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Abstract

Rabbit embryonic stem (rES) cells can be derived from various sources of embryos. However, understanding of the gene
expression profile, which distincts embryonic stem (ES) cells from other cell types, is still extremely limited. In this study, we
compared the protein profiles of three independent lines of rabbit cells, i.e., fibroblasts, fertilized embryo-derived stem (f-
rES) cells, and parthenote-derived ES (p-rES) cells. Proteomic analyses were performed using two-dimensional gel
electrophoresis (2-DE) and mass spectrometry. Collectively, the expression levels of 100 out of 284 protein spots differed
significantly among these three cell types (p<<0.05). Of those differentially expressed spots, 91% were identified in the
protein database and represented 63 distinct proteins. Proteins with known identities are mainly localized in the
cytoplasmic compartments (48%), nucleus (14%), and cytoskeletal machineries (13%). These proteins were majorly involved
in biological functions of energy and metabolic pathways (25%), cell growth and maintenance (25%), signal transduction
(14%), and protein metabolisms (10%). When protein expression levels among cell types were compared, six proteins
associated with a variety of cellular activities, including structural constituents of the cytoskeleton (tubulins), structural
molecule (KRT8), catalytic molecules (a-enolase), receptor complex scaffold (14-3-3 protein sigma), microfilament motor
proteins (Myosin-9), and heat shock protein (HSP60), were found highly expressed in p-rES cells. Two proteins related to HSP
activity and structural constituent of cytoskeleton in f-rES cells, and one structural molecule activity protein in fibroblasts
showed significantly higher expression levels (p<<0.05). Marker protein expressions in f-rES and p-rES cells were further
confirmed by Western blotting and immunocytochemical staining. This study demonstrated unique proteomic profiles of
the three rabbit cell types and revealed some novel proteins differentially expressed between f-rES and p-rES cells. These
analyses provide insights into rES cell biology and would invite more in-depth studies toward rES cell applications.
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Introduction (SSEA-4), keratin sulfate antigens TRA-1-60, and TRA-1-81 as
well as octamer-binding transcription factor (Oct4) [3—4,12], so
did the f=rES cells. However, there are fundamental differences
between f-rES and p-rES cells in that p-rES cells are generated
from homozygous embryos consisting of only haploid female
genome and lack of the expression of paternally imprinted genes

su.bJected to .artlﬁaal stimuli to initiate er.nbryomc development such as Surpn and Igf2 [3,12]. With these properties, p-rES cells
without fertilization process or incorporation of sperm chromo-

somes. These parthenotes possess chromosomes entirely of the
maternal origin and fail to develop to term due to a lack of
paternal gene expressions or normal genomic imprinting [10-11].
Similar to f-rES cells, parthenote-derived rES (p-rES) cells can
continuously proliferate i vitro, retain self-renewal capacity
without differentiation [3—4,12], and also differentiate into cell
lineages of the three germ layers both w vitro and in vivo. They
expressed the same set of pluripotency marker genes (Oct4, Nanog,
and Sox2), alkaline phosphatase (AP), and proteins such as cell
surface markers including stage specific embryonic antigen-4

Rabbit embryonic stem (rES) cells are pluripotent cells derived
from the blastocyst stage embryos [1-2]. Recently, more newly
established rES cells are derived from fertilized embryos (f-rES)
[3-9]. Parthenogenetically activated (PA) oocytes or embryos are

have been proposed and proved to be useful in ameliorating or
completely eliminating the risk of immunological rejection after
cell transplantation [13].

Recently, proteomic analyses have been performed to monitor
the global protein expression and post-translational modifications
in mouse ES (mES) cells [14-16], and to determine the protein
expression profiles in mouse [17-18], monkey [19], and human
[20-21] ES cells undergoing chemically induced differentiation.
So far, no authentic germline transmissible rES cell lines were
reported and the molecular mechanisms superimposing distinct
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characteristics onto the f-rES and p-rES cells are largely unknown.
Apparently, understanding of the differentially expressed protein
profiles between the p-rES and f-rES cells becomes of importance
for further in-depth studies toward rES cell authenticity and cell
replacement therapies. In the present study, proteomic and
bioinformatic analyses on the three rabbit cell types (fibroblasts,
f-rES cells, and p-rES cells) were performed to unravel the
distinctive protein expression profiles among them.

Materials and Methods

Animal Use and Reagents

The care and use of all animals for recovering embryos were
complied with the guidelines and was approved by the Institu-
tional Animal Care and Use Committee (IACUC) of National
Chung Hsing University, Taiwan, ROC (IACUC Permit NO. 96-
72). Chemicals and reagents used were mainly purchased from
Sigma-Aldrich Co. unless otherwise mentioned.

Culture of rES Cells and Fibroblasts

The schematic diagram of the experimental procedures for the
proteomic analysis in this study is shown in Fig. 1. One
representative f-rES cell line (R4) derived from the blastocyst of
fertilized embryos [8] and one p-rES cell line (A2) from
parthenotes [12] were used for 2-DE analysis. The f-rES and p-
rES cell lines were cultured in 81.5% D-MEM/F-12 (Cat. No.
12400-024, Gibco Products International, Grand Island, NY,
USA) supplemented with 15% FCS (Cat. No. 10437-028, Gibco
Products International), 2 mM L-glutamine (Cat. No. G8540-25,
Sigma-Aldrich, St. Louis, MO, USA), 1% nonessential amino
acids (Cat. No. M7145, Sigma-Aldrich), 0.1 mM B-mercaptoeth-
anol (Cat. No. M7522, Sigma-Aldrich), 1,000 U/mL recombinant
mouse leukemia inhibitory factor (LIF; Cat. No. ESG1107,
Chemicon, Temecula, CA, USA) and/or 4 ng/mL human
recombinant basic fibroblast growth factor (bFGF; Cat. No.
CYT-218, Prospec, Rehovot, Israel) using MEF as feeder cells,
described in the previous study [8]. The ES cells were passaged
every 4 days and the medium was changed every other day.
Rabbit fibroblasts cultured in 90% DMEM (Cat. No. D7777,
Sigma-Aldrich) with 10% FCS (Cat. No. 10437-028, Gibco
Products International) served as a comparative control of the
differentiated cell population. All cells were maintained in a
humidified incubator (38°C) containing 5% COj in air, and
protein samples of rES cells at passage 15 and fibroblasts were
prepared as described below.

Reverse Transcription-polymerase Chain Reaction (RT-
PCR)

Rabbit ES cell colonies were lifted from feeders with dispase
(1 mg/mL; Gibcol17105041) at 37°C and fibroblasts were subject
to trypsinization. The procedures for RNA extraction were
performed as previously described [8,12]. Total RNAs of rabbit
fibroblasts, f-rES, and p-rES cells were extracted using a total
RNA extraction kit (Geneaid RT050, Taipei, Taiwan, R.O.C.).
Primer sequences including sense and antisense, annealing
temperatures, and expected sizes of amplicons are used following:
Snrpn: 5'-TGAGACGGACTACAGAGCAG-3', 5-GGTAT-
GATGGCAGGTTCTCC-3’ (59°C, 279 bp); Igf2:5'-
GCTTCTACTTCAGCAGGC-3, 5'- GTGTCATATTGGAA-
GAACTTG-3"  (54°C, 207 bp);  GAPDH:  5'-GGAGC-
CAAACGGGTCATCATCTC-3', 5-GAGGGGCCATCCA-
CAGTCTTCT-3" (62°C, 233 bp).
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Sample Preparation for Proteomic Analysis

To prevent contamination of feeder cells with rES cells, rES cell
colonies were lifted from feeders by treatment with dispase (1 mg/
mL; Gibco17105041) at 37°C for 1-2 min for gentle cracking, and
then rES cell culture medium was added to stop the enzymatic
reaction. The colonies were collected into a 15-mL tube and stood
for 3 min to settle and separate rES colonies from feeder cells. Old
medium in the tube was replaced with fresh medium (10 mL) and
then the tube was again left still for 3 min to set down rES cell
colonies. The same procedures were repeated for three times to
remove feeder cells from rES cells for analyses. For proteomic
analysis, cultured rabbit fibroblasts and rES cells were washed with
DPBS (Cat. No 21600-051, Gibco Products International) then
trypsinized to single cells and centrifuged at 80 xg. The cell pellets
were {rozen in liquid nitrogen and stored at -80°C for further
analysis. Cell samples (>10° cells per sample) were lysed in lysis
buffer (9.5 M urea, 65 mM DTT, 2% Ampholyte pH 3-10, and
2% NP-40) and then frozen at -80°C for 20 min. After thawing
and centrifugation at 19,000 xg for 5 min, the supernatant was
collected. Protein concentrations were determined by the Ettan 2-
D Quant kit (GE Healthcare, Bio-Science AB, Uppsala, Sweden)
using BSA as the standard. A total of 1,000 pg soluble proteins
were subject to trichloroacetic acid (TCA) precipitation before
analyses. Briefly, equal volume of 20% TCA was added to the
sample and then incubated on ice for 1 h (vortexed every 15 min).
The sample was then centrifuged and the supernatant was
discarded. The pellets were washed twice with two volume of
90% ice-cold acetone and centrifuged at 19,000xg at 4°C for
10 min. The pellet was then lyophilized and dissolved in lysis
buffer for protein analysis.

Protein Analysis by 2-DE

The 2-DE procedure was based on Gorg e al. [22] with some
modifications [23]. Briefly, 1,000 ug TCA-precipitated protein in
175 pL lysis buffer was mixed with an equal volume of rehydration
buffer (8 M urea, 2% CHAPS, and 0.5% (v:v) Pharmalyte (pH 3
to pH 10), and then subject to IEF using 18-cm immobilized pH
gradient (pH 3-10) strips on an Ettan IPGphor 3 (GE Healthcare,
Bio-Science AB, Uppsala, Sweden) at 20°C. The strip was
rehydrated at 30 V for 12 h and further focused for 64,000
voltage-hour. The focused strips were equilibrated first in
equilibration solution (50 mM Tris-Cl (pH 6.8), 6 M urea, 30%
(w/v) glycerol, 2% (w/v) SDS, and 0.002% (w/v) bromophenol
blue) containing 100 mM DTT for 20 min, and then the strips
were further equilibrated in equilibration solution containing
150 mM 1odoacetamide for 20 min. After equilibration, proteins
were separated by 12.5% SDS-PAGE using the Daltsix Vertical
electrophoresis system (GE Healthcare, Bio-Science AB). The
separation was run at 15°C with a condition of 2.5 Watts per gel
for 25 min followed by 9 Watts per gel until the dye front reached
the bottom of the gel (typically 7-7.5 h). The molecular weight
(Mr) standards were purchased from Fermentas (FSMO0661
Unstained Protein Ladder, Vilnius, Lithuania) containing synthe-
sized peptides with the molecular weights ranging from 10 to
200 kDa.

Staining and Imaging of the 2-DE Gels

After protein separation, gels were stained with colloidal
Coomassie blue (Serva Electrophoresis GmbH, Heidelberg,
Germany) for at least 14 h [24]. Following staining, the gel was
neutralized with 0.1 M Tris/phosphoric acid (pH 6.5) for 1 to
3 min, and then destained with 25% methanol. After destaining,
gels were scanned at a resolution of 300 dpi with a gel scanner
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Figure 1. The schematic diagram shows the experimental procedures of the 2-DE-based proteomic analysis in this study. Three
rabbit cell types (fibroblast, f-rES, and p-rES cells) were used for soluble protein extraction and analysis. The expression levels of protein spots were
compared among all cell types.

doi:10.1371/journal.pone.0067772.9001
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(Image Scanner III, GE Healthcare, Bio-Science AB) and saved as
TIFF image files for further analysis.

Analyses of Protein Expression Levels in Different Cell
Types

For each individual cell line, three 2-DE profiles were used for
image analyses. Protein spots on the 2-DE gels were detected and
analyzed using the Melanie 7 software package (GeneBio, Geneva,
Switzerland). All the spots detected on the profiles were then
grouped and quantified for spot volume by the software. Relative
volumes of each spots were calculated to represent the expression
levels. Ratios of the volume (RVol) of each spot to total volume of
all quantified spots on each gel were generated by the software to
correct variations in gel staining [25]. The RVol value thus
represented the expression level of each protein spot. Expression
ratios of spots among cell types were also calculated.

In-gel Digestion of Differentially Expressed Proteins

Differentially expressed protein spots were excised from the gels
and placed in Eppendorf tubes. In-gel digestion was performed
according to the procedure published by Havlis et al. [26] with
minor modifications [23]. Gel plugs were washed twice with
double distilled water followed by 50% acetonitrile in 50 mM
ammonium bicarbonate and then with pure acetonitrile. Gel plugs
were dried in a SpeedVac evaporator (Tokyo Rikakikai, Tokyo,
Japan) and subjected to in-gel digestion or stored at -20°C. For
digestion, gel plugs were re-swollen with 20 ng/pL trypsin
(Promega, Madison, WI, USA) in 25 mM ammonium bicarbonate
at 4°C for 30 min, and then at 56°C for 1 h. After digestion,
peptide products were recovered by 97.5% acetonitrile and 2.5%
trifluoroacetic acid (TFA).

Identification of Proteins by Matrix-assisted Laser
Desorption/ionization- Time of Flight Mass Spectrometry
(MALDI-TOF MS) and MALDI-TOF/TOF MS Analysis

Digested peptides were spotted directly onto a 600 um/384 well
AnchorChip™ sample target (Bruker Daltonics, Bremen, Ger-
many), and then added with an equal volume of 1 mg/mL
solution of alpha-cyano-hydroxycinnamic acid (CHCA) in 0.1%
TFA/50% acetonitrile. The MALDI mass spectra were obtained
using a Bruker autoflex TOF mass spectrometer equipped with a
384 sample Scout source (Bruker Daltonics). An external peptide
calibration standard containing Angiotensin II ([M+H]*1046.54),
Angiotensin 1 ([M+H]"1296.68), Substance P ([M+H]"1347.74),
Bombesin ([M+H]*1619.82), ACTH clip 1-17 ([M+H]*2093.09),
ACTH clip 18-39 ([M+H]"2465.20) and Somatostatin 28
(IM+H]*3147.47) (Bruker Daltonics) was used to calibrate the
instrument, and the spectra were acquired in reflection mode.
Peptide masses were searched against a comprehensive nonre-
dundant protein sequence database (NCBInr 20110922 version
with 15173690 sequences and 5201003429 residues) or SwissProt
database (SwissProt 2012_04 version with 535698 sequences;
190107059 residues) using the Mascot program [26] for protein
identification. The search criteria were taxonomy for Mammalia,
fixed modification of carbamidomethyl modification, variable
modifications of oxidation modification, mass accuracy of 50 to
300 ppm and maximally one missed cleavage site. Positive
identification was achieved with minimum 5 peptides matched
and with the set mass accuracy and modification when the score
matched with significant probability to the protein or mixture of
proteins in the database.

The AnchorChip™ target were subjected to acquire MALDI-
TOF/TOF spectra using a Bruker autoflex II TOF/TOF mass
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spectrometer (Bruker Daltonics) equipped with a delayed-extrac-
tion ion source. Metastable ions generated by laser-induced
decomposition (LID) in the LIFT mode (Bruker Daltonics) were
analyzed. The precursor ion and the corresponding fragment ions
were selected in a time gate followed by further acceleration in the
LIFT cell with 19.0 kV. The fragment ions were accelerated into
the second field-free region and were separated in the two-stage
gridless reflectron. The reflectron voltage was set at 27.4 kV. Mass
spectra were processed using the FlexAnalysis 2.4 software (Bruker
Daltonics). The proteins were identified by searching MS/MS
spectra against NCBInr database (NCBInr 20110922 version) or
SwissProt database (SwissProt 2012_04 version) using BioTools
3.0 software (Bruker Daltonics) in combination with the Mascot
program [27]. The search criteria and positive identification were
as described in the previous section for MALDI-TOF MS analysis.

Validation of Protein Expression by Western Blot Analysis

To further validate the differential expression of proteins among
cell types, fibroblasts, f-rES, and p-rES cells were collected for
Western blotting. Protein extracts were prepared by resuspending
cells with 400 pL of sample buffer (0.15 mM NaCl, 5 mM EDTA,
1% Triton-100, 10 mM Tris-HCl, and 5 mM dithiothreitol)
containing 0.1 mM protease inhibitor cocktail (Sigma P8340, St.
Louis, MO, USA) on ice for 10 min, and then centrifuged at
18,600 xg for 10 min at 4°C. The supernatant was stored at -80°C.
until use.

Prior to electrophoresis, the extracted protein was boiled for
5 min and then loaded on 10% (v/v) SDS-PAGE. The resolved
proteins were transferred onto nitrocellulose membranes (Cat. No.
HAHY00010, Millipore, Billerica, MA, USA) as described in
previous study [8]. After blotting, the membrane was incubated in
blocking buffer (5% chick serum in TBST) for 2 h at room
temperature and then reacted with antibodies against o-tubulin
(Cat. No. T5168, Sigma-Aldrich, 1:1000), peroxiredoxin 1
(Abcam, Cambridge, MA, USA, 1:1000), TCP1-a. (Cat. No.
RabMAB 3179, Epitomics, Burlingame, CA, USA, 1:1000),
HSP60 (Cat. No. SPA-806-D, Stressgen Biotechnologies, Ann
Arbor, MI, USA, 1:1000), HSP70 (Cat. No. SPA-820, Stressgen
Biotechnologies, 1:1000), HSP90 (Cat. No. SPA-830, Stressgen
Biotechnologies, 1:1000), Oct4 (Cat. No. CA, SC8628 Santa Cruz,
1:1000), Nanog (Cat. No. SC30331 Santa Cruz, 1:500), and B-
actin (Cat. No. 4967, Cell Signaling Technology, Danvers, MA,
USA, 1:1000) at 4°C overnight, respectively. The nitrocellulose
membrane was washed with 1x TBST (Tris-buffered saline with
Tween-20, blocking solution; 200 mM Tris-HCI, 5 M NaCl,
0.05% Tween-20, pH 7.4) and then reacted with HRP-conjugated
secondary antibodies (Cat. No. 28169, Anaspec Inc., Fremont,
CA, USA) for 1 h. Proteins on the blots were visualized with a
Super-Signal West chemiluminescent substrate kit (Thermo Fisher
Scientific Inc., Cambridge, MA, USA) and the intensity of protein
signals was determined by using the Image J software.

Immunocytochemical Staining for Specific Markers

To analyze the expression of specific protein markers, rabbit
cells were rinsed with DPBS and then fixed in 4% paraformal-
dehyde for 24 days after culture. After washing with DPBS for
10 min, the cells were permeated in TBST, treated with 0.3%
Triton X-100 in DPBS for 30 min, followed by 3 washings in
DPBS prior to incubation with blocking solution (DPBS +2% skim
milk) for 60 min. The three rabbit cell types were first incubated
with primary mouse or human antibodies (anti-o-tubulin, Cat. No.
T5168, Sigma-Aldrich; anti-Peroxiredoxin 1, Cat. No. ab41906,
Abcam; anti-TCP-1a, Cat. No. RabMAB 3179, Epitomics; anti-
HSP60, Cat. No. SPA-806-D, Stressgen Biotechnologies; anti-
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Figure 2. The morphologies of rabbit fibroblast (A), f-rES (B), and p-rES (C) cells grown to log phase. Fertilized-rES cells and p-rES cells
were propagated on MEF feeder cells and grown into compact colonies. Scale bar=100 um.

doi:10.1371/journal.pone.0067772.g002

HSP70, Cat. No. SPA-820, Stressgen Biotechnologies; anti-
HSP90, Cat. No. SPA-830, Stressgen Biotechnologies; anti-
Oct4, Cat. No. SC8628, Santa Cruz; anti-Nanog, Cat. No.
ab115586, Abcam; anti-TRA-1-60, Cat. No. ab16288, Abcam;
anti-TRA-1-81, Cat. No.ab16289, Abcam; or anti-SSEA-4, MAB
Cat. No. 4304, CHEMICON). All antibodies were diluted in
blocking solution performed as previously described [8,11] and
incubated with samples at 4°C overnight after an additional 3
washes (15 min/wash) with 0.05% Tween-20 (Amersham Life
Science 20605). After being incubated with the primary antibody,
the cells were washed again with DPBST for 3 times and then
incubated with the secondary antibodies for 60 min (Peroxire-
doxin 1, TCP-lae and SSEA-4, Alexa fluor 488-conjugated goat
anti-mouse, Invitrogen, 1:100; TRA-1-60 and TRA-1-81, Alexa
fluor 546-conjugated goat anti-mouse, Invitrogen, 1:1000; o-
tubulin, HSP60, HSP70 and HSP90, 546-conjugated goat anti-
rabbit, Invitrogen, 1:100; Oct4 and Nanog 594-conjugated donkey
anti-goat Invitrogen, 1:1000). Finally, epifluorescent dye DAPI
(1 pg/mL) was added to DPBST for nuclear staining, followed by
two rinses with DPBST before confocal microscopic examination
(LSM 510, Carl Zeiss, Jena, German).

Bioinfomatic Analysis

The differentially expressed proteins among the three cell types
were annotated for their subcellular distribution, biological
processes, and molecular function by Gene Ontology (GO)
database  (http://www.geneontology.org/) and Biocompare
(http://www.biocompare.com/). Briefly, unique proteins were
uploaded to GO database and searched for their cellular
component and molecular function. To simplify the classification,
we chose the second or third level of tree browser in molecular
function. The biological processes were classified by Biocompare
because of their relatively simpler classification.

Statistical Analysis

The RVol of protein spots on all triplicate 2-DE gels of each cell
types were analyzed using the least-squares means method in the
general linear model procedure of Statistical Analysis System
software [28]. The spots with significant probability (p<<0.05) and
with expression ratio higher than 1.5 were considered significantly
different among cell types. The results of Western blot analysis
were quantified by using the Image J software and the band
density was normalized by using B-actin as an internal standard.
The normalized data was analyzed using least-squares means
method [28]. The data were presented as means * standard error
and probability at p<<0.05 was considered as significantly different
among cell types.
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Results

Morphology of rES Cells and Comparison of Protein
Profiles

To identify distinct protein expressions within rES cells of
different origins, rabbit fibroblast, f-rES, and p-rES cells were
collected and used for 2-DE analyses. Figure 2 shows the
morphology of the fibroblast cells (Fig. 2A), f-rES cells (Fig. 2B),
and p-rES cells (Fig. 2C) at the log phase of passage 15. Instead of
having a 3-D configuration as seen in mES cells, rES cells
morphologically resembled hES cells in their flat and compact
shape, which could be easily recognized when they were cultured
on the feeders. The frES and p-rES cells showed positive
expressions of Oct4 and Nanog by Western blot analysis (Fig. 3A).
We also observed the expressions of SSEA-4, Nanog, Oct4, and
the keratin sulfate antigens (I'RA-1-60 and TRA-1-81) in the f-rES
cells and p-rES cells examined (Fig. 3B) by immunostaining.

Representative 2-DE protein profiles of each type of cells are
shown in Fig. 4. All gels showed a wide distribution of protein
spots with pl ranging from 3.0 to 10.0 on 12.5% SDS-PAGE gels,
and a mass ranging from 10 to 200 kDa. Of the 284 protein spots
quantified among these three cell types, 100 showed distinguish-
able scale (p<<0.05) greater than 1.5. To illustrate the differential
expressions of proteins among cell types, spots with higher
expression levels are circled and numbered in red and those with
lower expression levels are in blue (Fig. 4). Fifty-four protein spots
with similar expression levels between f-rES and p-rES cells are
indicated by circles as shown in Fig. 4A. Among the 54 spots, the
expression levels of 29 spots or proteins (in red) represent the
proteins with expression levels that are higher in f-rES and p-rES
cells than in fibroblasts (Table 1). The other 25 spots (in blue), on
the contrary, are those with lower expression levels lower in f-rES
and p-rES cells. There were 14 proteins similar in expression levels
between f-rES and fibroblast cells (Fig. 4B), and 23 protein spots
between p-rES and fibroblast cells (Fig. 4C).

Identification of the Differentially Expressed Protein
Spots

The identities of the differentially expressed protein spots
among cell types were resolved by MALDI-TOF and MALDI-
TOF/TOF MS. Among the 100 differentially expressed protein
spots, 91 were successfully identified in the GenBank deposits
which represented 63 different proteins. The detailed information
on the identities of these proteins was shown in Table S1.
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numbered in blue.

doi:10.1371/journal.pone.0067772.g004
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Figure 5. Gene ontology (GO) analysis of differentially expressed proteins among fibroblasts, f-rES, and p-rES cells. The official gene
symbols of differentially expressed proteins are used for the GO annotations. Original GO annotations for cellular components, molecular functions,
and biological processes are based on the NCBI Entrez Gene database for classification. The percentages represent the total hits divided by the
number of annotated proteins within each category.

doi:10.1371/journal.pone.0067772.9g005
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Figure 6. Distributions and classifications of protein expression profiles in rabbit fibroblast, f-rES, and p-rES cells. (A) The 284
quantified protein spots in the three cell types were mandatorily classified into seven groups (G0-G6) based on the similarities or differences in
protein expression levels. (B) A representative 2-DE gel (fibroblasts) showing the protein spot (No. 37; G6) exclusively expressed in fibroblast cells. (C)
A representative 2-DE gel (f-rES cells) showing the two protein spots (No. 116 and No.146; G4) exclusively expressed in the f-rES cells. (D) A
representative 2-DE gel (p-rES cells) shows the six proteins (No. 64, 117, 174, 208, 240, and 278; G5) that are exclusively expressed in p-rES cells. The

numbers are the spot numbers in Table 4.
doi:10.1371/journal.pone.0067772.g006

their molecular functions, 18% of the proteins belong to functional
or structural constituents of the cytoskeleton, 13% involve in
structural molecule activity, 11% catalytic activity, 8% isomerase
activity, 8% transporter activity, 6% heat shock proteins (HSP) or
chaperones, and 17% with miscellaneous activities.

Grouping of the Differentially Expressed Proteins among
Cell Types

The quantified protein spots are further divided into 7 groups
based on their expression levels (Fig. 6). Group 0 (G0) contains 184
protein spots showing a similar expression level among the three
cell types. Group 1 (G1) to Group 6 (G6) represent all differentially
expressed protein spots (Fig. 6 and Tables 1, 2, 3, 4). Group 1
consists of 54 protein spots with similar expression levels between
f-rES and p-rES cells yet excluding those spots in GO (Fig. 6A), of
which 29 spots (Fig. 4A, red circles) had higher expression levels in
both frES and p-rES cells than in fibroblast cells, and 25 spots
(Fig. 4A, blue circles) showed lower expression levels in both f-rES
and p-rES cells than in fibroblast cells (Fig. 4A and Table 1).

Group 2 represents 14 protein spots with similar expression
levels between f-rES and fibroblast cells (Fig. 4B and Table 2); one
spot has a higher expression level (in red) and 13 spots are with
lower levels (in blue) in both f-=rES and fibroblast cells than in those

PLOS ONE | www.plosone.org
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of p-rES cells. Group 3 contains 23 protein spots with similar
expression levels in p-rES and fibroblast cells (Fig. 4C, Table 3);
nine protein spots have higher expressions and 14 spots are lower
expressed in p-rES and fibroblast cells than that in f-rES cells.

The two protein spots exclusively expressed in f-rES cells are
grouped as G4 (Fig. 6A, Table 4). By molecular weight, they are
similar to heat shock protein 60 isoform 4 (spot No. 116) and
tubulin B-5 chain (spot No. 146). These spots are indicated in 2-
DE protein gel of f-rES cells (Fig. 6C, Table 4). Six protein spots
with specifically up-regulated expression in p-rES cells are grouped
as G5, and they are TUBB2A protein (spot No. 64), KR'T8 protein
(spot No. 117), a-enolase (spot No. 174), 14-3-3 protein sigma (spot
No. 208), HSP60 (spot No. 240), and myosin-9 (spot No. 278)
(Fig. 6A, Table 4). These spots are indicated in the 2-DE gel of p-
rES cells (Fig. 6D, Table 4). Only myosin light chain isoform LC
17b protein (spot No. 37) was exclusively expressed in fibroblast
cells (G6), and is indicated in the 2-DE protein gel of fibroblast
cells (Fig. 6B, Table 4).

July 2013 | Volume 8 | Issue 7 | e67772
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Validation and Confirmation of the Differentially
Expressed Proteins by Western Blot Analysis and
Immunocytochemistry

To corroborate the proteomic analysis, the relative expression of
selected proteins differentially expressed was also compared
among cell types by Western blot (Fig. 7) and immunocytochem-
istry (Fig. 8) analyses. Alpha-tubulin, peroxiredoxin 1, and TCP-
lo protein were all expressed in the fibroblast, f-rES, and p-rES
cells (Fig. 7A). Quantitative analysis showed that the o-tubulin had
a higher expression in both f-rES and p-rES cells than in fibroblast
cells (Fig. 7B). The o-tubulin was mostly localized in several
cellular compartments of ES cells (Fig. 8). Similar to o-tubulin,
TCP-la showed a higher expression level (p<<0.05) in f-rES cells
than in fibroblasts by Western blotting (Fig. 7). Furthermore,
TCP-1o was localized in the cytoplasm and cell cortex (Fig. 8).
These results indicate that TCP-loo is important for the
development and function of cytoskeletal components of rabbit
cells. Peroxiredoxin 1 was expressed in all three cell types (Fig. 7A,
B), as confirmed by the Western blot analysis and immunofluo-
rescence staining (Fig. 8).

The differential expression of major HSPs was also observed by
2-DE. Western blot analysis confirmed that the expression levels of
HSP60 and HSP90 in both f=rES and p-rES cells are higher than
those in fibroblasts (p<<0.05; Fig. 7). Immunofluorescent assay also
confirmed that HSP60 and HSP90 are localized at the cytoplasm
of rabbit cells (Fig. 8). Although immunocytochemical analysis
indicated that HSP70 was localized in the cytoplasm of all three
cell types (Fig. 8), result of Western blot analysis failed to confirm
significant differences of this protein among f-rES, p-rES cells and
fibroblasts (p>0.03).

Analysis of Imprinted Genes in rES Cells by RT-PCR

The expression of representative imprinted genes in rES cells
were also determined (Fig. 9). The f=rES cells (R4) and fibroblasts
expressed the paternally imprinted (Snrpn and Igf2) genes, but not
in p-rES cell line (A2). This finding provided evidence for that our
p-rES cell lines originated exclusively from the parthenogenetically
activated oocytes without the involvement of paternal genome,
and that the Snrpn and Igf2 genes are also imprinted in the rabbit.

Discussion

Rabbits are phylogenetically closer to humans than rodents and
have been extensively used as model animals for the study of
human physiology and diseases. In the present study, both f-rES
and p-rES cells expressed the same pluripotency markers (Fig. 3),
but they still differed in the expression profile of imprinted (Snrpn
and Igf2) genes [4,12] (Fig. 9). While the gene and protein
expressions underlying the pluripotency of f=rES and p-rES cells
are largely unknown, this study investigated the protein profiles of
these cell lines by a proteomics approach using rabbit fibroblast
cells as the control. Among these cells, 100 out of 284 protein spots
(~35%) differed in the expression levels, of which 91 protein spots
representing 63 distinct proteins were identified. The proteins with
known identities were mainly located in the cytoplasmic compart-
ment and involved in energy and metabolic pathways. Some
proteins were expressed exclusively in a specific cell type,
indicating a specific nature or physiologic function of each cell
type. For instance, at least six proteins including TUBB2A protein,
KRT8 protein, o-enolase, 14-3-3 protein sigma, HSP60, and
myosin-9 were expressed at significantly higher levels only in p-
rES cells (Fig. 6). Two molecules (HSP60 isoform 4 and tubulin -
5 chain) and myosin light chain isoform LC17b protein showed
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significantly higher expression levels only in f-rES and fibroblasts,
respectively.

Protein Profiles of p-rES Cells and Identification of the
Differentially Expressed Proteins

Parthenote-derived ES cells are generated from embryos
consisting of only the female genome. It has been reported that
the absence of paternal alleles in parthenotes resulted in the lack of
paternally imprinted gene expressions, which may have restricted
the development of parthenotes [29-30]. We have already
confirmed that there were no paternally imprinted genes such as
Snrpn and Igf2 expressed in the p-rES cells [12]. In this study, 2-DE
analysis showed that both upregulated and downregulated proteins
were observed in p-rES cells. These proteins may be associated
with the expression of maternally imprinted genes. Upregulated
proteins of p-rES cells are presented in two groups (Group 2,
Table 2; Group 5, Table 4). Group 2 consists of actin, S-
adenosylhomocysteine hydrolase, carbonic anhydrase 2, VCP
protein, ?-actin, cytoplasmic B-actin isoform 2, annexin Al,
mitochondrial F1-ATPase, and ribosomal protein S2 (Fig. 4B and
Table 2). Group 5 consists of TUBB2A protein, KRT8 protein, o-
enolase, 14-3-3 protein Sigma, HSP60, and myosin-9 (Fig 6A, 6D
and Table 4). On the other hand, two downregulated proteins of
prES cells were stress-induced-phosphoprotein 1 (STI1) at Group
2 (spot No. 219; Fig. 4B and Table 2) and heat shock protein 60
isoform 4 (Group 4, spot No. 116; Fig. 6D and Table 4). These
proteins are likely, at least in part, associated with the expression of
the maternally imprinted genes in p-rES cells, which require more
studies to identify their physiological functions.

Bioinformatic Analysis of the Differentially Expressed
Proteins

The 63 differentially expressed proteins among the three cell
types were subjected to GO annotation. Most of these proteins
mvolve in the biological processes of energy pathways, metabo-
lisms and cell growth, and/or maintenance (Fig. 5). Proteins
involved in energy pathways and metabolic processes partake in
catalytic and antioxidant activities, such as a-enolase, glutathione
gyclophilin 18, glyceraldehyde 3-phosphate dehydrogenase, and
pyruvate kinase. Some differentially expressed proteins, including
tubulin -5 chain, TUBB2A, KRT8, myosin-9, and myosin light
chain isoform LC17b, associated with the cytoskeletal infrastruc-
ture are involved in cell growth or maintenance, structural
constituent of the cytoskeleton, and their functional molecule
activity [31-34]. Fourteen percent of the differentially expressed
proteins are related to signal transduction (Fig. 5) which may
potentially play roles in maintaining the stemness and differenti-
ation capacity of rES cells.

Putative Roles of Differentially Expressed Proteins in rES
Cells

Representative proteins highly expressed in rES cells were
selected for further validation by Western blot and immunocyto-
chemical analyses. The expression patterns of TCP-1a, o-tubulin,
HSP60, and HSP90 were the most prominent proteins in f-rES
and p-rES cells revealed by both Western blot and immunocyto-
chemical assays (Figs. 7 and 8). Of these, cytoskeletal proteins (e.g.
actins and tubulins) are among the most abundantly expressed
proteins in ecukaryotic cells [35]. Tubulins are the major
components of the filamentous structure of cellular microtubules
with a-tubulin being the most common one [36]. The microtubule
plays many crucial roles in intracellular transport, cell morphol-
ogy, polarity, signaling, and division of the cell [37], which also
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Figure 7. Western blot analysis of total protein extracts from fibroblast, f-rES and p-rES cells. (A) The proteins of interest were analyzed
using 50 ug of protein extracts from fibroblast, f-rES and p-rES cells for SDS-PAGE followed by Western blotting. Membranes were hybridized with
antibodies against a-tubulin, peroxiredoxin 1, TCP-1a, HSP60, HSP70, and HSP90, using B-actin as a loading control. The protein bands in the blots
were quantified by using an Image J software, and the quantitative data is shown in (B). Three replicates were performed in each cell type, and bars
without the same alphabetic letters differ (p<<0.05).

doi:10.1371/journal.pone.0067772.g007
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Figure 8. Immunocytochemical confirmation and subcellular localization of the selected proteins in fibroblast, f-rES, and p-rES
cells. The cells were hybridized with primary antibodies against o-tubulin, peroxiredoxin 1, TCP-1a, HSP60, HSP70, and HSP90 and then incubated
with the secondary antibodies (Peroxiredoxin 1 and TCP-1a, Alexa fluor 488-conjugated goat anti-mouse; a-tubulin, HSP60, HSP70 and HSP90, 546-
conjugated goat anti-rabbit). The epifluorescent dye DAPI (1 ug/mL) was used for nuclear staining. The images were observed by confocal
microscopy. Yellow arrows indicate protein locations in the cell, and arrow heads indicate the nucleus by DAPI staining. Bar=20 pum.

doi:10.1371/journal.pone.0067772.9008

make it a target for the study of cancer therapy [35-38]. In this
study, we found that a-tubulin or tubulin-f3 was upregulated in
both f-rES and p-rES cells (Figs. 6, 7, 8), strongly suggesting that
ES cells are one of the actively proliferating cell types compared to
the terminally differentiated fibroblasts. Moreover, previous
studies have also shown that o-tubulins in mES cells are
downregulated along with vimentin, one of the intermediate

PLOS ONE | www.plosone.org

filaments, during differentiation into neuronal cell lineages
[16,39].

The TCP-1 complex is an oligomeric particle found in the
cukaryotic cytosol consisting of four or five related polypeptides of
a similar size (55—60 kDa) [40]. In vitro studies suggested that TCP-
1 complex is a chaperonin in the eukaryotic cytosol participating
in the correct folding of newly translated o- and B-tubulins and
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Figure 9. The imprinted gene expressions in fibroblast, f-rES,
and p-rES cells. Rabbit fibroblasts and f-rES cell line (R4) all expressed
Igf2 and Snrpn, but not the p-rES cells line (A2).
doi:10.1371/journal.pone.0067772.g009

refolding of wurea-denatured tubulins and actins in rabbit
reticulocyte lysates [41-44]. It is also functionally linked to cell
growth and its expression decreases concomitantly with the growth
arrest during differentiation [45]. Most interestingly, it has been
reported that TCP-1 is related to the growth and survival during
pig embryo development, and it is more drastically upregulated in
pig parthenogenetic embryos than in fertilized embryos [46]. In
this study, TCP-1a was found expressed in all the three cell types
(Fig. 8) with higher expression levels in rES cells detected by 2-DE
(Table 1), particularly highly expressed in f-rES cells detected by
Western blotting (Fig. 7). Although the exact cause for the slightly
inconsistency between the two analyses is not clear, we infer that
TCP-loo may play active roles in cell proliferation and/or
cytoskeletal protein folding at least in f-rES cells. Further study
1s required to determine the precise role of TCP-1o in maintaining
the stemness and undifferentiation of rES cells.

Peroxiredoxins are a family of small (22-27 kDa) nonseleno
peroxidases in mammals with six isoforms (Peroxiredoxin 1-6)
widely distributed in human cells including reproductive organs
[47-48]. They function to serve as reactive oxygen species (ROS)
detoxifiers in order to provide cytoprotection from internal and
external environmental stresses by eliminating hydrogen peroxide
from cells [49-51]. Peroxiredoxins 1 and 2 were highly expressed
in ovary and testis [47,52]. In the female, peroredoxin 1 gene
expresses in 3-day-old follicles and increases its expression in 21-
day-old during folliculogenesis in the rat [53]. In addition to being
found in human endometrium and cervix-vagina fluid [54] and in
the epithelium and the endometrial stroma of the uterus,
peroredoxins 2 has been reported to be present in the mouse
ooplasm of primary follicles, secondary follicles or premature
follicles [55]. It is possible that peroxiredoxins also function
similarly in rabbits. The results of this study showed that
peroxiredoxins 1 and 2 were upregulated in rES cells (Table 1;
spot No. 53, 209, and 250). The high peroxiredoxin levels in rabbit
ES cells may be associated with their active proliferation capacity
and at least partially linked to their future differentiation
competency. However, Western blot analysis and immunocyto-
chemistry failed to confirm a similar upregulation in rES cells.
Reasons for this discrepancy are unclear, but it could be due to the
stressful i vitro culture conditions, which might have leveled up its
expressions in all three cell types, or the co-existence of other
isoforms detected in this study which warrant further investigation.

Heat shock proteins are ubiquitously expressed, and are
transcriptionally regulated [56] under physiological and stressful
conditions such as elevated temperatures, oxygen tension and
chemical insults [57-59]. The best characterized roles of HSPs are
the involvement of chaperone-mediated protein folding [60]. In
the mouse, downregulation of HSPs and the co-chaperones
(HSP70 and HSP60) in mES cell lines upon differentiation was
observed [61-63]. Proteomic analysis of this study showed that
two protein spots (spot No. 240) of HSP60 were highly expressed

PLOS ONE | www.plosone.org

17

Proteomic Analysis of Rabbit Embryonic Stem Cells

in rES rather than in fibroblast cells (Table 4). Western blot and
immunocytochemical analyses both confirmed the 2-DE results
(Figs. 7B and 8). HSP60 has been known to bind directly with the
Oct4 and Nanog genes which directly regulate Oct4 and other
stemness genes involving the differentiation of adipose tissue-
derived stem cells (hATSC) in humans [64-65]. The finding in this
study confirmed the observations in previous study that undiffer-
entiated cells expressed more HSPs which might be attributable to
their active protein synthesis or maintaining pluripotency-related
cellular activities, compared to the terminally differentiated cells in
the relatively quiescent state.

The expression of HSP90 was only upregulated in f-rES cell
lines and showed similar lower levels in fibroblasts and p-rES cells
based on our 2-DE analyses (Table 3). It has been reported that
the chaperoning activity of HSP90 depends on its ability to
hydrolyze ATP and its potential to form stable complexes with
HSP70 and HSP70/HSP90/organizing protein (HOP) in fertil-
ized mouse embryo-derived ES cells [64-65]. The HOP is a
60 kDa co-chaperone that binds and regulates the activity of
chaperones [66,67]. Using RNAI to knockdown HOP in mES cell
lines caused 68% depletion of STAT3 mRNAs, downregulated
soluble phosphotyrosine-STAT3 levels, and leading to an extra-
nuclear accumulation of STAT3, which ultimately reduced Nanog
mRNA levels and lost the ability to form embryoid bodies [68].
These studies confirmed the previous work showing that HSP90
mteracted with the JAK/STATS signaling molecules in somatic
cells [69]. The HSP90 was reported to complex with STAT3 in
human embryonic kidney carcinoma cells [70]. Western blot
analysis did not completely confirm the differential expression of
HSP90 observed in 2-DE analysis in different cell types (Fig. 7).
The discrepancy was unclear. In general, HSP90 was upregulated
in both f-rES cells and p-rES cells, but remained low in fibroblasts.
It might be due to the passage number of rES cells used for
analysis, or the commercially available HSP90 antibodies recog-
nized different isoforms of HSP90. However, it has been reported
that HSP90 was upregulated in both f-rES and p-rES cells, where
the involvement of the proteostatic maintenance of onco-proteins
[71] or stemness [64] were demonstrated. Recently, it was also
reported that LIF promotes the interaction of HSP90 with STAT3
for maintenance of self-renewal in mES cells [64]. These works
provide strong supportive evidence to our previous [8,12] and
current proteomics findings that LIF addition was essential for
maintaining self-renewal and the stemness of both f-rES and p-rES
cells.

Based on the results from this study and the related reports, we
propose an integrative model for the presumptive roles played by
the representative molecules that distinguish these three rabbit cell
types (Fig. 10). In this model, the o-tubulin and TCP-1a proteins
may play an active role in cell proliferation and/or as regulative
proteins for the cytoskeleton in rES cells [41-44]. Peroxiredoxin 1
functions to serve as a reactive oxygen species (ROS) scavenger or
detoxifier to protect cytoplasm from internal and external
environmental stresses [49-51]. It has been suggested that
HSP60 is associated with the stemness of ES cells, in which it
may bind some pluripotency proteins (e.g. Oct4 and Nanog) or
genes (c-myc and Stat5) that are related to stress tolerance and/or
maintenance of ES cell pluripotency [64-65]. In addition, HSP90
hydrolyzes ATP and forms a stable complex with HSP70 and
HOP which binds and regulates the activity of chaperones related
to the LIF/STAT signaling pathway [64]. In this context, some
other key molecules, such as peroxiredoxin 2, cytoplasmic linker 2
and cofilin-1, which are all expressed in rabbit ES cells, may have
actively taken part in maintaining normal cellular functions of rES
cells.

July 2013 | Volume 8 | Issue 7 | e67772



Proteomic Analysis of Rabbit Embryonic Stem Cells

STAT3 gene

Future functional assays

- =l
— -
— —

Cytoplasmic—:' l
linker 2 @ ®

CHoP> CHoPD Sptstecep
— p130 receptor
- p_LIF D

Jejnjeoseaxg

@ ,%}%%%'3333 2332223823228382, & fé’éé;, Abbreviation
-,
. . o g:g? Biological functions «’5‘3’ TCP-1a : T-complex protein 1 a
Proteins identified = 9 = HSP : Heat shock proteins
______ == y o = HOP : HSP70/HSP90/organizing protein
< | p— Cell growth maintenance(25%) -~ LIF : Leukaemia inhibitory factor
: 1 = = P : Phosphorylation
= =
= Energy and metabolic =— :
K= ==== R T o — —F= = Corresponding group
i ! T = pathways (25%) = Tubulin = G1
1 = = 1a =
: s : %- Signal transduction (14% = I\S;‘ 1:(3261
\ 1 1 = ignalitransduction|(14%} c§§ Peroxiredoxin 1 = G1
1 1 = = Peroxiredoxin 2 = G1
1 = —
| 1 1 = = Cytoplasmic linker 2 = G1
K=T-=—==- P . — Protein metabolisms (10%) £ - - -» Cofiin 1=
i et S 1 5 BT
[ | 1 FE8522822822282838R2TLLXL 1 =
VB ! ! | HSPg0=G3
i , vy Cytoplasm  (2) :
: : 1 3 Active roles in |
T ! Structural cell proliferation |
N i v molecular activity of rES cells I
v [ e A -
1 1 1
[ v | v
| i < Tubu.lln I @ *
1 Actin
I 1 I Nanog
L ' HsPeo
1 1 I
1 1 Oct4
I 1 @ 1\ A 1 =
1 1 I I ’7 I Self-renewal
RS o
1
| | |
! L1 &
| ® ! "
I I
1
1
1
1
1
1
1
1
1
| .
1
|

@& HsP90 T
o N 2 T.

———> =known functions or activites =~ == ===== 2 = Hypothetial routes
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reported that HOP down-regulates soluble phosphotyrosine, leading to an extranuclear accumulation of STAT3 in LIF/STAT pathway, which
ultimately reduced Nanog mRNA levels and lost the ability of ES cells to form embryoid bodies. (6) Some other molecules, such as peroxiredoxin 2,
cytoplasmic linker 2 and cofilin-1, are actively expressed in rabbit ES cells. Peroxiredoxin 2 may play an antioxidant protective role in ES cells.
Cytoplasmic linker 2 has been reported as a microtubule plus-end tracking protein that maintains microtubule dynamics by nucleation of non-
centrosomal microtubules originated from the trans-Golgi network (TGN). Cofilin-1 is a membrane receptor for estrogen to regulate the mobility of ES
cells. The corresponding groups (Table 1, 2, 3, 4) of the mentioned proteins were also listed.

doi:10.1371/journal.pone.0067772.g010
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Conclusion

To the best of our knowledge, this study demonstrated, for the
first time, that the differential proteomic profiles among rabbit ES
cells and somatic fibroblasts. The results showed that the
characterized proteins for cellular components, biological process-
es, and molecular functions are those mostly involved in the
cytoplasmic functions, energy metabolisms, and structural constit-
uents of the cytoskeleton. The results also provided substantial
evidence for the fundamental differences between rabbit somatic
cells and ES cells. Furthermore, some key proteins active in rabbit
ES cells could be useful cues to re-design the derivation and
culture systems for generation of the ground state or germline
competent rabbit ES cell lines.

Supporting Information

Table S1 Protein identities of the differentially expressed
proteins in fibroblast, f-rES and p-rES cells. ® Spot numbers are
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