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Spatial distribution of a depletion potential between a big solute
of arbitrary geometry and a big sphere immersed in small spheres

Masahiro Kinoshita
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan

(Received 15 October 2001; accepted 28 November 2001

The hypernetted-chain integral equations are solved on a three-dimensional cubic grid to calculate
the spatial distribution of the depletion potential between a big solugelofrary geometryand a

big sphere immersed in small spheres forming the solvent. By analyzing the potential along a
specific trajectory of the big sphere, effects due to the geometric feature of the big(stédptedges,
trenches, corners, changing curvature,)aetan be examined in detail. As an illustration, effects of

the step edge on the lateral depletion potential along a wall surface are analyzed. Along the
trajectory considered, the big sphere moves at constant height, starting on the center of the wall
surface and moving horizontally past the edge. The big sphere is repelled from the edge into the wall
surface, and to escape to the bulk it must overcome a significantly high free-energy barrier. As
another illustration, simple model calculations are performed fotdtle and keysteric interaction
between macromolecules. The potential at cor(iaes, the stabilization free energfor the key that
exactly fits the lock is far larger than for smaller and larger keys and considerably in excess of the
value predicted by the Asakura—Oosawa theory. 2@2 American Institute of Physics.

[DOI: 10.1063/1.1445106

I. INTRODUCTION spheres, big hard bodies, and hard walls, respectively. No-
) ) . ) . tice, however, that geometric features of the hard bodies and
_Inacolloidal suspension containing particles of two sig-y | surfaces are very important factors to be accounted for
nificantly different sizes, where the number density ofj, {he studies. For example, variation of the local curvature
smaller particles is much higher than that of larger ones, ag¢ ye wa)l surface creates depletion forces in a specific di-
attractive force is induced between the larger particles afoqtionajong the surfacethat is, thdateral depletion forces.

ticles approach each other and the excluded regiors
regions from which the smaller particles are excludeer- A theoretical argument was first given by Asakura and
lap, thus increasing the system entropy. The gain in entropksO

. sawd, and afterwards a variety of more advanced theories
becomes even greater when the larger particle moves to aflﬁgs been develoned and anplied to analvses of the depletion
wall. These entropic excluded-volun@epletion effects are P pp y P

known to cause phase separation phenomena in the bulk aﬁgects. Computer simulations have also peen pe_rfqrmed
at flat surfaces$:? Furthermore, the shape of the wall can Ieadrathfar exter_15|vely. Nevertheless_, these studies are limited to
to entropic forces in a specific directi@ong the wall For the interactions bgtween two big sphe(e_snvex surfacgs
example, it was experimentally demonstrated that the large?"d Petween a big ﬁphere and a flat Walf? As the only
particles are locally repelled from a step edge into the Wvall. €XCeption, Rotfet al:* calculated the interaction between a

If the wall has constantly changing radius of curvature, the°o"ncave surface and a big sphere using the density functional
forces act everywhere along it. Manipulation technique§heoryl (DFT). They calculated the depletion potentials be-

based on these depletion effects are expected to be useful fj¥€en a big sphere and convex and concave surfaces having
making highly ordered particle arrays. various curvatures and suggested that a lateral depletion
The depletion effects should play crucial roles in bio-force along a surface with changing curvature be approxi-
logical system®® as well. Many biological processes are mately estimated from these potentials. Very recently, Roth
controlled by the interactions between macromolecules an@t al'® developed a versatile DFT approach for calculating
by those of macromolecules with cell membranes. The mache depletion potentials. It is potentially applicable to a sol-
romolecules and membranes generate excluded volumes fgte of arbitrary geometry, but it has been illustrated only for
the smaller particles forming the solvent, giving rise to thea big sphere and a flat wall.
depletion forces contributing to the interactions to a great A powerful tool for going beyond the well-studied sol-
extent. From a physical viewpoint, it is interesting to studyutes of simple geometrii.e., spheres and flat wallés the
the depletion effectexclusivelyby employing simplified hypernetted-chaifHNC) integral equation theory. The re-
models combined with theoretical methods or computeisults from the HNC theory are not very accurate because the
simulations. In such studies, the solvent particles, macromobridge functions are neglected. However, it has been verified
ecules, and membranes can be modeled as small hatdat the HNC theory gives quantitatively reliable results for

tween big spheres.
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Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



3494 J. Chem. Phys., Vol. 116, No. 8, 22 February 2002 Masahiro Kinoshita
the interactions between big spheres immersed in small
spheres, for diameter ratios as small as 0.033, and for pack-
ing fractions of the small spheres as high as 0.G&® Figs.
1 and 4 of Ref. 1¥. In the present article, the author employs
the HNC integral equations solved on a three-dimensional i
(3D) discrete cubic gritf°to calculate the spatial distribu- L=10d, di=5ds  d;ya,
tion of the depletion potential between a big soluteadsi- @=r<7
trary geometryand a big sphere immersed in small spheres
forming the solvent® In the usual HNC theory for spherical
particles, the results can be made very accurate by including
appropriate bridge functior’s: In the present case where a FiG. 1. Model solutes considered. Solute 1 is a hard cube having a hemi-
solute of arbitrary geometry is treated, on the other handspherical cavity with diametet;, and the length of a step edgelisSolute
such an inclusion cannot readily be achieved yet. However, 4is a big hard spherg with diam_etﬂ_a;r._ Thgse_solutes are immersed in small
quantitative examination of the results from the 3D—HNChard spheres wnh diametelg at |_nf|n|te dilution.L andd, are set at 10
. . .and Hg, respectively. Three different valuesd4 5dg, and &g, are

approach is performed below, proving that the approach i ainly considered fod,, but 3d, or 7d; is also tested. The coordinate
reliable enough to draw significant conclusions on the deplesystem is chosen such that the origin is at the center of the cube.
tion effects.

Once the spatial distribution of the depletion potential is
calculated, by analyzing the potential along a specific trajec- .
tory of the big sphere, effects due to the geometric feature of Ki+K+K;) calculated using the usual HNC theory for

the big solutgstep edges, trenches, corners, changing curvas-pherical p_artic_les Is part O_f the input data. The numerical
ture, etc) can be examined in detail. As an illustration, ef- procedure is briefly summarized as follow®) uis(x.y,2) is

fects of the step edge on the lateral depletion forces are ca?—""ICUI"’ued at each 3D grid poir@) wis(x,y,2) is initialized

culated and shown to be in reasonable agreement with o zero, (_3) C‘S(Xf’y’z) dis calckul?(tecli( usin_g Ek?(Z), (f4)
recent experimental observatidEffects of a trench are also Cis(X:Y:2) iS tfrans ormed taC;s(Ky, 2 f<) UkSIngt e|3[|) azt
briefly studied. As another illustration, simple model calcy-Fourier trans orm3D-FF), (5) Wis(ky ky k,) is calculate

lations are performed for thieck and keysteric interaction fro'm Er?' (l[))’ élﬁz)TWiS(kX’ky’kZ) is inverted towis(,j(x,y,'lz)h
between macromolecules, and it is shown that the depletioHSlngt e 3D- » anll) steps(3)—~(6) are repeated until the

effects provide the interaction with remarkably high selectiv-"NPUt anoll output functions become identical within conver-
ity. That is, even when some keys of different sizes coexistIeNCe tolerance. ) . _
Unless otherwise specified, the author considers solute 1

the key that exactly fits the lock isxclusivelystabilized by . ) .

the contact. In earlier works performed for the potentials:and solute 2 "_“”?ersed n small .spheres fgrml_ng the solvent

between big spher®$* and between a big sphere and a flat (the bulk density ip.), which are illustrated in Fig. 1. Solute

wall®? it was suggested that the Asakura—Oosah®) 1.|s a hard cube with a hemispherical cav!ty and sc_)lute 2isa
ig hard sphere. The author tests three different diameters of

theory was accurate for the potential at contact despite it bi h h lier th | ql h
simplicity. However, this is not always true in cases of more€ PIg sphere that are smaller than, equal to, and larger than

complicated geometry considered in the present model caf—he diameter Of_ the caV|_ty, respectively. First, the so_lute-l—
culations, and the selectively given is much higher than onéolvent correlation functions are calculated by following the

might expect from the overlap of the excluded regions andonl)cedure d_elscribead ablovie={1). Oln grid points w?ere the
the AO theory. In the two illustrations, the depletion forcesSO!VeNt particle and solute 1 overlap, exiis(y.2)/ (kg )}

are analyzed and discussed in detail by relating them to th& Izero.lo_n_those wgeSre thg sorl]vent. partlple Is at gontacé w;[h
packing effects of the small spheres. solute 1, it is set at 0.5, and otherwise it is unity. Second, the

solute-2—solvent correlation functiofthe Fourier transform

of the total correlation function is denoted Ib,(k)] are
Il. MODEL AND THEORY calculated using the usual HNC theory for spherical par-
ticles. The potential of mean force between the two solutes
®,5(X,Y,2) is then obtained from

It is assumed that a soluteof arbitrary geometry is
immersed in solvent at infinite dilution. The Ornstein—
Zernike equation in the Fourier space is expressed by

Wig(ky Ky k) = psCis(Ki Ky k) Hag ), (1)
and the HNC closure equation is written as
Cis(X,Y,2) =exp{ —Uis(X,y,2)/ (kg T) texp{wis(X,y,2)}
—Wis(x,y,2)— 1. 2

Here, the subscripg denotes the solvent, is the direct cor- The grid spacindAx, Ay, andAz) is set at 0.4, and the
relation functionh the total correlation functiow=h—c, u  grid resolution N, XN, X N,) is 256x 256X 256. It has been
the potential,p the number density, anklzgT Boltzmann’s  verified that the spacing is sufficiently small and the box size
constant times the absolute temperature. The capital lette(dl,Ax, N,Ay, andN,Az) is large enough. Taking the lock—
(C, H, andW) represent the Fourier transformg (k) (k2 key interaction as an example, effects of the grid spacing on

q)IZ(XIy!Z)/(kBT) = ulZ(Xiy!Z)/(kBT) _WIZ(X!YIZ)l (3)

wherew;(X,y,2) is calculated by invertingV,,(ky,ky ,k,)
given by

Wap(Ky, ky K2) = psCas(Ky, I(y K Hos(K). (4)
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TABLE |. Effects of the grid spacing on the stabilization free engi@FB
calculated. SFE is the value of the lock—key depletion potential at contact.
L=5ds andd,;=3d; are also tested with,=2d,, 3ds, and 4.
L d,  dy  N=N,=N, Ax=Ay=Az SFE ?{%}@
5dg 3ds 2dg 64 0.2 -10.8
128 0.1 -9.84
256 0.0%lg —9.82
5dg 3ds 3ds 64 0.2 —49.9
128 0.4, —49.3
256 0.05lg —49.4
5d, 3d, 4d, 64 0.2, ~11.4 h=0 h=ds
;Eg ggjé :ﬁ? FIG. 3. Forces acting on a big sphere at or near contact with a flat wall.
10d 54 4d 128 0.21 s 33'5 Forces originating from the contact density are represented by the arrows. A
s s s s oo longer arrow corresponds to a stronger force.
256 0.4 —33.6
10d,  5ds  5dq 128 0.2, -132
256 0.Mg -129
10ds  5d;  6ds 128 0.2 —-21.2 It tends to overestimate the potential at contact, but the errors
256 0.4s —195 are only ~4.5%, ~9.9%, and~11% for ,=0.1, 0.2, and

0.3, respectively. The author denotes the reduced density
profile of the small spheres bg(x,y,z) [=his(X,y,2)
the numerical accuracy are illustrated in Table | where thet 1]. The number of the small spheres within the infinitesi-
stabilization free energgsee Sec. IllDis chosen as a rep- Mal volumedxdydzis given by psg(x,y,z)dxdydz With a
resentative parameter. sufficiently Iarge value of_, g(X,0,0) for X$—(L+ds)/2
can be regarded as a reduced density profile near a flat wall.
Our value at contacg(— (L+ds)/2,0,0 is larger than the
exact value from the contact theorémbut the errors are
only ~3.8%, ~11%, ~14%, and~14% for »s=0.1, 0.2,
0.3, and 0.367, respectively. Notice, however, that10d

With a sufficiently large value of, ®,,(x,0,0) forx  =2d, may not be sufficiently large. A significantly larger
<—(L+d,)/2 can be regarded as a depletion potential bevalue ofL (e.g., 2@s=4d,) would lead to better agreement,
tween a big sphere and a flat wall,,;(h) (his the surface but it is not easy to test, because due to a much larger box
separation which has already been studied extensively. Thesize the amount of computer storage requirements becomes
author compares the DFT results from Ref. 16 with thoseinacceptably large on our workstation. In summary, the re-
from the 3D-HNC approach in Fig. 2d,/d,=5 and 7 duced density profile and the depletion potential calculated
=7Tpsd§’/6=0.1, 0.2, and 0,8 The DFT results are reportedly using the 3D-HNC approach are both quantitatively reliable.
in good agreement with the computer simulation data fromThey are not very accurate, but the conclusions drawn are
Ref. 13 and can be regarded as almost exact ones. The 3Dot likely to be altered.
HNC approach reproduces the detailed structure of the po- A physical explanation of the depletion potential in
tential and gives reasonable agreement with the DFT resultglense small spheres can be given by looking at the depletion
force —d®d,,(h)/dh. The force can be discussed in terms
of the density of the small spheres at contact around the big
spheré®® At a big sphere and a flat wall the contact density
is considerably in excess of . When the big sphere is at or
near contact with the flat wall, an additional, important factor
arises:The contact density is further enhanced in the vicinity
of the corner or channel confined between the two surfaces
Choosing the big-sphere center as the origin and using polar
coordinates, the author expresses the contact density as
pc(r=(d,+d.)/2,6) (6 is measured from the positive axis
normal to the flat surface; see Fig). Forces originating

IIl. RESULTS AND DISCUSSION

A. Depletion potential between a big sphere and a flat
wall

D )/ (ksT)

from p. for 0<6<=/2 and fromp, for w/2<6<m (p. is
symmetrical abou¥)= 1), respectively, constitute attractive
-6 . ] . 5 and repulsive components of the net force. &t dg, p.
h/d increases a# approachesr and the net force is repulsive. At
S

h=0, p. for m/2< =< 6, makes a significantly large, re-
FIG. 2. Comparison between the DFT resyfRef. 16 (dotted, solid, and  pulsive contribution buip. vanishes forf,,<#<m where
broken line$ and those from the 3D-HNC approach in terms of the deple-cosemax: —(d,—dy/(dy+dJ), leading to an attractive net

tion potentiald,,q(h) between a big spheral{/d;=5) and a flat wall for ¢, .0 "The net force vanishes at a surface separation smaller
three different values of the packing fraction of the small sphetedn the )

3D-HNC approach, solute 1 shown in Fig. 1 is treated. The surface separdl@n ds. The attr"f‘Ctive an_d repulsive components are large
tion is denoted byn. The potential is scaled bigsT. but comparable in magnitude, and the net force becomes
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FIG. 5. The reduced density profiles of the small sphegs,0,(L
FIG. 4. The reduced density profiles of the small spheg,0,(L +dg)/2) and g((—L+dg)/2y,(L+dg)/2). A hard cube [ =2d) without
+dg)/2) andg((—L+dg)/2)y,(L+ds)/2). Solute 1is treated. Since they are the cavity is considered as the solute. Since they are exactly symmetrical
almost exactly symmetrical aboxt=0 andy=0, respectively, the profiles  apoutx=0 andy =0, respectively, the profiles are shown only %20 and
are shown only fox<0 andy<0. The step edge is locatedxat —L/2 and y=<0. The step edge is locatedxd;=—1 andy/d,=—1, respectively.
y=—L/2 (x/ds=—5 andy/ds= —5), respectively.

jacent locations. At locations deep into the wall surface, on
considerably smaller. In the AO theory where nonzggas  the other hand, they are almost equally stabilized, which is
set equal topg, for O<h=d the attractive component is reflected in the flatness of the profile.
remarkably underestimated but the repulsive one is underes- It is worthwhile to changd. and calculate the reduced
timatedeven moreThe AO theory benefits from this fortu- density profiles. A hard cube without the cavity is treated
itous cancellation of errors and the net force calculdged with L=2dg and 2.8l5. The profilesg(x,0,(L+d)/2) for
purely attractive force with a range of one small-sphere dix<0 andg((—L+dg)/2)y,(L+ds)/2) for y<0 are shown in
ametey does not depart seriously from the exact one. MoreFig. 5 forL=2dg and in Fig. 6 forL=2.5d. The step-edge
over, ath=d, the AO force is zero while the exact one is effects observed are larger due to the smaller valuels. of
repulsive, and ah=0 the former is attractive but weaker Again, the global maxima occur at the four locations,y(
than the lattefsee Fig. 3 of Ref. 18 As a result, the poten- ~((—L+dg)/2,(—L+dg)/2), (L—=ds)/2,(—L+dg)/2),
tial at contact, which is obtained by integrating the net force((—L+ds)/2,(L—d¢)/2), and ((L—dg)/2,(L—ds)/2). It is
over the surface separation, can be predicted by the theofgteresting to note that the values gfx,y,z) at the four
with sufficiently high accuracy. This is not always true, how- locations are roughly independent bfand always signifi-
ever, in cases of more complicated geometry considered igantly high. On the center the profiles for=2d take local
the present studgsee below. minimums while those fot. =2.5d take local maxima. The
most stable packing could be depicted as shown in Fig. 7,

B. Two-dimensional packing of small spheres
on a square surface

& y/dss g((_L+ds)/2!ya(L+ds)/2)
F o x/ds, g(x,0,(L+d,)/2) -

\v
R

o

Solute 1 shown in Fig. 1 is treated ang is fixed at E
0.367. The reduced density profiles of the small spheres, =
g(x,0,(L+dg)/2) for x<0 andg((—L+dg)/2y,(L+ds)/2) g
for y=<0, are shown in Fig. 4. As the step edge is approached g‘"
from the bulk, the profiles become more oscillatory. They - st 8 .
increase steeply near the edge, taking the highest values at 5
X~ (—L+dg)/2 andy~(—L+d)/2 on the wall surface, re- &
spectively. They become less oscillatory as the center of the §
surface is approached. The local maximumsgEf,y,z) oc- 3
cur at x~(—L+dg)/2=ndg and y~(—L+dg)/2=ndg (n S
=0,1,...) and the global maxima at the four locations, X .
(x¥)~((~L+d9/2,(~L+dg)/2), (L-dgr2,(~L ” /ds, y/d
+dy)/2), ((—L+dg/2,(L—dg)/2), and ((L—dg)/2,(L s
—dg)/2). These results are indicative of formation of a denserIG. 6. The reduced density profiles of the small sphe,0,(L
monclayer of the smal spheres on te Surace, uhic can bgd)2 sndol L 82y (L3012 Aerd e (o250 vt
referred to as tha'WO-(?ilmenSIOHal packingf the small aboutx=}(/) andy =0, respectively, the profiles are syhown onlykioyand
spheres. Along thex axis for x<0, for example, a small y<o The step edge is located etd,= — 1.25 andy/d,= — 1.25, respec-
sphere is stabilized at~(—L +dg)/2 more than at any ad- tively.
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x

d2=7ds

L=2d,  L=2.5d,

FIG. 7. The most stable packing of the small spheres on a square surface. In
the case oL =2.5d, spheres are placed on the four global-maximum lo-
cations, and then one more is placed on the center where it does not overlap
the four spheres and the reduced density profile has a local maximum.

|:1 2(X!0’ (L+d2)/2)dJ(kBT)

indicating that the small spheres are packed as efficiently as
possible on the surface.

FIG. 9. The depletion forcé,,= — d®,/Ix between solute 1 and solute 2
(the big spherealong the trajectory of the big sphere<0, y=0, andz
=(L+d,)/2. The force is calculated by numerical differentiation of the
potential plotted in Fig. 8.

C. Step-edge effects on lateral depletion potential
along a wall surface

The solutes shown in Fig. 1 are treated witj=4d;,
5dg, 6dg, and Mg and 7 is fixed at 0.367. The depletion
potential ®5(x,0,(L+d,)/2) is shown forx<0 in Fig. 8.
There is a shallow minimum located at-—L/2+{ ({ is

~0.8ds, ~1.0ds, ~1.1ds, and~1.2d; for dy=4ds, 5ds,  gjnce the AO theory can reproduce neither the shallow mini-
6ds, and s, respectively. The big sphere is repellétom 1, nor the positive peak, it underestimates the barrier. If
the edge into the wall surfac&o escape to the bulk, the big 4e  parrier is calculated as® 1,(—,0,(L +d,)/2)
sphere must overcome a free-energy barr;bri,_z(— L/2 —®,,(0,0,(L+d,)/2) by neglecting the shallow minimum
—§,0,(L+dy)/2)~ Pp(—L/2+{,0,(L+d,)/2), taking the  4nq the positive peak, the value from the 3D-HNC approach
value§ OfNG&BT', 77'7kBT' ~9.0kgT, and ~10kgT, re- is ~5.8gT, which is fairly close to the AO value. As far as
spectively. A positive peak occurs near the edge,xat e notential on the wall-surface center is concerned, the AO
T L/2.—§ (£ is ~1.3ds, ~1.4d, Nl,'GdS’ apd _Nl]ds' theory gives a fairly accurate value.

respectively. These results are all in qualitatively good The depletion force F1y(x,0,(L +d,)/2)= — d® (X,
agreement with the experimental observation reported iy | 4 q.)/2)/9x is calculated by numerical differentiation
Ref. 3. Notice that the positive peak exists even in the hori- 4 plotted in Fig. 9. Let us consider the trajectory of the big

zontal trajectory. It is difficult to compare our resutjsan- sphere moving in the positive direction along theaxis.
titatively with the experimental data, because the data Wergs (x,0,(L+d,)/2) is given by

averaged over a variety of trajectories. The author just men-
tions that under the experimental conditiop,=0.300 and

d,=5.54d,, the free-energy barrier calculated by the 3D-
HNC approach is-6.5kgT while the AO value is~5.3%gT.

CI)lz(X,O,( L+ dz)/2)= - Ji( Flz(X,O,( L+ dz)/Z)dX (5)

-12

-8

X/d s

' ' ' ' ' Choosing the big-sphere center as the origin, the author ex-
presses the contact density @gr = (d,+ds)/2,6), whered
l:; is measured from the positiveaxis. Forces arising from,
< for 0< < and fromp,. for m< <27 (p. is not symmetri-
S cal about = 1), respectively, constitute positiv@.e., the
g sphere is pulled in the positive direction along the trajectory
3 consideregl and negative components of the net force. The
Z,f force curve takes a negative, local-minimum value-atx,
% W =(—L+dg)/2—(d,dy)¥? that corresponds to the position
o~ d,=7d, W where the big sphere touches the small sphere located at
~(—L+dg)/2 on the surface. This is reasonable becaise
-1or o at 0= Opae>, Where CoFha=—(d,—d/(dy+dy and the

big-sphere center is at=x,, should be remarkably high and
makes a significantly large, negative contribution to the

FIG. 8. The depletion potentiab,, between solute 1 and solute(the big force. Notice that the position of the local minimum is fur-

spherg along the trajectory of the big spherg<0, y=0, and z=(L ther apart from the step edge with increasidg. At x
+d,)/2. It is scaled byksT and plotted for the four different values df, = —L/2, the negative component is smaller than the positive
4d, 5ds, 6d, and M. Since the potential is almost exactly symmetrical gne due to the vanishing qf. for 7<6< 6. The net

aboutx=0, the curves are shown only fei<0. The step edge is located at ; :
x=—L/2 (x/ds=—5). If we assume that the big sphere moves in the nega—force becomes zero at a locati¢an x coordinat¢ smaller

tive direction along thex axis, it moves at constant height, starting on the than —L/2 and larger tha'xq_- _The presence of the negati_V_e
center of the wall surface and moving horizontally past the edge. regime followed by the positive regime leads to the positive
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D 1o (XminsY (L+d2)/2)/(KsT)
D 1,((L+d,)/2,0,2)/ (kg T)

y/ds z/d,

FIG. 10. The depletion potentidt,, between solute 1 and solutethe big FIG. 11. The depletion potentid},, between solute 1 and solutgte big
spherg along the trajectory of the big sphese= x,,,=—L/2+ ¢, y<0, and spher¢ along the trajectory of the big sphere=(L+d,)/2, y=0, andz
z=(L+d,)/2. Itis scaled bykgT and plotted for the four different values of <0. Itis scaled bykgT and plotted for the four different values d§, 4d;,
d,, 4dg, 5dg, 6dg, and M. Since the potential is almost exactly sym- 5dg, 6ds, and Hs. Since the potential is exactly symmetrical abaut
metrical abouty=0, the curves are shown only fge<0. The step edge is =0, the curves are shown only fax<0. The hemispherical cavity acts as a
located aty=—L/2 (y/ds=—5). trench for—d,/2<z=<d,/2 (—2.5<2/ds<2.5).

peak of the potential near the edge. As the big sphere mov%gensity profiles of the small sphereg(x,0,0) for x= (L

further, the negative component does not si(;;nificantly_dﬁds)/2 and g((L+ d.)/2,02) for z=0, are shown in

change, while the positive one decreases because of the vgn- . L .
ishing of p, occurring, with the result that at=x, the net aﬁg. 12. It is observed that the cavity is densely packed with

: . . the small spheres. A characteristicgix,0,0) is that it does
force becomes zero. Notice thg§ is considerably smaller oo o . S
_ : - not exhibit simple oscillation with periodicitgly and the
than (= L+d;)/2. [At x=Xo, p in the vicinity of the comer third peak is higher than the second one, which indicates that
for x>x, (i.e., on the right sideis higher than that fox b N '

<X, (i.e., on the left sidedue to the geometric features of the profile is largely influenced by the geometric feature of

. ity. i i >
the cornerd.Moreover,x, becomes deeper into the wall sur- the cavity. The depletion potentialp;,(x,0,0) for x>0

o : . shown in Fig. 13, gives useful information on the lock and
face with increasingl, . When the big sphere moves further, . . o
key steric interaction between macromolecules. Stabilization

the positive regime 1 followed by a negauvg regime, Ie‘?‘dmgoccurs when the key is at contact with the lock: The stabili-
to the shallow minimum of the potential. It is now obvious _ .
zation free energies are~—9.%gT, ~—34kgT,

that values of the periodicity of the oscillationsgin Fig. 4 ~ _12%T, and ~ - 20ksT for d,=3d., 4d,, 5d., and

and ®, in Fig. 8 near the step edge anet the sameln 6d ivelv. Th | hi h h
contrast, the periodicity of the oscillations gfx,0,0) for s respchye y. These values are much larger than those
' o at contact with a flat surface;-—4.2kgT, ~—5.3gT,

X<~ (L+dg)/2 and®15(x,0,0) forx<—(L +dy)/2, for in- ~—6.4&;gT, and~ — 7.4;T, respectively(see Fig. 8 The

stance, is~ds regardiess off,. As further information, the free energy for the key that exactly fits the lock is far larger

depletion potential® 15(Xmin Y, (L+05)/2) (Xmin=—L/12+ )
is shown fory=0 in Fig. 10.®yy(xr.y.(L+dp)/2) also than that for the other keys. For the key to contact the lock,

has a shallow minimum ag~ —L/2+{. The global max-
ima of ®4(x,y,(L+d,)/2) occur at the four locations,

(Y)~(—LI2+ ¢, —LI2+ ), (LI2—{,—Li2+¢), (~L2 T T o,

+¢,L12—¢), and L/2—¢,LI12—¢). o gUL+d)/2,0.2), Z/dd
Effects due to a trench can be studied by analyzing

along the trajectory of the big spheres=(L+d,)/2, y=0, 10k |

and z=<0, where the hemispherical cavity acts as a trench
(see Fig. 11 When the big sphere protrudes over the trench,
the overlap of the excluded regions decreases, so that the
sphere is repelled from the edge. Though the detailed struc-
ture of the potential depends on the packing effects of the
small spheres, it is observed in the figure that the sphere is
indeed repelled from the edg&his trend is enhanced with
increasingd, .

g(x,0,0), g((L+d,)/2,0,2)

D. Lock and key steric interaction between

macromolecules FIG. 12. The reduced density profiles of the small sphegés,0,0) forx
. . . =(L—d;+dg)/2 andg((L +dg)/2,02) for z=0 (the latter is exactly sym-
The solutes shown in Fig. 1 are treated with=3d;, metrical aboutz=0). Solute 1 is treated. The concave surface of the cavity

4dg, 5dg, and @lg and 7 is fixed at 0.367. The reduced is located ax=(L—d;)/2 (x/dg=2.5).
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FIG. 13. The depletion potentidt,, between solute 1 and solutgthe big FIG. 14. The depletion forcE ;,= — d®,/9x between solute 1 and solute
spherg along the trajectory of the big sphere>0, y=0, andz=0. It is 2 (the big spherealong the trajectory of the big sphere>0, y=0, andz
scaled bykgT and plotted for the four different values df, 3ds, 4ds, =0. The force is calculated by numerical differentiation of the potential
5ds, and @g. The concave surface of the cavity is locatedxat(L plotted in Fig. 13.

—d,;)/2 (x/dg=2.5). Ford,=3d;, 4ds, and 55, the center of the kegbig

spher¢ is located atx= (L —d,+d,)/2 when it is at contact with the lock

(hi’/‘;iSPhs”/‘;a'z Caéi% onlrlzdz:hsdskr howevelfv tfhe Cﬁ“t?f 'kS 'Oﬁatiddm contact with the lock, the repulsive component is zero. How-
=5d:{( 2/2)° = (duf2)7}™ The key exactly fits the lock only fod, o0 pe vanishes around a larger portion of the big sphere
than in the case aofi,=5ds and nonzerg. is lower due to
the smaller value ofl,, leading to a smaller attractive com-
0|f)onent. As shown in Fig. 14, the force curve between one of
these keys and the lock has a strongly repulsive peak at

4d,, 5ds, and &, respectively. It is obvious that the sta- _ <P " For dZZISdS’t C)j(P eqtjals L—(j}cl+d%[)r]/2+ dstth?t 1S
bilization free energies and barriers are dependent on sizes gractly one sovent diameter away irom the contac - &ror

. =4dg, X, is slightly larger than Il —d;+d,)/2+dg: X
the lock and the key. In the casesdy=2d,, 3dg, and 4, P s- 7P
with d;=3dg, for example, the stabilization free energies (L—d,+dp)/2+1.2,. Here, as an example, solute 1 and

- o o : the sphere ofl,=4d; fixed atx=(L—d;+d,)/2+1.2d, is
2:]601 the 1b(:r8ri1;rs are4g.‘< ;(-;ZI.’aE%_?kB.I%’z;BrL'Nrgtsii(.}tjvfel?/’ regarded as a single solute and the reduced density profile
spectively. The barriers for the keys smaller than the lock arg(x,0,0) IS calculated anq plotted in Fig. 16. It IS observgd
significantly higher than those for the other keys. that the tiny space confined betwegn the cavity and big-
Ford,=5d,, the volume of the excluded-region overlap sphere surfaces is densely packed with the small spkezes

occurring when the big sphere touches the cavity surface igwe c':joseii' circles in the tflgu)rieFr.om a S|mtp!e ?e%me;rlc
estimated to be-6 times larger than that in the case wheretonsiaeration, one sees had (pc is symmetrical abou

the big sphere touches a flat surface. Nevertheless, the sta%_iq—w) for Gr_< g=, which yleld_s a repulsive contribution to
lization free energy in the former is-20 times larger than € force, IS _elev_ategl. At~ (L=dy+dy)/2+ .1'2d5’ the re-
that in the latter, which means a failure of the AO theory. The.pUIS'Ve contribution in the case o, =4d, with 0r~_0.7877
depletion forceF5(x,0,0)= —dd,,(x,0,0)/9x is calculated s much larger t_han that n the case @j=>5ds with 0,

by numerical differentiation and plotted in Fig. 14. In con- ~8'85|7T' dEor dz_h3ds’ 0 1s Oﬁ&? at XN(L_lql+d2)/](2
trast to the flat-wall case, when the key exactly fits the Iock,Jr s» Iéading to the exceptionally large, repulsive net force.
even the contact density. in the vicinity of the corner
makes an attractive contribution to the depletion fofite
repulsive component is zero; see Fig).18ence, the forces

at and near contact predicted by the AO theory are underes-
timated simply by the factops/pc av (pc.av iS the contact
density averaged over the surface where its value does not
vanish, which is seriously small, leading to the failure men-
tioned above. When the key witl,=6d; is at contact with

the lock, a tiny space within which the small spheres are
packed remains, giving rise to high, and a significantly Lock andKey ~ Wall and Sphere

la.rge.’ repulsive contribution to the forC(_a. MOI’eO\,?EJ,IIfl the FIG. 15. Left: Forces acting on a big sphetke key withd,=5d,) at
vicinity of the corner makes a repulsive contribution. FOr contact with a cavity(the lock withd,=5d,). Forces originating from the
these reasons, the attractive force at contact for the key wittbntact density are represented by the arrows. A longer arrow corresponds to
d,=6d, is much smaller than that in the casedf=5ds, a stronger force. The big-sphere center is chosen as the origin and the

leading to a smaller potential at contdice., a smaller stabi- contact density is expressed py(r =(d,+ds)/2,6) where 6 is measured
N from the positivex axis. The contact density in the vicinity of the corner

lization free energy _ yields an attractive force while in the wall-sphere c4sght) it does a
As for one of the smaller keys witth,=3dg and 4dg, at  repulsive one.

it must overcome a free-energy barrier, taking the values
~27kBT, NZG(BT, N?.G(BT, and~7.6kBT for d2=3ds,
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12 . . . T it underestimates the barrier. As far as the potential on the

wall-surface center is concerned, however, the AO theory

- . 7 gives a fairly accurate value, implying that a cancellation of
errors occurs as in the sphere-flat wall césee Sec. Il A

8 1 Effects of a trench on the lateral depletion potential are also

briefly studied. When the big sphere protrudes over the
trench, the depletion potential becomes significantly higher.
It has thus been verified that a big sphere is repelled from the
4 T edge. This trend is enhanced with the increase in the big-
sphere diameter.

- 8 A significant amount of information has been obtained

g(x,0,0)

Zﬁ@m from the model calculations for the lock—key interaction be-
: (') ' 8 tween macromolecules. The potential at contaet, the sta-
x/d, bilization free energyfor the key that exactly fits the lock

(d,=5dy) is far larger than for smaller and larger keys and

FIG. 16. The reduced density profile of the small spheges,0,(L considerably in excess of the value predicted by the AO
+d)/2). Solute 1 and the sphere db=4d; fixed atx=(L—di+d2)/’2  theory. Ford,=5d., the volume of the excluded-region
* 125 Is regarded as a single solute. overlap occurring when the big sphere touches the cavity
surface(i.e., the key fits the lockis estimated to be-6 times
éarger than that in the case where the big sphere touches a flat
surface. Nevertheless, the stabilization free energy in the
of rmer is ~20 times larger than in the latter. Since the AO
theory is known to be accurate for the sphere—flat-wall case,
the result implies a failure of the AO theory for the particular

eometry. When the key exactly fits the lock, even the con-
tact density in the vicinity of the corner makes an attractive
contribution to the force. Moreover, there is no repulsive
component, leading to an exceptionally strong, attractive net
force. Hence, the forces at and near contact predicted by the
IV. CONCLUSION AO theory are seriously underestimated with no cancellation

The author has employed the HNC equations solved on 8f errors, leading to the failure mentioned above. Another
3D discrete cubic gritt'°to calculate the spatial distribution significant result is that a very high free-energy barrier fea-
of the depletion potential between a big solute of arbitrarytures the potential for a sm aIIer.key, preventing 'ts. access to
geometry and a big sphere immersed in small spheres fornjjhe lock. Thus, '_[he selectively given l?y the depletion effects
ing the solvent. By analyzing the potential along a specific's remarkably high. In the real biological systems, however,

trajectory of the big sphere, effects due to the geometri%nany other effects such as fluctuations of the macromolecu-
feature of the big solutée.g ,step edges, trenches, corners ar conformations as well as van der Waals, electrostatic, and

etc) can be examined in detail. The potential along a surfac ydrophobic forces will come .into play. S.ti”' the depletion
with changing curvature can also be obtained. The 3D-HN orces should have substantially large influences on the

approach has been illustrated in two major analyses usin Ck_ﬁ':ey mthera(l:)tlcl).n. hat th | d i
solutes 1 and 2 shown in Fig. 1. One of them is for elucidat- e author believes that the results presented are quali-

ing effects of the step edge on the lateral depletion potentiaf":"t'vely correct and satisfactory even in a quantitative sense.

and the other is for simple model calculations of the lock and N atsiurg vler()j/ ::g_h zt;\ﬁcurlacy, howevet_r, the brlddge fant:f.)nS
key steric interaction between macromolecules. The physicaWust ) et|n<k:)u edin d? cfotsure etq(ljj_a |or:ts,_ an tsdu.]ff. rﬁ |tne-
origins of the potentials obtained are discussed in detail by '™ 'S 10 D€ pursued in iutlre Studies. it is not ditmicult to

relating the corresponding forces to the contact density of thgxtend the_presgnt study to_ calcu!atlon of the potential be-
small spheres around the big sphere. tween a pair of big solutes with arbitrary shapes that depends

Along the trajectory considered for analyzing the step-"" the orientations of the solutes. Work in this direction is in

edge effects, the big sphere moves at constant height, startirﬁ’éogress'

on the center of the wall surface and moving horizontéy ACKNOWLEDGMENTS
the negative direction along theaxis) past the edge. A po-
tential minimum occurs not on the center but at a location  This work was supported by grants from the Japanese
much closer to the edge. The big sphere is repelled from thMinistry of Education, Science, Sports and Culture. The au-
edge into the wall surface, and to escape to the bulk it mughor thanks R. Roth, R. Evans, and S. Dietrich for sending
overcome a significantly high free-energy barrier. A positivehim their DFT results, M. Yamamoto for providing him with
peak occurs near the edge on the bulk side. These results aae3D-FFT program, and M. Ikeguchi for many useful com-
all in qualitatively good agreement with the experimentalments on the numerical procedure. Acknowledgment is also
observation reported in Ref. 3. Since the AO theory can redue T. Oguni who was involved in an early stage of the
produce neither the potential minimum nor the positive peakpresent study.

The presence of the strongly repulsive peak in the forc
curve ford,=3ds and 4ds makes the potential at contact
considerably smaller. In summary, even when some keys
different sizes coexist, the key that exactly fits the lock is
exclusivelystabilized by the contact. The depletion effects
are substantially large, and the selectivity given is muc
higher than one might expect from the overlap of the ex
cluded regions and the AO theory.
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