night of a holiday winter. 
 

5.2.2 Number of homeless estimation 

Other important information for disaster management is the number of persons that must be 

relocated due to the uninhabitable dwelling units. This value must be considered to designing 

the emergency plan of the city, in order to prepare temporary housing or adapt other facilities 

for accommodating homeless during a determined period of time. 

The methodology to determine the number of uninhabitable residential units due to structural 

damage (UNUSD) is based on HAZUS 1999. This number is determined combining the number 

of uninhabitable residential units due to actual structural damage, with the number of damaged 

units that are perceived to be uninhabitable by their occupants. Based on comparisons with 

previous works (Perkins et al. 1996), the methodology considers the 100% of residential units 

located in buildings that are in the very heavy and destruction damage state and the 90% that are 

in substantial to heavy damaged structures to be uninhabitable. Therefore, total number of 

uninhabitable residential units due to structural damage is computed by the following 

relationship: 
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 %MFU  UNU
%D1.0 %VH1.0  %H0.9 %MF

MFSD

MFMFMF

×=
×+×+×=

 (6) 

being UMF the total number of multi-family residential units, %HMF, %VHMF and %DMF the 

damage state probability for substantial to heavy, very heavy and destruction  structural damage 

state, respectively, in the multi-family residential occupancy class.  

The total number of persons displaced from each building i with a typology t (PUNU), is obtained 

with the following relation, where Ph is the number of persons who are assumed to live in each 

household of the building: 

SDhUNU UNUPP ⋅=  (7) 

FIGURE 19a and FIGURE 20a depict the total homeless people that can be expected from the 

considered deterministic and probabilistic earthquake hazard scenarios, respectively.  

5.3 Economic cost 

The economical losses are estimated as the present restoration cost of the damaged buildings. 

This value is determined by considering that reconstruction is made using reinforced concrete 

buildings and it does not include the land cost. However, the construction cost has increased 

considerably in the last years (about a 10% per year) and, taking in to account that the final cost 

depends on these values, two economic cost scenarios have been evaluated in this study. The 

first one provides the absolute economic cost (SCost) in millions of Euros, given by the following 

equation: 

 [ ]
5 5 Ne

2 k 2 j 1

( )  ( ) ( , ) ( , )Cost C S
k

S CS k V Area j P k j RC k
= = =

= = ⋅ ⋅ ⋅∑ ∑∑ j
 

(8) 

where SCost is the sum of the CS(k) repair costs due to the damage state k (damage state 1 none is 

not considered, because there is no any induced cost when there is no damage); VC is the cost 

per unit area for which a constant value of VC  is assumed for all building typologies; Area is the 

building area; PS(k,j) is the probability for the building j to be in the damage state k and RC(k,j) 

is the repair value due to the damage state k for the building j; RC(k,j) is given as a percentage 

of the reposition cost per square meter. A reasonable value of VC for a residential building is 723 
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€/m2 which corresponds to the Spanish construction market (Boletín Económico de la 

Construcción 2007). The second scenario gives the relative economic cost (RCost), that is, the 

expected equivalent floor area destroyed by the earthquake. Thus, this economic cost can be 

defined from Eq. (8) as: 

 [
5 Ne

k 2 j 1

( ) (k,j) RC(k,j)Cost
Cost S

C

SR Area j P
V = =

= = ⋅ ⋅∑∑ ]
 

(9) 

An additional economic loss due to the damage of residential building contents is about the 50 

% of the building restoration value (ATC-13 1985). This value is added to the structural cost, 

SCost, in order to obtain the total economic cost TCost. 

As it can be seen in Eq. (9), there is a direct correlation between the economic cost amount and 

the built area. FIGURE 19b and FIGURE 20b depict, respectively, SCost in million of Euros for 

each census zone of the city, caused by the considered deterministic and probabilistic 

earthquake hazard scenarios.  

5.4 Debris generated 

The estimation of debris is performed empirically, based on observations of damage occurred in 

past earthquakes, for the damage states of the structural and non-structural elements 

(FEMA/NIBS 2002). Two types of debris are considered: 1) debris that falls in large pieces, e.g. 

steel members or reinforced concrete elements; 2) smaller debris, such like brick, wood, glass, 

building contents etc. Debris scenarios are obtained on the basis of the expected debris fraction 

EDFS (d,t) of type d will produce due to the structural damage state k in a building typology t. 

This fraction is modelled by the following equation: 

5

2
( , ) ( , ) ( , , )S S S

k
EDF d t P k t DF d k t

=

= ⋅∑  (10) 

where PS(k,t) is  the probability of a structural damage state k for the building typology t and 

DFS(d,k,t) is the fraction of debris type d for the building typology t if the structural damage 

state k occurs.  

Finally the total debris weight, in tons, is obtained by summing, for each building of typology t 

and for each debris type d, the built area multiplied by the EDFS(d,t) debris fraction. Thus, in 
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the assumed model, debris is produced by any non-null damage state and by means of the 

following equation: 

( , , ) ( , ) ( , , )S E SDF d k t W d t GF d j t= ⋅  (11) 

where WE(d,t) are the structural element weights for materials of  type d and for the building 

typology t. GFS(d,j,t) are the fractions of the structural element weight that is expected to result 

in debris due to the earthquake and they depend on the damage state k, the building typology t 

and the debris type d. These coefficients have been adapted from HAZUS 1999 (Vacareanu et 

al. 2004). 

FIGURE 19c and FIGURE 20c show the debris scenario for the deterministic and probabilistic 

earthquake hazard scenarios, respectively. As it can be seen in Eq. (11), there is a direct 

correlation between the debris amount and the built area. 

5.5 Summary  

Results for seismic risk scenarios simulated for Barcelona are shown in this section. Important 

damages caused by the considered deterministic and probabilistic hazard scenarios are expected 

in Barcelona. The human loses would be between 5000 and 9000 fatalities (between 3.3 and 5.9 

thousand per people), 4000 and 6500 injured people, and more than 250000 homeless people. 

The economical loses estimated due to the structural damage cost rises at 10000 million of 

Euros, and the total volume of debris would be higher than 10000 tons. 

Different seismic risk scenarios for the deterministic and probabilistic hazard are shown for 

census zones in FIGURE 19 and FIGURE 20, respectively. The scenarios of these figures 

provide average information easy to analyze and interpret, useful for preparedness, risk 

management and emergency planning.  

.
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FIGURE 19  (a) Homeless (b) Total economic cost in million of Euros (c) Debris volume (tons) generated for deterministic hazard scenario. FIGURE 19  (a) Homeless (b) Total economic cost in million of Euros (c) Debris volume (tons) generated for deterministic hazard scenario. 
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6. Discussion and conclusions 
The seismic risk assessment for current buildings and monuments of Barcelona has been 

performed by using the Vulnerability Index Method (VIM) established within the RISK-

UE project. Spatial convolution between seismic hazard and vulnerability index, as well 

as damage probability matrices, allowed estimating the spatial distribution of the 

expected damage and losses associated to the hazard scenarios considered. 

Due to the continuous changes related to the population, buildings, infrastructures and 

cost, that urban areas suffer, a Geographic Information Systems (GIS) is the optimal tool 

for managing and updating all data necessary to evaluate seismic risk. In this sense, a 

significant contribution of the performed developments is the creation of a powerful and 

versatile tool implemented on a GIS. This application allows highlighting and 

discriminate the strong and weak points of the social and residential urban network, thus a 

better insight to the seismic risk state. 

In the case of Barcelona, the details and quality of the database, collected, improved and 

completed over the years for the current buildings of the city, allowed an accurate 

assessment of the vulnerability indices including the mean value and the modifiers related 

to the particular features of the individual buildings. It is worth noting that the modifiers 

of the vulnerability indices are calculated in a way different from the one proposed in the 

Risk-UE Project. In this way, the vulnerability and damage analysis has been made 

building by building, but was also calculated for different administrative areas. In 

particular, the census areas have been judged as the best evaluation scale for scenarios, 

because this level of representation allowed describing adequately the heterogeneity of 

the urban areas within the probabilistic frame of the study.  

The seismic hazard for the city of Barcelona was evaluated in terms of intensity 

according to both the deterministic and probabilistic approaches, also including soil 

effects. The deterministic seismic hazard with soil effects in terms of intensity vary from 

VI to VII-VIII, while for the probabilistic scenario these intensities vary from VI-VII to 

VII. These intensities indicate that a certain degree of damage can be expected.  
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Based on these hazard scenarios, seismic risk scenarios have been developed, which show 

that in Barcelona, a city located in a low to moderate seismic hazard region, the high 

seismic vulnerability of the structures leads to a considerable expected risk. It is worth 

noting that the original results described in this article, together with the complete and 

detailed technical information concerning the expected damage, loss to property and 

casualties, have been delivered to the civil protection services of the municipality who are 

using them for updating the emergency plans of the city. In order to study the effect of the 

influence of the population flow to and from the city, two different scenarios of casualties 

have been developed, the first due to a seismic event occurred during a winter working 

day and the second one during a winter night holiday. The seismic damage evaluation for 

the most important cultural heritage buildings of the city using the VIM revealed that 

churches are the most vulnerable monuments. Most of the vulnerability indices adopted 

for the buildings and monuments of Barcelona may be directly used in obtaining risk 

scenarios for other cities of Spain, in particular for those of the Mediterranean region. 

The maximum mean damage state expected for Barcelona’s residential buildings and 

monuments correspond to a level of slight to medium for the deterministic scenario. This 

method has proven to be a simple statistical tool for evaluating the vulnerability of 

residential buildings and monuments when limited information is available, because the 

results it provides are comparable with those obtained by using more sophisticated 

mechanical methods. 

Validation of results is crucial for any seismic risk assessment method, but this is not a 

trivial issue for earthquake scenarios because of the great uncertainties involved. The best 

validation test would be the real occurrence of the simulated earthquake scenario; 

agreement between simulations and observed damage would validate both the method 

and the quality of the data used. Some alternative validation procedures can be based on 

data from similar earthquake scenarios, numerical simulations performed with other 

methods or expert judgement. In this case, the VIM method is based on the EMS-98 

intensity scale and data are highly accurate; vulnerability curves are well calibrated by 
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using this scale and the assessment of the vulnerability indices has been made by using 

accurate information existing for each building in the database, showing an excellent 

agreement with the historical evolution and the current state of the city. Moreover, the 

results based on the VIM method show damage and losses distributions similar to those 

obtained for the city using the Capacity Spectrum Based Method (CSBM) as proposed in 

the framework of the Risk-UE project. For these reasons, the risk scenarios developed in 

this article are considered to be reliable. 
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