
Title
An in vitro model of the glomerular capillary wall using
electrospun collagen nanofibres in a bioartificial composite
basement membrane

Author(s) Slater, SC; Beachley, V; Hayes, T; Zhang, D; Welsh, GI; Saleem,
MA; Mathieson, PW; Wen, X; Su, B; Satchell, SC

Citation PLoS ONE, 2011, v. 6 n. 6

Issued Date 2011

URL http://hdl.handle.net/10722/195497

Rights Creative Commons: Attribution 3.0 Hong Kong License



An In Vitro Model of the Glomerular Capillary Wall Using
Electrospun Collagen Nanofibres in a Bioartificial
Composite Basement Membrane
Sadie C. Slater1, Vince Beachley2, Thomas Hayes3, Daming Zhang3, Gavin I. Welsh1, Moin A. Saleem1,

Peter W. Mathieson1, Xuejun Wen2, Bo Su3, Simon C. Satchell1*

1 Academic Renal Unit, University of Bristol, Bristol, United Kingdom, 2 Department of Bioengineering, Clemson University, Charleston, South Carolina, United States of

America, 3 Department of Oral and Dental Science, University of Bristol, Bristol, United Kingdom

Abstract

The filtering unit of the kidney, the glomerulus, contains capillaries whose walls function as a biological sieve, the
glomerular filtration barrier. This comprises layers of two specialised cells, glomerular endothelial cells (GEnC) and
podocytes, separated by a basement membrane. Glomerular filtration barrier function, and dysfunction in disease, remains
incompletely understood, partly due to difficulties in studying the relevant cell types in vitro. We have addressed this by
generation of unique conditionally immortalised human GEnC and podocytes. However, because the glomerular filtration
barrier functions as a whole, it is necessary to develop three dimensional co-culture models to maximise the benefit of the
availability of these cells. Here we have developed the first two tri-layer models of the glomerular capillary wall. The first is
based on tissue culture inserts and provides evidence of cell-cell interaction via soluble mediators. In the second model the
synthetic support of the tissue culture insert is replaced with a novel composite bioartificial membrane. This consists of a
nanofibre membrane containing collagen I, electrospun directly onto a micro-photoelectroformed fine nickel supporting
mesh. GEnC and podocytes grew in monolayers on either side of the insert support or the novel membrane to form a tri-
layer model recapitulating the human glomerular capillary in vitro. These models will advance the study of both the
physiology of normal glomerular filtration and of its disruption in glomerular disease.
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Introduction

The glomerular capillary wall consists of three specialised layers:

glomerular endothelial cells (GEnC) on the inside of the capillary,

a glomerular basement membrane (GBM) and a layer of

podocytes (glomerular epithelial cells) on the outside. The cell

layers are separated by a relatively thick basement membrane

(300–350 nm), the GBM, a specialised form of extracellular matrix

(ECM). It is predominantly composed of particular isoforms of

matrix proteins: collagen type IV a3, a4 and a5 chains, and

laminin-11 [1,2]. The three layers of this system function as a

whole, the glomerular filtration barrier (GFB), to selectively filter

the blood [3]. Paracrine communication via soluble mediators

between GEnC and podocytes is important in maintenance of the

structure and function of the GFB. For example we and others

have shown that podocytes secrete the endothelial factors VEGF-

A, VEGF-C and angiopoietin 1, whilst GEnC express the cognate

receptors for these mediators [4,5,6,7]. Podocyte-specific alter-

ations of VEGF-A or angiopoietin expression results in GFB

dysfunction including GEnC abnormalities and proteinuria [8,9].

Despite the definition of this structure of the glomerular

capillary wall by electron microscopy as far back as 1957 [10],

understanding of its filtration function remains incomplete. In vitro

work historically has been limited by difficulties with culturing cells

of the filtration barrier. Recently, improved culture techniques,

and in particular generation of unique conditionally immortalised

cell lines of both human GEnC and podocytes in our laboratory,

have enabled detailed study of these cells in vitro [11,12]. However,

because the components of the glomerular capillary wall function

as an inter-related whole, there is a need to develop three-

dimensional co-culture models to maximise the relevance of in vitro

studies to the intact glomerulus. Ideally such a model would be

comprised of a layer of GEnC and a layer of podocytes, separated

by a biological membrane acting as the GBM. This membrane

should be thin, permeable, able to support the structure,

biological, biodegradable, composed of proteins found in the

GBM and accessible on both sides (to enable measurement of fluid

and molecular movement across the structure).

Co-culture techniques have been successfully used to generate

functional in vitro models of other tissues, such as the blood-brain

barrier [13], skin [14] and the lung alveolar capillary barrier [15].

One of the main challenges in co-culture models is generation of

an ECM or basement membrane most appropriate for the tissue in

question. In some cases basement membrane has been represented

by the synthetic porous support of a tissue culture insert

[13,15,16,17]. However basement membrane is more than just a
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scaffold providing support: it also regulates cellular behaviour by

influencing proliferation, survival, shape, migration and differen-

tiation [18]. Therefore ideally an artificial GBM should closely

mimic the structure and function of the native matrix proteins.

Collagen type I has a high degree of biocompatibility and is

biodegradable and has therefore been used to mimic the basement

membrane in various models, for example of the blood brain

barrier [19]. Other biocompatible gels have been used in similar

co-culture models, such as self-assembled peptide hydrogel [20]

and Matrigel [21]. Usually these components are prepared as thick

gels and at least in this form they are not suitable to represent the

GBM. Electrospinning has recently come to the fore as a relatively

simple technique which can produce fibres on a nanometre scale

in random or aligned patterns forming a structure that can mimic

the ECM [22]. Biocompatible and biodegradable nanofibres of

various synthetic (such as polyglycolic acid [23] and polycapro-

lactone, PCL [14]) or naturally occurring (such as collagen type I

[22] and chitosan [24]) polymers have been produced, the later

being of most relevance to the synthesis of a GBM-like structure. A

number of different cell types have been successfully cultured onto

collagen type I electrospun membranes including coronary

endothelial cells [25], fibroblasts [26] and keratinocytes [27],

therefore it is used extensively as an ECM component in tissue

engineering. The incorporation of PCL in electrospun collagen

nanofibres is attractive to increase their tensile strength whilst also

being biocompatible and biodegradable [14,28].

Previously, a few co-culture models have examined interactions

between glomerular cells [17,29,30,31], but no model of the

glomerular capillary wall including glomerular endothelial cells,

basement membrane and podocytes yet exists. Here we describe

the sequential construction of two in vitro models of the glomerular

capillary wall fulfilling these desirable attributes. We tested two

hypotheses, firstly that it would be possible to established a tri-layer

model based on tissue culture inserts, with a porous artificial

membrane acting as the GBM. Secondly, we hypothesised that we

could develop a composite bioartificial membrane consisting of

electrospun collagen type I and a supporting micro photo-

electroformed (micro-PEF) nickel mesh to replace the porous

membrane in the first model.

Results

Co-culture of cells on insert membranes
GEnC and podocytes grew in uniform layers on either side of

the polycarbonate support to form a representative model of the

glomerular capillary wall (Fig. 1). The density of both cell types

appeared to increase when co-cultured opposite the other cell type.

Similar results were obtained at 33uC (Fig. 1) and 37uC (data not

shown). Scanning EM further confirmed growth of GEnC and

podocytes on the polycarbonate support. At both 33uC (Fig. 2A)

and 37uC (Fig. 2B and C) GEnC grew in uniform layers when co-

cultured with podocytes. Podocytes in co-culture with GEnC at

33uC (Fig. 2D) displayed a more rounded morphology, however

when co-cultured at 37uC these cells became flatter and formed a

single layer (Fig. 2E and F).

The barrier properties of this co-culture model were assessed by

measuring trans-endothelial electrical resistance (TEER). TEER is

inversely related to the fractional area of pathways across a cell

monolayer open to water and small molecules and as such can be

used an index of permeability, a higher TEER corresponding to

reduced permeability. At 33uC (Fig. 3A) resistance of inserts with

GEnC layers both sides was significantly higher than those with a

single layer of GEnC (20+/21.7 V compared to 53+/24.7 V,

p,0.005). Likewise for podocyte single and dual layers (22+/

Figure 1. IF staining for actin (green) and nuclei (blue) showing GEnC and podocyte monolayer formation in tissue culture inserts
after a week at 336C. (A) GEnC cultured alone in a single monolayer. (B) GEnC when podocytes co-cultured on the opposite side of the insert. (C)
Podocytes cultured alone in a single monolayer. (D) Podocytes when GEnC co-cultured on the opposite side of the insert. The number of cells, and
the confluence of the monolayer, appears to increase when the cells are co-cultured. Scale bar: 250 mm.
doi:10.1371/journal.pone.0020802.g001

In Vitro Model of the Glomerular Capillary Wall
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22.8 V compared to 54+/27 V, p,0.005). There was no

significant difference in resistance when dual layers of GEnC

and podocytes were compared. However in comparison to dual

layers of GEnC or podocytes, the GEnC and podocyte mixed cell

type co-culture had a significantly lower resistance (31+/23 V,

p,0.003 and p,0.002 respectively). At 37uC (Fig. 3B) dual GEnC

layers again showed more than a doubling of resistance compared

to a single layer of GEnC (13.8+/21.8 V compared to 40.2+/

24 V, p,0.001). Dual layers of podocytes showed an almost four-

fold increase of resistance values compared to podocyte monolay-

ers (2.4+/20.4 V compared to 11.4+/23 V), however this

change was not significant. When these resistances were compared

to the GEnC and podocyte co-culture resistance (18.6+/21 V),

the mixed cell-type co-culture had a significantly lower resistance

than the GEnC dual layers (p,0.005), but no difference when

compared to the podocyte dual layers. Also, podocyte dual layers

had a significantly lower resistance than GEnC co-culture

(p,0.005). GEnC resistances in general are comparable between

33 and 37uC [11,12] whereas podocyte resistances are lower at

37uC as we have previously observed [32].

GEnC behaviour on biological matrices
GEnC cultured on reduced growth factor (RGF) Matrigel formed

tubes, whilst on RGF Matrigel coated with fibronectin or gelatin,

clumps of cells were formed (Fig. 4A–C). GEnC also failed to form a

monolayer on a peptide hydrogel, collagen type I gel, and collagen

type I gels coated with fibronectin or gelatin (Fig. 4D–G). GEnC

only formed a confluent monolayer similar to that seen on tissue

culture plastic (Fig. 4H) when seeded onto Cellagen (Fig. 4I).

Electrospinning of collagen/PCL
Cellagen is available only as a thick (35 mm) layer which is

impermeable to molecules larger than 3000–4000 Daltons and

therefore unsuitable for a model of the GFB. However, it did serve

to demonstrate that GEnC will form a confluent monolayer on a

collagen membrane provided it is in a suitable form. As an

alternative we electrospun a solution of type I collagen and PCL to

form a nanofibre membrane, which was stabilised by cross-linking.

Scanning electron microscopy demonstrated the fibrous nature of

the membranes produced (images of membrane alone not shown,

see below for membrane electrospun onto nickel mesh).

Cell monolayer formation on electrospun membrane
IF staining using cell-specific antibodies demonstrate that GEnC

and podocytes formed confluent monolayers on the collagen/PCL

membrane when incubated at 33uC for one week (Fig. 5).

GEnC and podocyte growth on the collagen/PCL membrane

was studied using a WST-1 assay performed 1 and 5 days after

seeding (Fig. 6). There was a significant increase in viable cells for

both cell types (GEnC p,0.003, podocytes p,0.01) over this time

period confirming their proliferation, in addition to attachment,

on the collagen/PCL membrane.

Formation of the composite bioartificial GBM
A micro-PEF nickel mesh (Fig. 7A) was identified as a suitable

structural support in view of its physical characteristics and lack of

toxicity to cells as assessed by adherence and growth directly on this

mesh (data not shown). Next, the collagen/PCL solution was

successfully electrospun directly onto this mesh (Fig. 7B) and the

resulting biocomposite membrane was then placed in a Cell Crown

to form a culture insert (Fig. 7C). Incubation of the membrane/

mesh composite in cell culture media at 33uC for 1, 3 and 5 days did

not affect membrane fibre appearance over time (Fig. 7C, D and E).

Characterisation of cell growth on the composite
bioartificial GBM

GEnC and podocytes were cultured on the electrospun

collagen/PCL nickel mesh composite in single layers and in co-

Figure 2. Scanning EM demonstrating morphology of GEnC (A–C) and podocytes (D–F) when co-cultured on opposite sides of a
tissue culture insert porous support. Cells were cultured for 1 week at 33uC (A and D) or a week at 33uC followed by a week at 37uC (B,C,E and F).
Scale bars 100 mm (A,B,D and E) or 10 mm (C and F). Images acquired at accelerating voltage of 15 kV. GEnC and podocytes each form a monolayers
under co-culture conditions.
doi:10.1371/journal.pone.0020802.g002

In Vitro Model of the Glomerular Capillary Wall
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culture. After one week at 33uC GEnC formed a confluent

monolayer on the collagen/PCL composite (Fig. 8A and B), whilst

podocytes formed a sub-confluent layer (Fig. 8D and E). When the

cells were grown in co-culture, GEnC still formed a monolayer

and no podocin staining could be seen on the endothelial side

(Fig. 8C). Podocytes again formed a sub-confluent monolayer and

PECAM-1 staining on GEnC on the opposite side of the

bioartificial membrane could be faintly observed (Fig. 8F). When

the cells were cultured at 37uC, both GEnC and podocytes formed

a confluent monolayer when grow in either a single layer (Fig. 9A–

E) or co-culture (Fig. 9C and F). There was no apparent difference

in the expression level or distribution of PECAM-1 or podocin

between cells cultured on inserts and the bioartificial membrane or

between cells in monoculture and in coculture.

Scanning electron microscopy of GEnC and podocytes co-

cultured on opposite sides of the collagen/PCL/mesh composite

demonstrated that GEnC grow in a uniform monolayer (Fig. 10A

and B), similar to those seen when these cells were co-cultured on

the polycarbonate insert (Fig. 2A–C), whilst podocytes are less

densely packed.

Discussion

We have previously shown that tissue culture inserts can be used

to culture human GEnC and podocyte monolayers [6,7,32]. Here

we show for the first time that these cultures can effectively be

combined either side of the porous support to form a tri-layer

model. Cell morphology was preserved when grown on the

underside of the support and when in the presence of the other cell

type on the other side of the support (Figs. 1 & 2).

For both cell types in monoculture the TEER measurements

(Fig. 3) were in agreement with previous values [12,32]. The

resistance of dual layers of the same cell type at either 33uC or

37uC, was at least double that a single monolayer of either GEnC

or podocytes as expected. When GEnC and podocytes were co-

cultured at 33uC on opposite sides of the insert, the combined

resistance was higher than that of a single layer of either GEnC or

podocytes. However, from the resistances of dual layers of the

same cell type, the resistance would be expected to be at least the

sum of the resistances of single GEnC and podocyte layers. The

fact that the resistance was significantly lower than this suggests

that one of the cell layers has reduced the resistance of the other,

presumably via soluble mediators. A possible candidate for this is

VEGF, as this growth factor is produced by podocytes [4], GEnC

have receptors for VEGF [5], and VEGF is known to affect GEnC

resistance [7]. For differentiated cells (at 37uC) in co-culture the

combined resistance of layers of GEnC and podocytes was greater

than the ‘expected resistance’. Therefore this does not suggest the

same effect of cell-cell communication as seen in undifferentiated

cells. The fact that there is a splicing switch in differentiation of

podocytes to produce VEGF-A165b [33], which does not reduce

GEnC resistance, could potentially explain this observation [34].

These results confirm that tri-layer models of the GFB can

successfully be established in vitro and provide evidence that the

cell-cell communication which occurs in vivo can be studied in vitro.

Given the dissimilarity between polycarbonate porous supports

in inserts and the GBM in vivo, we sought to identify a suitable

preparation of ECM components with which to replace the porous

support as a necessary step in testing our second hypothesis. The

aim here was not an unrealistic one of exactly reproducing the

GBM in all respects but to produce a predominantly biological

membrane more closely analogous to the in vivo GBM and

potentially amenable to remodelling by cultured cells. Glomerular

cells failed to form monolayers suitable for the proposed model on

any of the ECM gels tested. Only when cells were cultured on a

rigid collagen membrane (Cellagen) would the cells form a

confluent monolayer. This data suggests that not only the

composition of the matrix protein, but also its structure and

presentation is important in cell monolayer formation, consistent

with previous reports [18,35].

GEnC and podocytes grew in a monolayer (similar to that

produced when cells were cultured in tissue culture inserts) on an

electrospun collagen I/PCL membrane (Fig. 5). A WST-1

proliferation assay confirmed proliferation of both cell types over

5 days culture on the electrospun collagen I/PCL membrane

(Fig. 6). Collagen I/PCL membranes have previously been

demonstrated as a suitable material for the culture of endothelial

cells to form vascular grafts [36].

In order to allow a thin electrospun nanofibre membrane to be

used in the model, it was necessary to provide structural support.

Metal scaffolds are regularly used in tissue engineering [37] and

Figure 3. Barrier properties of the cells cultured in tissue
culture inserts in single layers and co-culture was measured by
TEER. Cells were cultured for 1 week at 33uC (A) or a week at 33uC
followed by a week at 37uC (B). Bars show mean +/2 SEM, n = 20 (mean
result of 4 experiments, n = 5 in each). At both temperatures resistance
increased when cells in co-culture were compared to cells in a single
layer. * p,0.05 by ANOVA with Bonferroni post hoc tests.
doi:10.1371/journal.pone.0020802.g003

In Vitro Model of the Glomerular Capillary Wall
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nickel is widely used in clinical prostheses because of its inert, non-

toxic characteristics. We found that a micro-PEF nickel mesh

would be suitable for this application. The thickness of this mesh

(and the percentage open area) can be further optimised. We

devised and successfully applied a novel approach of electrospin-

ning collagen/PCL nanofibres directly onto the nickel mesh,

forming a supported GBM predominantly composed of a

biologically remodelable substrate (Fig. 7). Finally we demonstrate

the completed model, composed of collagen type I/PCL

electrospun onto a nickel mesh, with GEnC growing across this

structure in a confluent monolayer, and podocytes growing in a

semi-confluent monolayer. The majority of these cells in co-culture

are only separated by the electrospun GBM, allowing close contact

of the cells and cellular crosstalk.

The composition of the collagen matrix we have developed

could be further optimised so that it mimics that of the in vivo GBM

to a greater extent. For example, one group has already

demonstrated that electrospun collagen membranes can be

additionally modified by addition of glycosaminoglycan chains

[26]. Collagen IV was not studied here because of the lack of

availability of the glomerulo-specific isoforms as well as its non-

fibrillary nature which does not lend itself to electrospinning. So

far there are no publications detailing electrospinning of collagen

type IV or laminin-11 and our approach in future development of

the model will be to incorporate these proteins into the electrospun

collagen type I/PCL nanofibre membranes. This model could also

be used to study the effect of different substrates and coculture on

cell differentiation. Although we did not see effects on the

endothelial and podocyte markers used in this study (PECAM-1

and podocin respectively), study of a panel of such markers

including specific matrix component isoforms would be revealing.

In conclusion, we have generated the first tri-layer in vitro models

of the human glomerular capillary wall containing the relevant cell

types, GEnC and podocytes, separated by a membrane and in so

doing have successfully confirmed both experimental hypotheses.

In the first model, in which this membrane is the porous support of

a tissue culture insert, we provide evidence of the cell-cell

communication which is important in regulation of the GFB in

vivo. In the second model, the porous support is replaced with a

novel composite bioartificial membrane containing collagen type I,

successfully establishing a model where the two cell layers are

separated only by a biocompatible membrane over the major of its

Figure 4. Appearance of GEnC cultured for 1 week at 336C on various matrices to identify a suitable matrix to support growth of
GEnC in a uniform layer by light (A–H) or immunofluorescence (I) microscopy. (A) GEnC formed capillary tube-like structures on reduced
growth factor (RGF) Matrigel, (B) clumps on RGF Matrigel coated with fibronectin or (C) gelatin, (D) rounded up on peptide hydrogel, (E) formed
clumps on collagen type I and on (F) collagen type I coated with 20 mg/ml fibronectin or (G) gelatin. (H) GEnC formed a confluent monolayer on
tissue culture plastic and on (I) Cellagen (visualised using IF staining for VE-cadherin, as Cellagen is opaque). All cells were seeded at the same density.
Original magnification 610.
doi:10.1371/journal.pone.0020802.g004

In Vitro Model of the Glomerular Capillary Wall
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area. These models will be useful for studying cross-talk between

glomerular cells via soluble mediators and the mechanisms of GFB

function and how this is disturbed in disease states.

Materials and Methods

Unless otherwise stated all materials were purchased from

Sigma-Aldrich (Poole, UK).

Cell culture
Human conditionally immortalised GEnC and podocytes were

used, as described in detail previously [11,12]. These cell lines

represent the best recognised human culture model of the

respective cell types. At the permissive temperature of 33uC, the

tsSV40LT transgene is activated, causing cell proliferation,

whereas at 37uC, the transgene is inactivated, rendering cells

non-proliferative, quiescent and able to differentiate. GEnC and

podocyte behaviour was investigated at both 33uC and 37uC.

GEnC were cultured in endothelial growth medium 2 microvas-

cular (EGM2-MV, Cambrex, Wokingham, UK) containing FCS

(5%) and growth factors as supplied with the exception of VEGF.

Podocytes were cultured in RPMI 1640 (Lonza, Basel, Switzer-

land) as described previously [11]. When cells were grown in co-

culture, EGM2-MV media was used.

Co-culture on tissue culture Inserts
A GEnC or podocyte suspension of 150,000cells/cm2 was

prepared and 100 ml was pipetted into tissue-culture inserts (1 cm

diameter, Nunc Int., Rochester, NY) containing polycarbonate

supports (0.4 mm pore size, 0.5 cm2 surface area) in 24-well plates.

In some cases dual monolayers of the same cell type, or co-cultures

of different cell types, were seeded on opposite sides of the

membrane. To achieve this inserts were placed upside-down in 24-

well plates and 100 ml of cell suspension pipetted onto the support.

Figure 5. Immunofluorescence staining of (A and B) GEnC and (C and D) podocytes demonstrating monolayer formation when cells
are cultured on collagen/PCL electrospun membranes for 1 week at 336C. GEnC are stained for PECAM-1 and podocytes for podocin. Scale
bars bar 250 mM (A and C) and 50 mm (B and D).
doi:10.1371/journal.pone.0020802.g005

Figure 6. A WST-1 assay demonstrating proliferation of (A)
GEnC and (B) podocytes on collagen/PCL electrospun mem-
branes at 336C. Cell number is proportional to absorbance and
increases over time in each a case (p,0.05, n = 3).
doi:10.1371/journal.pone.0020802.g006

In Vitro Model of the Glomerular Capillary Wall
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The cells were then cultured at 33uC for at least four hours to

allow cell attachment. The inserts were then turned the correct

way up and other cells were pipetted into the insert as above. In all

cases total media volume inside and outside the insert was made

up to 500 ml. Cells were either cultured for 1 week at 33uC only, or

for 1 week at 33uC, then switched to 37uC to differentiate.

Figure 7. Illustrative images of the micro-PEF nickel mesh and the mesh coated with electrospun nanofibres to form a bioartificial
composite membrane. (A) Light microscopy of micro-PEF nickel mesh (scale bar 25 mm). The black lines are the bars of the mesh, white squares are
the open area. (B) Scanning EM of the micro-PEF nickel mesh coated with electrospun collagen/PCL nanofibres, scale bar 10 mm. (C) Collagen I/PCL/
nickel mesh bioartificial composite membrane secured in 10 mm diameter Cell Crowns. (D,E and F) Light microscopy of the collagen/PCL/mesh
composite after 1, 3 and 5 days incubation in tissue culture media at 33uC (scale bar 25 mm).
doi:10.1371/journal.pone.0020802.g007

Figure 8. Immunofluorescence demonstrating appearance of GEnC (A–C) and podocyte (D–F) cell layers after one week at 336C on
the collagen/PCL/mesh bioartificial composite membrane. PECAM-1 on GEnC labelled red, podocin on podocytes green and nuclei blue (F
only). (A and B) GEnC cultured in a single layer or (C) with podocytes co-cultured on the opposite side of the membrane. (D and E) podocytes cultured
in a single layer or (C) with GEnC co-cultured on the opposite side of the membrane. Scale bars 250 mm (A and D) and 50 mm (B,C, E and F).
doi:10.1371/journal.pone.0020802.g008

In Vitro Model of the Glomerular Capillary Wall
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Figure 9. Immunofluorescence demonstrating appearance of GEnC (A–C) and podocyte (D–F) cell layers after one week at 336C and
one week at 376C on the collagen/PCL/mesh bioartificial composite membrane. PECAM-1 on GEnC labelled red and podocin on podocytes
green. (A and B) GEnC cultured in a single layer or (C) with podocytes co-cultured on the opposite side of the membrane. (D and E) podocytes
cultured in a single layer or (C) with GEnC co-cultured on the opposite side of the membrane. Scale bars 250 mm (A and D) and 50 mm (B, C, E and F).
doi:10.1371/journal.pone.0020802.g009

Figure 10. Scanning EM demonstrating morphology of GEnC (A and B) and podocytes (C and D) co-cultured on opposite sides of
the collagen/PCL/mesh bioartificial composite membrane. Scale bars 100 mm (A and C) and 20 mm (B and D). GEnC form a uniform
monolayer, comparable with those grown in monoculture or co-culture with podocytes on porous supports in tissue culture inserts (Fig. 2), whilst
podocytes are less densely packed.
doi:10.1371/journal.pone.0020802.g010

In Vitro Model of the Glomerular Capillary Wall
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Immunofluorescence
GEnC or podocytes were fixed in 2% paraformaldehyde,

blocked and permeabilised with 0.1% Saponin and 3% BSA in

PBS and then incubated with an Alexa Fluor 488-phalloidin

conjugate (Invitrogen, Paisley, UK) to label the actin cytoskeleton

and with DAPI to label nuclei. The polycarbonate supports were

removed from their inserts and were mounted on glass slides using

VectashieldH aqueous mounting solution (Vector Laboratories,

CA). Samples were examined using a cell imaging system (Leica

AF6000LX, Leica Microsystems, Wetzlar, Germany).

Scanning electron microscopy
Samples were fixed in 2.5% glutaraldehyde, dehydrated in

graded ethanols. The samples were then dried using a Samdri 780

critical point dryer (Electron Microscopy Sciences, Pennsylvania,

USA), then sputter coated with gold using a sputter coater

designed at Bristol University. Images were obtained using a

Quanta 400FEI scanning electron microscope (FEI, Eindhoven,

Netherlands) operated at an accelerating voltage of 15 kV.

Measurement of transendothelial electrical resistance
(TEER)

Cells were seeded in co-culture onto tissue culture inserts as

described above. TEER was measured using an Endohm 12

electrode chamber (World Precision Instruments, Sarasota, FL)

connected to an EVOMx voltmeter (World Precision Instruments)

as previously described [7]. Tissue culture inserts were placed

sequentially into the Endohm chamber and resistance recorded

after 10 seconds.

Identification of suitable matrix material
To develop a bioartificial composite membrane we first sought

to identify a suitable matrix material. Twelve-well plates were

coated with thick matrix gels, before seeding of GEnC at a density

of 20,000cells/cm2. Gels were made of Collagen type I (Millipore,

Billerica, MA), reduced growth factor (RGF) Matrigel (BD

Biosciences, San Jose, CA) and Puramatrix peptide hydrogel

(BD Biosciences), according to the manufacturers’ instructions. In

some cases the collagen type I and Matrigel were additionally

coated with 20 mg/ml fibronectin or a 2% gelatin solution to

enhance cell adhesion. Briefly, 200 ml of solution was pipetted onto

the gel and incubated at room temperature for 1 hour. Any excess

solution was then removed before cell seeding. Cells were also

seeded onto a Cellagen membrane (composed of cross-linked

collagen type1, MP Biomedicals, Solon, OH). Cells were cultured

for a week at 33uC, then monolayer formation was assessed by

light microscopy and images were taken using a CoolPix 4500

camera (Nikon, UK). Cells on Cellagen membranes were

visualised by immunofluorescent staining with a VE-cadherin

antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Primary

antibody binding was detected as above.

Electrospinning of collagen nanofibres
A 10% collagen solution was prepared by dissolving collagen

type 1 from calf skin and 2% PCL (Mn = 80,000) in 1,1,1,3,3,3-

hexafluoro-2-propanol (Oakwood, West Columbia, SC, USA).

PCL was included as it possesses a high tensile strength, yet is

biocompatible and has cell binding properties. The solution was

stirred overnight at 37uC.

Electrospinning was performed in a custom-made chamber,

where the spinneret was made from a 25 G tip-ground-to-flat

needle (Terumo, Hatagaya, Japan), mounted on an electrically

insulated stand. The spinneret needle was maintained at a voltage

of 12 kV by a high voltage power supply (PS/EL30R01.5-22,

Glassman High Voltage Inc., Hampshire UK), and a glass plate

covered with a piece of aluminium foil (14614 cm2) under the

needle at a distance of 13 cm was grounded and used as the

collector. Collagen solutions were spun directly onto the

aluminium foil or alternatively across the open lower end of a

cylindrical Cell Crown insert (see below) by placing the Cell

Crown top down on the foil prior to electrospinning. The capillary

needle spinneret was connected through PTFE tubing to a plastic

syringe filled with 3 ml of collagen type I spinning solution. A

constant volume flow rate of 3 mL/min was maintained using a

syringe pump (KD Scientific, MA). Ambient conditions for the

current electrospinning process were 49.8% humidity and 21.0uC
(room temperature).

Collagen/PCL membranes were cross-linked by immersion in

10%(v/v) HMDI,1,6-diisocyanatohexane (HMDI, Alfa Aesar,

MA) in isopropyl alcohol and gently agitated for 2 hours.

Membranes were then immersed in isopropyl alcohol for

10 minutes to rinse off HDMI, followed by 1 hour in water.

Membranes were placed into Cell Crowns (Scaffdex, Tampere,

Finland) to form an assembly similar to the tissue culture inserts

used previously. Cell Crowns consist of 2 polycarbonate rings, one

fitting inside the other. The electrospun membrane was placed

between the two rings, then one ring was pushed over the other,

holding the membrane in place to form an insert. This insert

system was then sterilised by exposure to UV light for 30 minutes.

The insert was then placed in a 24 well plate. For all experiments

membranes were suspended 2 mm above the bottom of the well so

that cells could be cultured on either one or both sides of the

membrane.

Electrospun membrane stability under tissue culture conditions

was tested by placing the membrane in Cell Crowns, then

incubating the membrane in culture media at 37uC for 1, 3 and 5

days. At each time point the membrane was examined using light

microscopy to demonstrate that fibres remained present and

attached to the mesh support.

Cell culture on electrospun membranes
A GEnC and/or podocyte suspension of 150,000cells/cm2 was

prepared and 100 ml was pipetted onto the collagen/PCL

membrane secured in Cell Crowns. A further 400 ml media was

pipetted onto the membrane, and 1 ml media was pipetted outside

the insert. In some cases, cells were seeded on both sides as for

standard inserts above. Cells were cultured and fixed for

immunofluorescence imaging as above. GEnC were incubated

with a PECAM-1 antibody (R&D Systems, Minneapolis, MN),

whilst podocytes were incubated with a podocin antibody (a

podocyte-specific marker, Sigma). The cells were further incubat-

ed for 1 hour with an appropriate secondary antibody conjugates

(Alexa fluor 488 or 555, Invitrogen), washed, counterstained with

DAPI, mounted and imaged as above. When cells were co-

cultured, both sides of the membrane were examined and

photographed. The cell types were distinguished by staining with

different species primary antibodies and secondary antibodies

conjugated to different fluorophores.

To confirm that cells maintained viability and proliferation on

the collagen/PCL a WST-1 assay (Roche Diagnostics, Mannheim,

Germany) was performed 1 and 5 days after seeding. Cells were

cultured at 33uC. Metabolically active cells react with tetrazolium

salt in WST-1 reagent to produce a soluble formazan dye that can

be observed at 450 nm. Prior to this assay, the cellular constructs

were rinsed with PBS followed by incubation with media

containing 10% WST-1 reagent for 2 hours at 33uC. Thereafter,

aliquots were pipetted in triplicate into 96 well plates and the

In Vitro Model of the Glomerular Capillary Wall

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e20802



samples read in a Labsystems Multiskan plus colorimetric plate

reader at 450 nm (MTX Labsystems, Vienna, VA).

Nickel mesh support
Micro-PEF nickel mesh with a 19 mm aperture (Tecan,

Weymouth, UK) was used as a supportive mesh for the

electrospun membrane. Micro-photoelectroforming is a process

whereby metal is electrodeposited within a photolithographically

defined resist mould. It is a very precise process whereby micro-

parts can be manufactured with sub-micron accuracy. This

process allows extremely thin meshes to be made. Cells were

cultured directly onto this mesh, then stained using antibodies (as

previously described) to demonstrate this material was not toxic to

cells and that the cells would grow on this material. To produce

the complete composite bioartificial membrane, we developed the

novel strategy of electrospinning collagen nanofibres directly onto

the micro-PEF nickel mesh by using it to replace the aluminium

foil in the above process.

Assembly of the bioartificial model
The bioartificial composite membrane of collagen/PCL elec-

trospun onto nickel mesh was secured in Cell Crowns as described

above (Fig. 7C). Cells (GEnC on one side and podocytes on the

other) were seeded at a density of 150,000cells/cm2. Cells were

seeded and incubated for 1 week at 33uC and then switched to

37uC for a week, or differentiated cells were seeded at 37uC.

Statistical analysis
GraphPad Prism 5 (GraphPad Software, La Jolla, CA) was used

for statistical analyses. ANOVA was performed on TEER

measurements, and the groups compared using a post hoc

Bonferroni multiple comparisons test. A paired Student’s t-test

was used for WST-1 assay data. P values of ,0.05 were taken to

indicate statistical significance. Graphs show mean and standard

error.
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