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SUMMARY: 20 

Floods in mountainous river basins are generally highly destructive, usually causing 21 

enormous losses of lives and property. It is important and necessary to develop an effective 22 

flood forecast method to prevent people from suffering flood disasters. This paper 23 

proposed a general framework for a service-oriented architecture (SOA) for ensemble 24 

flood forecast based on numerical weather prediction (NWP), taking advantage of state-of-25 

the-art technologies, e.g., high-accuracy NWP, high-capacity cloud computing, and an 26 

interactive web service. With the predicted rainfall data derived from the NWP, which are 27 

automatically downloaded, hydrological models will be driven to run on the cloud. Judging 28 

from the simulation results and flood control requirements offered by users, warning 29 

information about possible floods will be generated for potential sufferers and then sent to 30 

them as soon as possible if needed. Moreover, by using web service in a social network, 31 

users can also acquire such information on the clients and make decisions about whether to 32 

prepare for possible floods. Along with the real-time updates of the NWP, simulation 33 

results will be refreshed in a timely manner, and the latest warning information will always 34 

be available to users. From the sample demonstrations, it is concluded that the SOA is a 35 

feasible way to develop an effective ensemble flood forecast method. After being put into 36 

practice, it would be valuable for preventing or reducing the losses caused by floods in 37 

mountainous river basins. 38 

Keywords: Ensemble flood forecast; Numerical weather prediction; Service-oriented 39 

architecture; Cloud computing; Web service 40 

41 
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1. Introduction 42 

Mountainous regions, where the natural conditions are extremely complicated, account 43 

for nearly two-thirds of the total land area in China. In such regions, high-intensity 44 

rainstorms occur frequently during the flood period, which can lead to serious flood 45 

disasters and cause enormous losses of lives and property to the inhabitants living in the 46 

villages at the riversides or near the outlets of rivers (Caruso et al., 2013; Mazzorana et al., 47 

2013; Ruiz-Villanueva et al., 2013; Shi and Wang, 2015). According to the statistic, there 48 

are 29 provinces, 274 prefecture-level cities and 1,836 county-level cities that suffer from 49 

flood disasters in China, covering an area of 4.63 million km
2
 and involving 0.56 billion 50 

people. The key prevention and control area is 0.97 million km
2
, involving 0.13 billion 51 

people, among which 74 million people suffer a direct threat (Chen, 2010). Specifically, 52 

the death toll caused by flash flood disasters accounted for two-thirds of the total death toll 53 

caused by all flood disasters every year in China before the 1990s; the percentage has risen 54 

to 80% since 2000. Approximately 4,000 people, accounting for 90% of the death toll 55 

caused by all flood disasters, were dead or missing in the flash flood disasters in 2010. 56 

This indicates that the situation of flood prevention and control will still be severe in the 57 

future; more technical and financial support should be provided for these flood-prone 58 

regions. Consequently, it is important and necessary to develop an effective flood forecast 59 

method to prevent people from having to suffer flood disasters. 60 

Generally, traditional methods for flood forecast include the following two types. The 61 

first type comprises those methods based on critical rainfall, including the static and 62 

dynamic critical rainfall methods (Carpentera et al., 1999; Georgakakos, 2006; Liu et al., 63 
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2010). It is supposed that floods and some secondary disasters (e.g., debris flow and 64 

landslide) may occur in a river basin when the rainfall during a certain time interval 65 

reaches a certain amount or intensity (i.e., the static critical rainfall). Because the saturated 66 

degree of soil or the antecedent precipitation index has an important effect on the 67 

formation of floods, the critical rainfall should not be constant; thus, the dynamic critical 68 

rainfall method has been developed. Overall, the critical rainfall methods are easy to use, 69 

with no need for rainfall-runoff calculation; however, they cannot reflect the spatial 70 

variation of rainfall, making their applications in flood forecast limited. In contrast, the 71 

second type, which is applicable for river basins with sufficient, observed hydrological 72 

data, comprises those methods based on critical streamflow computed by using an 73 

empirical approach or hydrological models (Liu et al., 2005; Nayak et al., 2005; Cane et al., 74 

2013; Moreno et al., 2013). Comparing simulation results against the flood control 75 

requirements, warnings concerning floods can be made early, if needed. Due to its high 76 

forecast accuracy, this type of method has been widely used; however, limited by the 77 

demand for massive observed data, it seems to be useless for river basins with poor data 78 

quality, especially for ungauged river basins. 79 

China has dealt with the task of flood prevention and control for a long time. 80 

Moreover, more attention will be paid to floods in the future, and the construction of 81 

automatic weather stations, county-level data processing centers and early warning systems 82 

will be carried out in the near future. A number of provinces in China have set up their 83 

own flood warning systems; however, there are still gaps between the requirements for 84 

flood warning and reality. For example, a typical process of a flood warning system below 85 

the county level includes several levels (e.g., county, town, village, group and family). The 86 
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rainfall and hydrological regime is reported to the superior level by level, and the warning 87 

information is sent to the inferior level by level as well. Although such a process is in 88 

accord with the status quo in China, the lengthy information transmission may 89 

considerably affect the efficiency. Thus, it is important and necessary to develop a high-90 

efficiency method for flood forecast. 91 

To this end, this paper aims to propose such a flood forecast method. Currently, 92 

numerical weather prediction (noted as NWP hereafter), at the global scale, has developed 93 

rapidly with the development of science and technology (Demeritt et al., 2007; 94 

Pappenberger et al., 2008). Furthermore, service-oriented architecture (noted as SOA 95 

hereafter) has been successfully applied in a wide variety of fields (Erl, 2005; Bell, 2008; 96 

Linthicum, 2009); however, the application of SOA for ensemble flood forecast cannot be 97 

found in the literature. As a result, this paper proposes the general framework of an SOA 98 

for ensemble flood forecast based on the NWP for the first time, taking advantage of the 99 

high-accuracy NWP, high-capacity cloud computing and an interactive web service. On 100 

the one hand, NWP is introduced to increase the forecast lead time; on the other hand, 101 

SOA is introduced to improve the forecast efficiency. In this study, the major challenges in 102 

developing such a flood forecast method are i) automatically downloading and updating 103 

the predicted rainfall from the NWP in real time, ii) implementing multiple scenarios for 104 

flood forecast at the same time by using high performance computing (noted as HPC 105 

hereafter) job scheduling, and iii) transferring warning information efficiently by using an 106 

interactive web service. Due to these state-of-the-art technologies, this method would be 107 

useful for preventing or reducing the losses caused by flood disasters in mountainous river 108 

basins after being put into practice. 109 
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2. Methodology 110 

A conceptual framework of the SOA for ensemble flood forecast based on the NWP, 111 

combining the advantages of the high-accuracy NWP, high-capacity cloud computing and 112 

an interactive web service, is proposed in this paper (Fig. 1). In the following, the basic 113 

structures of the SOA, NWP, hydrological model used for ensemble flood forecast, HPC 114 

job scheduling used for multiple scenarios, and interactive web service used for 115 

information transfer will be introduced in detail. 116 

2.1. Service-oriented architecture 117 

Service-oriented architecture (SOA) is essentially a software design methodology 118 

based on structured collections of discrete services that collectively provide the complete 119 

functionality of a complex application (Erl, 2005). Each service is a well-defined, self-120 

contained set of functions and built as a discrete piece of code, which makes it possible to 121 

reuse the code by changing only the interactions of a certain service with other ones rather 122 

than the code of the service. Moreover, services communicate with each other closely, 123 

involving either simple data passing or complex coordination (Bell, 2008, 2010). Hence, 124 

SOA is considered as the infrastructure supporting communications between services, and 125 

some connecting services are required. Currently, web service, a set of protocols enabling 126 

services to be published, discovered and used in a technology neutral form, seems to be the 127 

most feasible way for developing the SOA (Benslimane et al., 2008). By using a web 128 

service, a service consumer (e.g., the user client) can send a request message to a service 129 

provider (e.g., the cloud server), and then the service provider can return a response 130 

message to the service consumer as soon as possible (Linthicum, 2009). It is worth noting 131 
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that the SOA is an architecture not only of services, as seen from a technology perspective, 132 

but also of policies, practices and frameworks, by which we can ensure that the right 133 

services are provided and consumed. 134 

As shown in Fig. 1, the cloud server and user client are regarded as the two primary 135 

systems in the SOA. Data collection and management, hydrological simulation, flood 136 

forecast and early warning are achieved on the cloud server; meanwhile, messages of flood 137 

control requirements from different users and flood early warnings from the cloud server 138 

are transferred between the cloud server and user client by using a web service in a social 139 

network. Fig. 2 presents the flowchart of the SOA for ensemble flood forecast based on the 140 

NWP, and the details are introduced as follows. 141 

First, the NWP data are downloaded automatically, in real time, from websites that 142 

provide relevant data and then stored in the database on the cloud server (see Section 2.2 143 

for details); moreover, flood control requirements are provided by users on the clients and 144 

stored in the database as well. Second, a physically based hydrological model, the Digital 145 

Yellow River Integrated Model (noted as DYRIM hereafter) (Wang et al., 2007, 2015; Li 146 

et al., 2009a, 2009b), is adopted to compute the streamflow by using the NWP data; the 147 

simulation results are also stored in the database. Third, judging from the comparison of 148 

the simulation results against the flood control requirements from different users, flood 149 

early warnings are generated, if necessary; in addition, along with the real-time updates of 150 

the NWP data, the simulation results are refreshed in a timely manner so that the latest 151 

early warnings are always available. Finally, by using a web service, the flood forecast and 152 

early warning system on the cloud server can send warning information to the potential 153 

sufferers. Moreover, users on the clients can also run the DYRIM on the cloud server by 154 
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themselves at any time to acquire the simulation results within the forecast lead time of the 155 

NWP data so that better preparation can be made for the possible flood disasters. Overall, 156 

it is clear that such a process of flood forecast and early warning is quite different from the 157 

current process and is useful to the potential sufferers, affording them much more response 158 

time for flood disasters. 159 

2.2. Numerical weather prediction 160 

Normally, numerical weather prediction (NWP) can be divided into two categories: 161 

single NWP and ensemble NWP. The single NWP is usually insufficient for flood forecast 162 

because it involves considerable uncertainties that may lead to lots of errors (Demeritt et 163 

al., 2007); meanwhile, the ensemble NWP may provide an opportunity to significantly 164 

improve the quality of flood forecast, including not only accuracy but also lead time 165 

(Pappenberger et al., 2008). It is believable that a more accurate prediction for atmospheric 166 

conditions and meteorological phenomena (e.g., rainfall) in the near future can be obtained 167 

from the ensemble NWP. 168 

The THORPEX (i.e., The Observing System Research and Predictability Experiment) 169 

Interactive Grand Global Ensemble (noted as TIGGE hereafter) dataset is one of the 170 

acknowledged NWP datasets available at present (Richardson, 2005; Park et al., 2008). 171 

This dataset has been available since 2006 from ten institutions worldwide, including the 172 

Bureau of Meteorology (BoM, Australia), the China Meteorological Administration 173 

(CMA), the Canadian Meteorological Center (CMC), the Center for Weather Forecast and 174 

Climate Studies (CPTEC, Brazil), the European Centre for Medium-Range Weather 175 

Forecasts (ECMWF), the Japan Meteorological Agency (JMA), the Korea Meteorological 176 
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Administration (KMA), the MeteoFrance (MF), the US NCEP, and the United Kingdom 177 

Meteorological Office (UKMO). All of these datasets have the same temporal resolution of 178 

6 hours, while their horizontal resolutions are quite different (e.g., 9/16° for the CMA and 179 

1° for the NCEP and CMC). Moreover, the forecast lead time of the TIGGE data can be 1-180 

16 days, which indicates that the TIGGE data can be a promising tool for short- or 181 

medium-term flood forecast. 182 

Due to the uncertainty of the NWP, this indicates that the TIGGE datasets from 183 

different institutions can provide a variety of alternatives and seem to be more suitable for 184 

this study. Generally, all of these TIGGE datasets can be downloaded for free from their 185 

respective official websites (e.g., http://tigge.ecmwf.int/). To acquire the newest rainfall 186 

data in time for flood forecast, a method to automatically download and manage the NWP 187 

data is proposed, taking advantage of the Htmlunit (2013) and Apache CFX web services 188 

(2014). Three steps are introduced in detail as follows. 189 

Step 1: Download the NWP data from the websites. In this step, operations on the 190 

web browser are simulated and realized by using the Htmlunit; two tasks, including login 191 

authentication and data downloading, are realized by using the source codes given in 192 

Appendix A. 193 

Step 2: Manage the NWP data on the cloud server. In this step, the downloaded NWP 194 

data are interpreted first and then stored in a specific database. Moreover, the NWP data 195 

are converted into visual images in the TIFF format (see Appendix B for the source codes). 196 

Step 3: Make the above two steps autorun. In this step, the above two functions (i.e., 197 

data downloading and management) are packaged into a one by using the Apache CFX 198 
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web service. The program for downloading the NWP data is encapsulated as a service 199 

component, which runs automatically at a fixed time interval in the background of a server; 200 

moreover, this service is configured into the web server (i.e., Tomcat). 201 

2.3. Digital Yellow River Integrated Model 202 

Digital Yellow River Integrated Model (DYRIM) is a distributed model platform 203 

developed by Tsinghua University for hydrological and sediment simulations in river 204 

basins (Wang et al., 2007, 2015; Li et al., 2009a, 2009b). The DYRIM uses a high-205 

resolution digital drainage network that is extracted from a digital elevation model (noted 206 

as DEM hereafter) (Bai et al., 2015) and coded using a modified binary tree method (Li et 207 

al., 2010) to simulate runoff yield and flow routing on each hillslope-channel unit. 208 

Moreover, dynamic parallel computing technology based on sub-basin decomposition has 209 

been developed to speed up the simulation (Li et al., 2011; Wang et al., 2011, 2012; Wu et 210 

al., 2013). 211 

The DYRIM hydrological model is a physically based distributed model that 212 

represents the infiltration-excess runoff yield mechanism. This model uses a hillslope-213 

channel as a basic hydrological unit because of the different hydrological response 214 

mechanisms of hillslopes and channels. The runoff-yield model is established based on the 215 

hillslope unit, where the soil mass is divided into topsoil and subsoil layers. A variety of 216 

hydrological processes are simulated, including vegetation interception, evapotranspiration, 217 

infiltration-excess runoff on the surface, subsurface flow in these two layers, and water 218 

exchange between these two layers. In the DYRIM hydrological model, the temporal 219 

resolution is six minutes and the rainfall data are uniformly assigned to each time step; 220 
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moreover, the rainfall data are spatially interpolated by using the inverse distance weighted 221 

method. It is worth noting that parameters in the DYRIM hydrological model can be 222 

divided into two types: (i) invariant parameters used for describing the properties of land 223 

use and soil type, influenced by the basic features of the river basin and determined from 224 

the literature, fieldwork and prior studies; and (ii) adjustable parameters that are calibrated 225 

and verified with the observed data. 226 

2.4. HPC job scheduling 227 

HPC is an important branch of computer science that focuses on the development of 228 

high performance computers and relevant software. It is a technology that can improve the 229 

capability of scientific computing through organizing a number of processors or computers 230 

as members of a cluster; it is based on parallel computing technology, a way of enabling an 231 

application to be divided into multiple parts that can be executed in parallel multiple 232 

processors. There are several types of HPC systems (e.g., large clusters and highly 233 

specialized hardware), most of which are based on clusters and interconnect with each 234 

other by using a high performance network, e.g., the Quad Data Rate (QDR) InfiniBand 235 

network. HPC allows scientists and engineers to solve complex scientific, engineering and 236 

business problems by using applications that require high bandwidth, low latency 237 

networking, and very high computing capability. In the future, HPC will be more 238 

networked, open, standard, structured and diversified in application. For example, in the 239 

field of hydrological simulation, HPC can be used when a parallel hydrological model (e.g., 240 

the DYRIM in this study) is applied in large-scale river basins. 241 
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The framework of the SOA for ensemble flood forecast based on the NWP in this 242 

study tries to provide a two-layer parallelism (Fig. 3). The lower layer is the parallelism in 243 

the DYRIM hydrological model; the upper layer is the parallelism in the hydrological 244 

simulations with the NWP data from different institutions, which is realized by using a job 245 

scheduling function. Moreover, the Windows HPC Server 2012 used in this study has 24 246 

compute nodes with 20 processor cores on each of them, i.e., 480 processor cores in total. 247 

Generally, one processor core can execute only one process each time; using more 248 

processor cores at one time means less time consumption. The number of processor cores 249 

used for hydrological simulation at one time can significantly affect the efficiency of the 250 

lower-layer parallelism and further affect the efficiency of the upper-layer parallelism. 251 

Namely, if N processor cores are used for hydrological simulation with the NWP data from 252 

one institution, then hydrological simulations with the NWP data from INT(480/N) (note: 253 

the symbolic function INT(X) means the integer part of a real number X) institutions can be 254 

carried out at the same time by using the HPC job scheduling. 255 

2.5. Web service 256 

An interactive web service is developed to receive the flood control requirements 257 

from the users and send early warnings to the users. Moreover, it is also used for queries 258 

on a variety of hydrological information (e.g., the digital drainage network, historical and 259 

predicted rainfall data, and streamflow predictions). All of the data are stored in the 260 

databases on the cloud server and can be inquired by the user clients at any time. For 261 

example, based on the global drainage network (Bai et al., 2015) extracted from the 30-m-262 

resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 263 
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Global DEM dataset (ASTER GDEM Validation Team, 2009, 2011), users can define a 264 

watershed by specifying the location of the watershed outlet (i.e., longitude and latitude) 265 

and the corresponding river reach. Then, the drainage network of the entire watershed will 266 

be selected for hydrological simulation (i.e., flood forecast). 267 

3. Results and discussions 268 

In this study, two river basins in China, including the Juma River basin in the 269 

southwest suburb of Beijing and the upper Baishui River basin in the north of Sichuan 270 

province, are regarded as the study areas for the application of the SOA for ensemble flood 271 

forecast based on the NWP. In the following, the available research data used for each case 272 

are introduced, and the results as well as discussions are presented. 273 

3.1. Case study of the Juma River basin 274 

The Juma River basin is located in the southwest of Beijing (114°27'-115°47' E, 275 

39°12'-40°04' N). As shown in Fig. 4, there is only one hydrological station (i.e., the 276 

Zhangfang hydrological station) in this river basin; the drainage area in the upstream of 277 

this station is over 3,800 km
2
. The high-resolution digital drainage network is also shown 278 

in Fig. 4; there are 25,833 river reaches and nearly 65,000 hillslopes in total in the 279 

extracted digital drainage network. 280 

The Juma River basin was severely affected by the notorious rainstorm on July 21, 281 

2012, in Beijing. This rainstorm was characterized by a large rainfall depth, long duration 282 

and high intensity. According to the information from the Beijing Water Authority, this 283 

rainstorm lasted for nearly 16 hours, and the mean rainfall depth of the whole city was 170 284 
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mm, with a significantly uneven spatial distribution. For example, the Fangshan District, in 285 

the southwest of Beijing, had the maximum rainfall depth of 301 mm, while Yanqing 286 

County, in the northwest, had the minimum rainfall depth of 69 mm. The area with a 287 

rainfall depth over 200 mm was approximately 6,000 km
2
, covering 36% of the total area 288 

of Beijing, and the largest point rainfall (i.e., 460 mm, with a return period of 500 years) 289 

occurred in the Fangshan District. As a result, approximately 1.9 million people had 290 

property loss, and among them, 0.8 million were in the Fangshan District; furthermore, 291 

there were 79 persons killed due to this rainstorm. 292 

To accurately forecast floods due to severe rainfall, the reliable estimation of rainfall 293 

is paramount; then, hydrological models can be used to forecast streamflow with more 294 

accuracy. In this case, the TIGGE data derived from six of the above-mentioned ten 295 

institutions (i.e., the CMA, CMC, CPTEC, ECMWF, NCEP and UKMO) are selected as 296 

the research data (i.e., the predicted rainfall data) because there was no data available from 297 

the other four institutions for the period of this rainstorm. After being downloaded 298 

automatically in real time from the official websites (see Section 2.2 for details), the NWP 299 

data are used as the basic input data for the follow-up streamflow simulation and flood 300 

forecast. The NWP data (i.e., the TIGGE data in this study) are considered to be an 301 

important factor that can affect the result of streamflow simulation; thus, it is possible that 302 

using the NWP data derived from different sources may lead to different flood forecast 303 

results. 304 

To investigate the features of the various NWP data, the spatial distributions of total 305 

rainfall depth in Beijing and the surrounding area during the time period of 0:00-24:00 306 

UTC, July 21, 2012, which were described by the TIGGE data derived from six institutions 307 
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(i.e., the CMA, CMC, CPTEC, ECMWF, NCEP and UKMO) released at 0:00 UTC, July 308 

21, 2012, were shown in Fig. 5. Overall, the six TIGGE datasets have significantly 309 

different features for describing the spatial distribution of rainfall depth. On the one hand, 310 

the maximum values of total rainfall depth inside the Juma River basin during this period 311 

varied widely, e.g., 58.5 mm for the CMA data, 68.9 mm for the CMC data, 61.2 mm for 312 

the CPTEC data, 92.5 mm for the ECMWF data, 134.8 mm for the NCEP data and 151.9 313 

mm for the UKMO data; the highest value was nearly three times as much as the lowest 314 

one. On the other hand, the rainfall centers described by these six TIGGE datasets during 315 

this period appeared in different locations. For example, the rainfall center described by the 316 

ECMWF data appeared in the downstream of the Juma River basin (Fig. 5d) but that 317 

described by the UKMO data appeared in the upstream of this river basin (Fig. 5f); 318 

moreover, for the NCEP data, heavy rainfall almost covered the entire river basin (Fig. 5e). 319 

Furthermore, to evaluate the performances of the various NWP data in flood forecast, 320 

streamflow processes of the reach where the Zhangfang hydrological station is located 321 

were computed with these six TIGGE datasets by using the DYRIM hydrological model 322 

and HPC job scheduling. Because the features of these six TIGGE datasets for describing 323 

the spatial distribution of rainfall depth were significantly different, it is presumable that 324 

the simulation results would be different (see Fig. 6). In this study, the parameters derived 325 

from the previous study (Shi, 2013) were directly used, and Fig. 6 shows the comparisons 326 

of streamflows computed with the six TIGGE datasets against the observed data recorded 327 

at the Zhangfang hydrological station. Overall, all of the simulated values computed with 328 

these six TIGGE datasets were not close to the observed ones. Only by using the NCEP 329 

data or UKMO data could the peak flow be simulated; however, both the peak value and 330 
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appearance time were not accurate when they were compared with those presented by the 331 

observed data (approximately 2,500 m
3
/s appeared at 23:00 UTC, July 21, 2012). By using 332 

the NCEP data, the computed peak value was approximately 3,800 m
3
/s, 52% larger than 333 

the observed peak value, and the appearance time was six hours in advance; by using the 334 

UKMO data, the computed peak value was approximately 2,600 m
3
/s, only 4% larger than 335 

the observed peak value, and the appearance time was only four hours in advance. It is 336 

inferred that the UKMO data showed much better performance than the NCEP data for this 337 

case. In addition, no peak flows could be simulated by using the other four TIGGE datasets 338 

(i.e., the CMA, CMC, CPTEC and ECMWF). 339 

Furthermore, Table 1 lists the results of streamflow simulation by using these six 340 

TIGGE datasets. It is observed that the simulation results were markedly different as a 341 

whole. The values of flood volume were 3.92×10
6
 m

3
 (-95.27%) for the CMA data, 342 

3.98×10
6
 m

3
 (-95.20%) for the CMC data, 3.94×10

6
 m

3
 (-95.26%) for the CPTEC data, and 343 

3.92×10
6
 m

3
 (-95.27%) for the ECMWF data. For these four TIGGE datasets, the intensity 344 

of the predicted rainfall was not high enough for the runoff yield; the computed streamflow 345 

was actually the base flow, resulting in no peak flows appearing. If so, no floods would 346 

occur in the Juma River basin, which indicated that people living in this river basin would 347 

be safe. In contrast, the high intensity of the predicted rainfall for the other two datasets led 348 

to extremely large values of flood volume, e.g., 156.76×10
6
 m

3
 (88.98%) for the NCEP 349 

data and 112.17×10
6
 m

3
 (35.23%) for the UKMO data; moreover, as mentioned above, the 350 

peak values were very large as well (i.e., 3,800 m
3
/s for the NCEP data and 2,600 m

3
/s for 351 

the UKMO data); enormous losses of lives and property would be caused by such large 352 

floods if they came true. 353 
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3.2. Case study of the upper Baishui River basin 354 

The upper Baishui River basin is located in the north of Sichuan province (103°22'-355 

103°47' E, 33°06'-33°40' N). The region in the upstream of the Batun hydrological station 356 

with an area of 1,198 km
2
 is considered in this study (Fig. 7). The four rainfall stations 357 

with hourly observed data are also shown in Fig. 7. Moreover, there are 7,019 river reaches 358 

and nearly 17,500 hillslopes in total in the extracted digital drainage network. 359 

For this river basin, the flood occurred during July 16-23, 2010 is regarded as the 360 

study case. The TIGGE data derived from four of the above-mentioned ten institutions (i.e., 361 

the CMA, CPTEC, ECMWF and UKMO) are selected as the research data (i.e., the 362 

predicted rainfall data), as the data from the other six institutions are not available during 363 

this period. Fig. 8 shows the comparison of the simulated streamflows calibrated with the 364 

observed station rainfall against the observed streamflows recorded at the Batun station, 365 

and the results were generally satisfactory when they were compared with those presented 366 

by the observed data (approximately 75 m
3
/s appeared at 3:00 UTC, July 17, 2010), with 367 

peak value error of -17% and peak time error of six hours delay (Table 2). Fig. 8 also 368 

shows the comparisons of streamflows computed with the four TIGGE datasets against the 369 

observed data recorded at the Batun station. Overall, the results computed with these four 370 

TIGGE datasets were not so close to the observed data. Only by using the ECMWF data or 371 

CMA data could the peak flow be simulated; however, both the peak value and appearance 372 

time were not accurate. Table 2 also lists the comparisons of streamflows computed with 373 

the observed station rainfall and the four TIGGE predicted rainfall inputs against the 374 

observed data recorded at the Batun station. Using the predicted rainfall, the simulated 375 

peak value and time were 36.0 m
3
/s (-52%) and six hours later for the ECMWF data and 376 
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30.4 m
3
/s (-56%) and 7 hours later for the CMA data; no peak flow could be forecasted by 377 

using the CPTEC and UKMO data. 378 

3.3. Discussions 379 

From the case studies, it can be seen that the results of flood forecast obtained by 380 

using different NWP data can be markedly different, even completely opposite. To this end, 381 

it is important and necessary to provide these various results of streamflow computation by 382 

using different NWP data for users at the same time. In this study, implementing multiple 383 

scenarios of flood forecast (i.e., streamflow simulations by using different NWP data) at 384 

the same time can be realized by using the two-layer paralleled HPC job scheduling on the 385 

cloud server (see Section 2.4 for details). Generally, these simulations can be completed 386 

within a few minutes (e.g., 3 minutes for the first case and 2 minutes for the second case). 387 

Thereafter, all of the simulation results will be compared with the flood control 388 

requirements offered by users, and the probability of flood can be described by the 389 

percentage of possible floods that are simulated with different NWP data (i.e., 2 in 6 for 390 

the first case and 2 in 4 for the second case). If needed, relevant warning information of 391 

floods will be generated and sent to potential sufferers immediately. In addition, users on 392 

the clients can also acquire such warning information by using the web service in a social 393 

network at any time. 394 

Generally, methods for flood risk and vulnerability analyses have been proposed for 395 

ensemble flood forecast (UNDRO, 1991; Willows and Connell, 2003; Wu et al., 2012). 396 

For river basins with sufficient historical hydrological data, the frequency of the predicted 397 

peak flow from each NWP data can be obtained from the probability distribution function 398 
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derived from the observed streamflow series. Meanwhile, the critical frequency of flood to 399 

cause potential disaster can be determined for each NWP agency. Thereafter, through 400 

comparing the forecasted frequency of peak flow from each NWP agency against its 401 

critical frequency, flood risk degree can be evaluated separately. Finally, a method to 402 

generate a synthetic warning from the separate risks, considering different weights 403 

according to the historical performance of each NWP agency, is needed. This method is 404 

hoped to be adopted in the proposed system in future work. However, for river basins with 405 

no historical hydrological data, this method is still tough to succeed. Therefore, the 406 

proposed system can only provide the various flood forecast results for users at this stage. 407 

After being put into practice for years, accumulation of hydrological data may make a 408 

result interpretation method more applicable to the proposed system, which is much more 409 

useful to provide the decision-support for users. 410 

Furthermore, it can be inferred that the discrepancies in peak values and times are 411 

mainly caused by the low temporal-spatial resolution of the predicted rainfall data. For 412 

flood forecast in any given river basin, the globally available predicted rainfall from the 413 

NWP (e.g., TIGGE) data is not accurate enough. Nevertheless, the proposed system has 414 

made the techniques and the platform ready for better flood forecast, when better predicted 415 

rainfall data can be obtained from much finer national and regional NWP data. 416 

4. Conclusions 417 

This paper proposed a conceptual framework for the SOA for ensemble flood forecast 418 

from the NWP, combining the advantages of state-of-the-art technologies, e.g., high-419 

accuracy NWP, high-capacity cloud computing and an interactive web service. The 420 
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significance of this paper can be concluded as follows: first, a method to automatically 421 

download and update the predicted rainfall derived from the NWP (e.g., the TIGGE data) 422 

in real time was developed. Second, HPC job scheduling was adopted to implement 423 

multiple scenarios of flood forecast at the same time; accordingly, various results of 424 

streamflow simulation could be provided, and the latest warning information of floods 425 

could be generated for potential sufferers. Third, by using the interactive web service in a 426 

social network, users can either acquire such warning information on the clients at any 427 

time or be informed to prepare for possible floods. It is concluded that the SOA will be a 428 

feasible way for ensemble flood forecast based on the NWP, affording potential sufferers 429 

much more response time when confronted with possible floods. After being put into 430 

practice, the proposed system would be useful for preventing or reducing the losses caused 431 

by flood disasters in mountainous river basins. 432 

433 



  

21 

 

Acknowledgements  434 

This study was supported by the National Science & Technology Pillar Program in the 435 

Twelfth Five-year Plan Period (Grant No. 2013BAB05B03, 2013BAB05B05), the China 436 

Postdoctoral Science Foundation funded project (Grant No. 2014M550069) and the Hong 437 

Kong Scholars Program project (Grant No. XJ2014059). We are also grateful to the two 438 

anonymous reviewers who offered insightful comments leading to the improvement of this 439 

paper. 440 

441 



  

22 

 

Appendix A 442 

Source codes for downloading the NWP data from websites are given as follows: 443 

Login authentication: 444 

WebClient client = new WebClient(BrowserVersion.FIREFOX_10); 445 

HtmlPage  homePage = client.getPage("URL"); 446 

HtmlInput name = homePage.getInputByName("Name"); 447 

name.setValueAttribute("Value"); 448 

HtmlPage loginPage = homePage.getAnchorByText("Name of Link").click(); 449 

 450 

Data downloading: 451 

URL url = new URL(downloadurl); 452 

URLConnection conn = url.openConnection(); 453 

InputStream inStream = conn.getInputStream(); 454 

filestream = new FileOutputStream("@Path"+filename+".grib");         455 

datewriter.write(filename); 456 

datewriter.flush(); 457 

byte[] buffer = new byte[1204]; 458 

while ((byteread = inStream.read(buffer)) != -1){ 459 

bytesum += byteread; 460 

filestream.write(buffer, 0, byteread); 461 

} 462 

463 



  

23 

 

Appendix B 464 

Source codes for the NWP data interpretation are given as follows: 465 

Data interpretation: 466 

public class GridData; //the class of rainfall data 467 

String filepath = "F:\\data.grib"; 468 

File fileptr = new File(filepath); 469 

FileInputStream filestream = new FileInputStream(fileptr); 470 

BufferedInputStream bufferstream = new BufferedInputStream(filestream); 471 

private void GridSection(BufferedInputStream bufferstream, List<GridData> Points); 472 

private void ProductSection(BufferedInputStream bufferstream); 473 

private void DataSection(BufferedInputStream bufferstream, List<Double> PointsValue) throws 474 

IOException { 475 

int Length = ConvertInt(4, bufferstream, "the total length"); 476 

ConvertInt(1, bufferstream, "the serial number"); 477 

 bufferstream.mark(Integer.MAX_VALUE); 478 

for (int i = 0; i < TotalNumberofPoints; i++) { 479 

double PValue = ConvertPoint(24, bufferstream, "第" + (i + 1) + "点 ："); 480 

  PointsValue.add(PValue);  481 

 } 482 

bufferstream.reset(); 483 

 bufferstream.skip(Length - 5); 484 

} 485 

 486 

487 
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 613 

Table 1 Results of streamflow computation by using six different TIGGE data in the Juma River 614 

basin. 615 

Data 

Flood volume 

 (10
6
 m

3
) 

Relative  

error (%) 

 

Peak value 

(m
3
/s) 

Relative  

error (%) 

Peak time  

(UTC) 

Peak time  

error 

Observation 82.95 /  2,500 / 2012/7/21 23:00 / 

CMA 3.92 -95.27  / / / / 

CMC 3.98 -95.20  / / / / 

CPTEC 3.94 -95.26  / / / / 

ECMWF 3.92 -95.27  / / / / 

NCEP 156.76 +88.98  3,800 +52 2012/7/21 17:00 -6 hours 

UKMO 112.17 +35.23  2,600 +4 2012/7/21 19:00 -4 hours 

 616 

617 
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 618 

Table 2 Results of streamflow computation by using six different TIGGE data in the upper Baishui 619 

River basin. 620 

Data 

Flood volume 

 (10
6
 m

3
) 

Relative  

error (%) 

 

Peak value 

(m
3
/s) 

Relative  

error (%) 

Peak time  

(UTC) 

Peak time  

error 

Observation 26.94 /  75.0 / 2010/7/17 3:00 / 

Station rainfall  

(Calibration) 

26.92 -0.06  62.3 -17 2010/7/17 9:00 +6 hours 

CMA 13.55 -49.72  30.4 -56 2010/7/17 10:00 +7 hours 

CPTEC 0.22 -99.17  / / / / 

ECMWF 17.68 -34.35  36.0 -52 2010/7/17 9:00 +6 hours 

UKMO 8.25 -69.36  / / / / 

 621 

622 
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 623 

Research Highlights 624 

1. Development of the framework of SOA for ensemble flood forecast from NWP 625 

2. Development of a method to automatically download and update the NWP 626 

3. Realization of implementing multiple scenarios of flood forecast at the same time 627 

4. Validation of the new method through simulating flood flow at two river basins 628 

 629 

 630 


