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Abstract 10 

Among the major factors controlling soil erosion, as vegetation cover or soil erodibility, 11 

rainfall erosivity has a paramount importance since it is difficult to predict and control by 12 

humans. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, 13 

such data rarely demonstrate good spatial and temporal coverage. Daily weather records are 14 

now commonly available, providing good coverage that better represents rainfall intensity 15 

behavior than do more aggregated rainfall data. In the present study annual rainfall erosivity 16 

was estimated from daily rainfall records, and compared to data obtained employing the 17 

RUSLE R factor procedure. A spatially-dense precipitation database of high temporal 18 

resolution (15 min) was used. Two methodologies were applied: i) daily rainfall erosivity 19 

estimated using several parametric models, and, (ii) annual rainfall erosivity estimated by 20 

regression-based techniques employing several intensity precipitation indices and the modified 21 

Fournier index. To determine the accuracy of estimates, several goodness-of-fit and error 22 

statistics were computed in addition to a spatial distribution comparison. The daily rainfall 23 

erosivity models accurately predicted annual rainfall erosivity. Parametric models with few 24 

combined parameters and a periodic function simulating intra-annual rainfall behavior 25 

provided the best results. Where daily rainfall records were not available, good estimates of 26 
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annual rainfall erosivity were also obtained using regression-based techniques based on 5-day 27 

maximum precipitation events, the maximum wet spell duration, and the ratio between the 28 

lengths of average wet and dry spells. Inherent limitations remain in the use of daily weather 29 

records for estimating rainfall erosivity. Future research should focus on incorporating 30 

measures of natural rainfall properties of the particular region, including kinetic energy and 31 

intensity, and their effects on the soil. 32 

 33 

Keywords: rainfall erosivity; RUSLE R factor; daily rainfall erosivity models; modified 34 

Fournier index; Ebro basin; NE Spain 35 

 36 

 37 

1. Introduction 38 

Rainfall erosivity is of paramount importance among natural factors affecting soil erosion, and 39 

unlike some other natural factors, such as relief or soil characteristics, is not amenable to 40 

human modification. It thus represents a natural environmental constraint that limits and 41 

conditions land use and management. In the context of climate change the effect of altered 42 

rainfall characteristics on soil erosion is one of the main concerns of soil conservation studies. 43 

It is well known that several very intense rainfall events are responsible for the largest 44 

proportion of soil erosion and sediment delivery. Hence, estimating rainfall erosivity is central 45 

to assessment of soil erosion risk. Numerous studies using natural and simulated rainfall have 46 

investigated the role of drop size distribution on the detachment of soil particles. The 47 

measurements involved are difficult to perform, and reported data are consequently very 48 

limited both spatially and temporally. In addition, measurements of natural rainfall properties, 49 

for comparison with simulated rain, are scarce (Dunkerley 2008). This has encouraged studies 50 

relating more conventional rainfall indices, such as the maximum intensity during a period of 51 

time, to overall rainfall energy or directly to soil detachment rates. Examples of such indices 52 
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of rainfall erosivity are the USLE R factor, which summarizes all the erosive events quantified 53 

by the EI30 index occurred along the year (Wischmeier 1959, Wischmeier and Smith 1978, 54 

Brown and Foster 1987), the modified Fournier index for Morocco (Arnoldus 1977), the KE > 55 

25 index for southern Africa (Hudson 1971), and the AIm index for Nigeria (Lal 1976). 56 

Among these the most extensively used is the USLE/RUSLE R factor, which is calculated 57 

from the EI30 index (Wischmeier 1959, Wischmeier and Smith 1978, Brown and Foster 1987, 58 

Renard et al. 1996). At many sites worldwide the R factor has been shown to be highly 59 

correlated with soil loss (Van der Knijff et al. 2000, Diodato 2004, Shi et al. 2004, Hoyos et al. 60 

2005, Curse et al. 2006, Onori et al. 2006, Domínguez-Romero et al. 2007).  61 

One of the main disadvantages in seeking to employ the RUSLE R factor is the need for a 62 

relatively continuous rainfall data series, with a time resolution of at least 15 min (pluviograph 63 

data). Information of this nature is rarely available with good spatial and temporal coverage. 64 

Other attempts to predict rainfall erosivity from mean annual rainfall and/or mean monthly 65 

rainfall have provided results that are quite coarse, but these have been extensively cited in the 66 

scientific literature (Banasik and Górski 1994, Renard and Freimund 1994, Yu & Rosewell 67 

1996c, Ferro et al. 1999). Renard and Freimund (1994) provided a succinct summary of 68 

methods for estimating the R factor in various parts of the world, and also developed a new set 69 

of relationships for calculating the R factor using mean annual rainfall data and the modified 70 

Fournier index. 71 

Daily weather records with good spatial and temporal coverage that adequately represent 72 

rainfall characteristics are usually available for most locations. Because of the high temporal 73 

and spatial variability of rainfall erosivity, accurate records based on long data series are 74 

required. Attempts to accurately predict rainfall erosivity from daily rainfall records or storm 75 

events (Richardson et al. 1983, Bagarello and D’Assaro 1994, Petkovsek and Mikos 2004), or 76 

from monthly rainfall (Yu and Rosewell 1996a, b and c, Yu et al. 2001), have been based 77 

largely on exponential relationships.  78 
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As the origin of rainfall erosivity is linked to climate dynamics, there is a need to apply 79 

climate analysis methodologies to the study of the erosivity factor. However, long series of 80 

rainfall erosivity data are required if consistent results are to be obtained. Daily rainfall 81 

erosivity models bridge the gap between climate change scenarios based on general and 82 

regional circulation models, and the implications of these scenarios for some land degradation 83 

processes (Yu and Rosewell 1996b). In addition, a daily rainfall erosivity model would have 84 

potential application in many erosion constructs, as the daily model would provide robust 85 

predictions of rainfall erosivity. 86 

The aim of this study was to review existing methodologies for predicting the R factor, and to 87 

compare estimates obtained using these methodologies with R factor values calculated by the 88 

RUSLE procedure. The study was conducted using data from a dense network of observatories 89 

distributed in a climatically complex region (the Ebro Basin, NE Spain), and covers the period 90 

1997 2006. The methodology described has the potential to be applied to longer daily rainfall 91 

data bases, which could improve estimates of the spatial coverage of rainfall erosivity in the 92 

Ebro Basin with respect to both long-term average erosivity and seasonal distribution thereof. 93 

The proposed methodology can be applied in many parts of the world where short time series 94 

of high-resolution rainfall data coexist with long series at a daily resolution. 95 

 96 

2. Materials and Methods 97 

2.1. Study area 98 

The study area covers northeastern Spain (Figure 1), encompassing an area of about 85,000 99 

km
2
 that corresponds to the Ebro Basin. The Ebro valley is an inner depression surrounded by 100 

high mountain ranges. It is limited in the north by the Cantabrian Range and the Pyrenees, 101 

with maximum elevations above 3000 m a.s.l. The Iberian Range closes the Ebro valley to the 102 

south, with maximum elevations in the range 2000 2300 m a.s.l. The Ebro valley is closed to 103 

the east by the Catalan Prelittoral Range, with maximum elevations of 1000 1900 m a.s.l. 104 
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The climate is influenced by the Cantabric and Mediterranean seas, and the effect of the relief 105 

on precipitation and temperature. The bordering mountain ranges isolate the central valley, 106 

blocking the maritime influence and resulting in a continental climate with arid conditions 107 

(Cuadrat 1991, Lana and Burgueño 1998, Creus 2001, Vicente-Serrano 2005). A climatic 108 

gradient in the NW SE direction is notable, determined by the strong Atlantic Ocean 109 

influences in the north and northwest of the area during much of the year, and the influence of 110 

the Mediterranean Sea to the east. The mountain ranges add complexity to the climate of the 111 

region. The Pyrenees extend the Atlantic Ocean influence to the east by increasing 112 

precipitation. 113 

The precipitation regime shows strong seasonality (Garrido and García 1992) involving both 114 

the amount of precipitation and its precipitation mechanisms (frontal or convective). 115 

Precipitation in inland areas is characterized by alternating wet and dry periods as a 116 

consequence of the seasonal displacement of the polar front and its associated pressure 117 

systems. Inter-annual variability in precipitation can be very high, and prolonged dry periods 118 

can be followed by torrential rainfall events that last for many days (Martín-Vide 1994). 119 

Close to the Mediterranean Sea the amount of precipitation also increases as a consequence of 120 

the maritime influence. Nevertheless, the precipitation frequency, intensity and seasonality 121 

close to the Mediterranean Sea are very different from areas at the north-east where 122 

precipitation is frequent but rarely very intense (García-Ruiz et al. 2000). The most extreme 123 

precipitation events have been recorded along the Mediterranean seaside (Romero et al. 1998, 124 

Llasat 2001, Peñarrocha et al. 2002). Due to its complex climatology (as a consequence of 125 

being a meteorological border region) and the contrasted relief, the Ebro Basin has a long 126 

history of social, economic and environmental damage caused by extreme rainfall events 127 

(García-Ruiz et al. 2000, Lasanta 2003, Llasat et al. 2005). 128 

 129 

2.2. Database 130 
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The database consisted of 111 selected rainfall series from the Ebro Hydrographical 131 

Confederation automatic hydrological information network system (SAIH; Figure 1). Each 132 

station provides precipitation data at a time resolution of 15 min. The system started in 1997, 133 

and is the only dense network in the region providing sub-daily resolution data. We used all 134 

available data series for the period 1 January 1997 to 31 December 2006. 135 

The rainfall series were subjected to a quality control process that identified incorrect records 136 

due to system failures. These records were replaced with corresponding values from a nearby 137 

station. This allowed creation of databases of daily rainfall erosivity (DEIDB) and daily 138 

precipitation (DPDB). The RUSLE considers an event erosive if at least one of two conditions 139 

is true: i) the cumulative rainfall is greater than 12.7 mm, or ii) the cumulative rainfall has at 140 

least one peak greater than 6.35 mm in 15 min. Two consecutive events are considered 141 

different from each other if the cumulative rainfall in a period of 6 hr is less than 1.27 mm. In 142 

the present study we have considered all the rainfall events with precipitation above 0mm as 143 

erosive events. This threshold was used for calibrating the models; otherwise we could not do 144 

monthly calibration. 145 

There was a need to adjust the original time series of erosive events to a daily time scale. 146 

Thus, if there were more than one erosive event in a given day their values were summed up to 147 

give a total daily erosivity. This involved some 2% of the original dataset composed by 66,486 148 

events. In some rare cases an erosive event occurred during two or more consecutive days. In 149 

those cases—only 0.66% of all the erosive events—the event was assigned to the day with the 150 

highest precipitation. This procedure was preferred to splitting up the erosive event, which 151 

would have modified the rainfall erosivity value.  152 

 153 

2.3. Rainfall erosivity estimates 154 

2.3.1 RUSLE R factor 155 
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Daily EI30 values for the period 1997 2006 were calculated using rainfall intensity data 156 

recorded every 15 minutes, and the RUSLE model. The RUSLE model uses the Brown and 157 

Foster (1987) approach to calculating the average annual rainfall erosivity, R (MJ mm ha
1
 h

1
 158 

y
1
): 159 

n

j

m

k
k

j

EI
n

R
1 1

30

1
 (1) 160 

where n is the number of years of the record, mj is the number of erosive events for a given 161 

year j, and EI30 is the rainfall erosivity index of a single event k. Thus, the R factor is the 162 

average value of the annual cumulative EI30 over a given period. An event’s rainfall erosivity 163 

EI30 (MJ mm ha
1
 h

1
) is calculated as follows: 164 
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1
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o

r
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 (2) 165 

where er and vr are, respectively, the unit rainfall energy (MJ ha
1
 mm

1
) and the rainfall 166 

volume (mm) during a time period r, and I30 is the maximum rainfall intensity in a 30 min 167 

period during the event (mm h
1
). The unit rainfall energy (er) is calculated for each time 168 

interval as: 169 

)]05.0exp(72.01[29.0 rr ie  (3) 170 

where ir is the rainfall intensity during the time interval (mm h
1
). 171 

 172 

2.3.2 Rainfall erosivity estimates from daily rainfall intensity data 173 

Model A: The Richardson et al. (1983) exponential model 174 

Event rainfall erosivity values (EI) are usually well fitted to the event precipitation amount (P) 175 

by an exponential relationship (Richardson et al. 1983): 176 

bPaEI  , (4) 177 
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where a and b are empirical parameters and ε is a random, normally distributed error. The R 178 

factor, equal to the annual cumulative EI, is obtained by summing all event values. The 179 

parameters a and b can be adjusted month-by-month to take account of intra-annual variations 180 

in rainfall characteristics. This leads to the more general expression: 181 

mb

mm PaEI  , (5) 182 

where 12,...,1m  represents the month of the year being evaluated. The exponential 183 

relationship has been applied to event (Richardson et al. 1983, Posch and Rekolainen 1993), 184 

daily (Bagarello and D’Asaro 1994) and even monthly data (Yu and Rosewell 1996a; 185 

Petkovsek and Mikos 2004). In all these studies parameter a was the only variable, and 186 

parameter b was assumed to be stationary across the year. 187 

Parameter estimation in the Richardson et al. (1983) model is achieved by ordinary least 188 

squares (OLS) regression after a logarithmic transformation of the terms in equation (4). OLS 189 

regression offers an analytical solution to minimizing the sum of squared errors, SSE: 190 

M

m

mmm EESSE
1

2)ˆ( , (6) 191 

where Em and Êm are the observed and predicted cumulative rainfall erosivity for month m, 192 

respectively, Êm is the predicted cumulative rainfall erosivity for the month, and M is the 193 

number of months for which data are available. 194 

 195 

Model B: The Richardson et al. (1983) exponential model by weighted least squares 196 

A problem with the method of Richardson et al. (1983) is that it tends to underestimate 197 

systematically the R factor values. This has been pointed out by a number of authors, and it 198 

has been usually attributed to the logarithmic transformation of the variables to allow 199 

parameter estimation by OLS (Richardson et al. 1983, Elsenbeer et al. 1993, Posch and 200 

Rekolainen 1993). However, we believe that the R factor is underestimated mainly because 201 

parameter estimation by OLS is based on minimizing the squared errors at the daily or rainfall 202 
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event scale, resulting in excessive significance being placed on many small events that do not 203 

contribute materially to the cumulative annual erosivity. In fact, many studies have shown the 204 

paramount importance of the contribution of very few, but intense, daily rainfall events to total 205 

annual rainfall erosivity. 206 

In order to avoid excessive influence of small erosive events during parameterization of the 207 

Richardson et al. (1983) model, we have also tried an alternative parameterization method 208 

based on weighted least squares regression (WLS). In WLS weights can be assigned to the 209 

observations in order to modify their influence on the fitting process. In this case, the weights 210 

wi were computed as the inverse of the empirical frequency of the observations: 211 

1

n

i
wi

, (7) 212 

where i is the order of the observation after the series has been sorted in ascending order, and 213 

n is the number of observations in the series. 214 

 215 

Model C: The Yu and Rosewell model 216 

Using the equation of Richardson et al. (1983) requires a logarithmic transformation of the 217 

data, which usually leads to underestimation of erosivity and bias when the predicted values 218 

are transformed back to the original scale (Richardson et al. 1983, Elsenbeer et al. 1993, Posch 219 

and Rekolainen 1993). In addition, individual regression equations must be developed for each 220 

month (Posch and Rekolainen 1993) or season (Richardson et al. 1983), resulting in a large 221 

number of parameters. Yu and Rosewell (1996a) proposed an alternative equation based on 222 

the Richardson et al. (1983) method, in which the seasonal variation of parameter a (termed  223 

in their study) was modeled parametrically using a periodic function: 224 

PmEI  ) 
12

1
 2cos( 1    0PP , (8) 225 
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where  controls the amplitude of the intra-annual variation of , and  controls the phase, i.e. 226 

the month of the year for which the value of  is maximum. The periodic function modifying 227 

parameter  allows introduction of seasonal effects such as varying storm types, using a 228 

reduced number of parameters in comparison with the method of Richardson et al. (1983). 229 

Equation 6 is evaluated at the daily time scale, and only those values of daily rainfall greater 230 

than a threshold value P0 are considered. A value of 0.0 mm is usually valid for P0 when daily 231 

data are used. The parameter ω is kept constant, depending on the month registering the 232 

highest erosivity for a given rainfall amount. 233 

To minimize bias in the estimated erosivity values, Yu and Rosewell (1996a) recommended 234 

using parameter estimates without data transformation. The adjustment between the observed 235 

and predicted values is done by using an iterative algorithm minimizing the sum of squared 236 

errors. 237 

 238 

Model D: A modified Yu and Rosewell model 239 

Application of the original model of Yu and Rosewell—Model C—only allows intra-annual 240 

variation of parameter α. An alternative model could allow periodic variation in parameter  241 

while parameter α is kept stationary: 242 

) 
12

1
 2cos( 1 

 
m

PEI . (9) 243 

 244 

Model E: The five-parameter modified Yu and Rosewell model 245 

A logical extension of Model D would be to allow intra-annual variation in both α and : 246 

) 
12

1
 2cos( 1 

 ) 
12

1
 2cos( 1 

m

PmEI , (10) 247 

where  and  control the amplitude of the variation of  and , respectively. In the 248 

previous formulation the phase parameter  is kept equal for both  and . The parameters α, 249 

β, ηα and ηβ were estimated by minimizing the sum of squared errors as described above. 250 
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Since equations (8), (9) and (10) are highly non-linear no analytical solution is available, and 251 

an iterative method has to be used for minimizing the SSE. In this case a genetic algorithm 252 

(Pikaia; Charbonneau 1995, Metcalfe and Charbonneau 2003) was used to determine the best 253 

values for parameters , ,  and , depending on the model. Parameter ω can be estimated 254 

directly from the observations as: 255 

max
6

    m , (11) 256 

where mmax is the month registering the highest average erosivity for the complete record 257 

period. 258 

 259 

 260 

2.3.3 Rainfall erosivity estimates based on monthly precipitation and annual 261 

rainfall intensity indices 262 

Other approaches exist to estimate rainfall erosivity without daily rainfall data. As a 263 

consequence of the relationship between rainfall erosivity and precipitation intensity, 264 

alternative ways to calculate the impact of rainfall on soil are based on the precipitation 265 

concentration, for example by applying the modified Fournier index, or by regression of the 266 

RUSLE R factor upon different precipitation intensity statistics calculated at the annual level. 267 

 268 

Model F: Precipitation intensity indices 269 

Annual rainfall erosivity has been related to several precipitation intensity indices calculated at 270 

the annual level (Table 1). A common indicator of high rainfall erosivity values is the mean 271 

annual precipitation (Renard and Freimund 1994). Several studies have highlighted the 272 

relationship between the R factor and occasional heavy rainfall events recorded during a year 273 

(Martínez-Casanovas et al. 2002, González-Hidalgo et al. 2007, Angulo-Martínez et al. 2009). 274 

Rainfall erosivity can also be related to several precipitation intensity indices that are also 275 
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correlated with the presence and duration of dry spells. Since there are many alternative 276 

indices to regress upon, it is wise to perform a multiple regression analysis to find an optimum 277 

estimator of the R index of the form: 278 

n

n

n xbbR
1

0  (12) 279 

where b0 bn are regression coefficients and x1 xn are independent variables. 280 

For model selection (identification of the significant variables) in the present study we used a 281 

forward stepwise method based on the Akaike’s information criterion (Venables and Ripley 282 

2002). A ten-fold cross-validation procedure was used, which involved repeating the stepwise 283 

method ten times, each time omitting one-tenth of the sample from the analysis (Breiman and 284 

Spector 1992). In an ideal situation all ten repetitions should yield the same set of significant 285 

variables, indicating high reliability of the model. A robust regression procedure was used to 286 

avoid the excessive influence of outlier observations present in the data. This involved 287 

assigning to each observation a weight that was inversely proportional to its influence on the 288 

model fitting process (Marazzi 1993). The R statistical analysis package (R Development Core 289 

Team 2008) was used for the regression analysis. 290 

 291 

Model G: The modified Fournier index 292 

Estimation of the annual rainfall erosivity using the modified Fournier index has been 293 

proposed when only monthly precipitation data are available (Arnoldus 1977) i.e.: 294 

12

1

2i

i

i

P

P
MFI  (13) 295 

where Pi is the mean monthly precipitation of the month i and P is the mean annual 296 

precipitation. The relationship between MFI and the R factor showed better adjustment 297 

following an exponential distribution (Ferro et al. 1999). The R factor values can be estimated 298 

from the MFI using the following equation: 299 



 13 

baMFIR , (14) 300 

where a and b are empirical parameters and ε is a random, normally distributed error. 301 

The Fournier index has been used in several recent studies (Apaydin et al. 2006, Gabriels 302 

2006). The application of this model yielded the following equation for the study area: 303 

927.056.21 MFIR . (15) 304 

 305 

Model H: The F index (Ferro et al. 1991) 306 

A modification in the MFI for estimating rainfall erosivity has been proposed by Ferro et al. 307 

(1991): 308 

12

1

12

1

1

,

2

P
K

P

pCVP
P

F iN

j

j

N

j

jij

F , (16) 309 

where Pj is the annual rainfall amount of the year j, CV is the variation coefficient of the 310 

month i from the year j, Ki is a constant depending on the month i, and P is the mean annual 311 

rainfall of the study period 312 

In this case, the value K is an indicator of the monthly rainfall distribution in the year. The best 313 

adjustment between FF index and the R factor was achieved with an exponential distribution—314 

i.e. eq. 14—(Ferro et al. 1999). In the study area the R factor values where obtained by using 315 

the following equation: 316 

412.1
0542.0 FFR  (17) 317 

 318 

2.5. Validation 319 

The resulting rainfall erosivity prediction models were assessed using a set of validation 320 

statistics that compared the observed and estimated values of the R factor. We used a set of 321 

goodness-of-fit statistics (Table 2) including: i) the mean and the standard deviation of the 322 

predicted and observed values, as a measure of centrality and dispersion, and ii) the NS 323 
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coefficient of efficiency (Nash and Sutcliffe 1970), which indicates how close scatters of 324 

predicted values are to the line of best fit; this is similar to the coefficient of determination R
2
, 325 

without being markedly affected by outlier data. This validation statistic is commonly used in 326 

rainfall erosivity studies (Yu et al. 2001, Petkovsek and Mikos 2004). In addition we used two 327 

error statistics: i) the mean bias error (MBE), which is centered around zero and is an indicator 328 

of prediction bias; and ii) the mean absolute error (MAE), which is a measure of the average 329 

error. We did not use the root mean square error (RMSE) because it is highly biased by outlier 330 

data, and it is difficult to discern whether it reflects the average error or the variability of the 331 

squared errors (Willmott and Matsuura 2005).The validity of the models was also evaluated by 332 

goodness-of fit plots and the comparison between the spatial distribution of the observed 333 

values and the spatial distribution of the R factor estimates from the different models. The R 334 

factor maps were obtained by spatial interpolation of the at-site points using smoothing splines 335 

for spatial interpolation. 336 

 337 

3. Results 338 

3.1 Spatial distribution of rainfall erosivity over the study area 339 

A detailed spatial distribution of rainfall erosivity in the study area, as estimated using the 340 

RUSLE R factor, is shown in Figure 2. Overall, the spatial distribution of the R factor in the 341 

study area could be explained by the proximity to—or isolation from—the major water masses 342 

of the Cantabrian and the Mediterranean seas. The relief, with mountain ranges to the north, 343 

south, and east of the region, modifies this general pattern by increasing rainfall in those areas. 344 

Another effect of the relief is the isolation of the central area from main precipitation sources 345 

through creation of a rain shadow zone. All these influences result in a rather complex spatial 346 

pattern of erosivity. 347 

A broad NW SE gradient in the spatial distribution of the R factor could be detected, which 348 

was also evident in the monthly regimes. To confirm this observation, we analyzed the 349 
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monthly behavior of rainfall erosivity at the 111 stations by clustering all stations into three 350 

zones (Figure 3). The NW zone, which is influenced by the Atlantic Ocean, had the highest 351 

monthly rainfall values and minimum rainfall erosivity; the highest erosivity was attained at 352 

the beginning of summer. The central zone included the majority of stations. Here, the 353 

precipitation rates were less than in the NW zone (although still significant), but erosivity was 354 

greater and showed two annual peaks, one in late spring (May June) and a second (the larger) 355 

at the end of summer (August September). The NE zone has a typical Mediterranean rainfall 356 

distribution, with maxima in spring and autumn. The erosivity distribution was maximal in 357 

autumn. It is important to note that the spring rainfall peaks were not as erosive as those of the 358 

autumn, because of differences between these seasons in rainfall generation mechanisms. The 359 

rainfall recorded during the spring months came from several precipitation events of relatively 360 

low intensity. In contrast, the precipitation in autumn was usually attributable to a few very 361 

intense events. 362 

 363 

3.2. Model A equation parameters 364 

We have analyzed the a and b parameters calibrated monthly using the exponential 365 

relationship of Richardson et al. (1983) in eq. (5) above. As explained earlier, further 366 

development of this model was largely dependent on how seasonal variation of the a and b 367 

parameters was modeled. 368 

As shown in Figure 3, rainfall erosivity displayed a very marked seasonal pattern that did not 369 

coincide with the seasonal variation in monthly precipitation. In principle, this is consistent 370 

with seasonal variation in the parameters of the exponential relationship. Figures 4 and 5 show 371 

the monthly distribution of parameters a and b. Differences between observatories were 372 

relatively small, and were usually noticed in the month during which maximum values were 373 

registered. Both parameters showed significant temporal variation within the year, following a 374 

periodic model. Minimum values were found in winter (December January) and the maxima 375 
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at the end of summer (July August). This result supports the validity of the models of Yu and 376 

Rosewell (models C, D, and E). 377 

Another noteworthy result is that both of the a and b parameters showed seasonal variation. As 378 

mentioned above, many studies have minimized the influence of parameter b by holding b 379 

constant throughout the year. This is because b, being an exponent, has a greater influence 380 

than has parameter a on the estimations, and hence is much more sensitive to calibration 381 

errors. However, our results show that both parameters varied significantly, supporting the 382 

hypothesis that a model incorporating such variation could yield better results. In this context, 383 

Figures 4 and 5 show that parameters a and b displayed very similar relative patterns, with 384 

minima and maxima that occurred in the same months and that differed only in the magnitude 385 

of variation. This supports the hypothesis that a model with one  parameter, which controls 386 

the phase of the periodic function, replacing both a and b, would be adequate (this is model E). 387 

 388 

3.3 Comparison between methods 389 

3.3.1 Models based on daily data 390 

All the daily rainfall erosivity models yielded good results, as was made evident by the 391 

validation statistics (table 5), goodness-of-fit plots (figure 6), and by checkingthe spatial 392 

distribution of the R factor estimates (figure 7). The models based on the Yu and Rosewell 393 

equations (models C, D, and E) were most satisfactory. Model C—the original Yu and 394 

Rosewell (1996a) equation—ranked best among them. The exponential relationship model of 395 

Richardson et al. (1983) fitted by the ordinary least squares method (model A) underestimated 396 

rainfall erosivity, as evidenced by all the validation statistics. However, the Richardson et al. 397 

(1983) model fitted by weighted least squares (Model B) showed better agreement, as 398 

evidenced by the validation statistics and the goodness-of fit plots (table 5 and figure 6, 399 

respectively). This result confirmed that the underestimation of model A, which has been 400 

attributed to the logarithmic transformation applied to the data by a number of authors, is in 401 
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fact related to the utilization of a fitting algorithm that is sub-optimal for estimating the R 402 

factor, due the high importance of very few, but intense precipitation events. 403 

Looking at the goodness-of-fit plots (figure 6), it is evident that model A resulted in significant 404 

under-estimation of the R factor, whereas model B provided better predictions. The models 405 

based on the Yu and Rosewell (1996a) equation, e.g. models C, D and E, had also a good 406 

agreement, although in general tended to over-estimate the R factor. Among the three 407 

parametric models the differences were narrow; the best overall fit was given by the Yu and 408 

Rosewell original model—model C—followed by model E.  409 

With respect to goodness-of-fit and error statistics (Table 5), all models based on daily data 410 

(A, B, C, D, and E) gave good results. Overall, model A ranked lowest, underestimating both 411 

the mean and the standard deviation of rainfall erosivity, and showing the strongest bias of all 412 

methods. This model also had the lowest goodness-of-fit statistic (NS) of all models using 413 

daily data, and ranked closer to theoretically less refined methods, such as the regression 414 

method (model F). As a comparison, when using weighted least squares in the Richardson et 415 

al. (1983) model—Model B—better validation statistics were obtained.Among the models 416 

based on the equation of Yu and Rosewell (C, D, and E), model C was the best considering all 417 

the validation statistics altogether. Between models D and E, model E yielded the best results.  418 

Finally, a comparison was made among the various methods in terms of the spatial distribution 419 

of rainfall erosivity (Figure 7). Based on these results we rejected models A and B which 420 

resulted in underestimation and a poor approximation to the observed values of rainfall 421 

erosivity (Figure 2). Differences between the others models were hardly noticed, and all 422 

adequately reproduced the observed spatial pattern (Figure 2). However, it must be noted that 423 

interpolation techniques may increase underestimation. 424 

  425 

3.3.2 Models based on monthly or annual rainfall intensity indices 426 
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An exploratory correlation analysis (Table 3) showed that high and significant correlations 427 

existed between rainfall erosivity on the one hand, and several rainfall intensity indices 428 

computed on an annual basis, on the other. The highest correlation coefficients were found 429 

with R3GD and R5GD; these are the amounts of precipitation accumulated during the three 430 

and five wettest days, respectively, confirming the hypothesis that very few events are 431 

responsible for a large part of annual rainfall erosivity. The explanatory variables selected by 432 

the stepwise procedure were R5GD, WSM, and RS; the latter two figures are the maximum 433 

wet spell duration and the ratio between the average length of wet and dry spells (Table 4). It 434 

is notable that the regression analysis included two variables that did not show significant 435 

correlations with R when considered individually, although other indices that were probably 436 

highly correlated with R5GD were excluded. The selection of variables was remarkably 437 

constant during the jack-knife process, confirming the statistical significance of the three 438 

variables mentioned. In contrast, the correlations between the R factor and the modified 439 

Fournier index, and the R factor with the FF index were very poor (Table 4), and yielded 440 

unsatisfactory results. 441 

Figure 8 shows the goodness-of-fit plots for the three models. Underestimation occurred in all 442 

cases, particularly using the regression based on the Fourier index—model G. Among all 443 

models based on monthly or annual rainfall intensity indices model F yielded the best results, 444 

which were closer to those based on daily data and exponential relationships, although the 445 

values of all validation statistics were worse (table 5). Estimation by model H —regression 446 

based on the FF index— showed better agreement than using the original Fournier index, but 447 

still model F ranked best. 448 

The validation statistics (Table 5) showed that the MFI regression afforded the poorest 449 

performance of all methods tested and, particularly, resulted in a marked underestimation of 450 

the standard deviation of rainfall erosivity, as well as the highest absolute error and the worst 451 

NS statistic. The rainfall intensity indices regression model—model F—was relatively poor 452 
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compared to methods based on the Yu and Rosewell equation, although the validation 453 

statistics were almost as good as those for model A. Validation statistics obtained for Model H 454 

slightly improved those from Model G, but this model still ranked very low to be considered a 455 

valid choice when other models are affordable. 456 

Finally, the spatial distribution of the estimated R factor values determined by these methods 457 

(Figure 9) matched the observed pattern quite well (Figure 3) in the case of model F, but was 458 

very poor when model G and H were employed. This fact was especially evident for the 459 

highest values recorded at the southeast part of the region. Those high values corresponded to 460 

an extreme event recorded at the daily scale which is still disguised at the monthly level. 461 

 462 

4. Discussion and Conclusions 463 

Estimation of rainfall erosivity is of great importance for soil erosion assessment, and has 464 

important implications for agriculture and land planning. Rainfall erosivity is an indicator of 465 

precipitation aggressiveness, and depends both on the rainfall energy (raindrop size 466 

distribution and kinetic energy) and the intensity of the storm event. Rainfall in Mediterranean 467 

climates is characterized by great temporal variability and high, brief, intensity (storms). This 468 

latter characteristic particularly affects rainfall erosivity, which increases with greater 469 

occurrence of few, very intense, events (González-Hidalgo et al. 2007). 470 

In this study we used the RUSLE R factor, calculated employing high resolution (15 min) 471 

rainfall data, as an indicator of rainfall erosivity, and compared R factor values with estimates 472 

obtained using alternative methods based on daily precipitation data and precipitation indices 473 

calculated on monthly and annual scales. This comparison was conducted to identify valid, 474 

spatially-distributed estimates of rainfall erosivity using the type of rainfall data that are most 475 

usually available. 476 

Among the methods used to estimate the RUSLE R factor, the Yu and Rosewell (1996a) 477 

equation and variations thereof (models C, D and E) yielded the best results, and the data were 478 



 20 

consistent when tested using several statistical validation tools and by direct comparison of the 479 

maps of rainfall erosivity produced by each method. The main advantage of the Yu and 480 

Roswell method is that this approach allows investigators to reproduce seasonal variations in 481 

the relationship between daily precipitation and rainfall erosivity without a need to divide the 482 

data into monthly segments; this makes more efficient use of the information available. 483 

Although most previous studies assumed that the b coefficient remained constant throughout 484 

the year (Richardson et al. 1983, Bagarello and D’Asaro 1994, Petkovsek and Mikos 2004) 485 

our results demonstrate that both of the parameters a and b showed a periodic variation within 486 

the year. Moreover, the influence of parameter b, being an exponent, is greater than that of 487 

parameter a. This result drove directly to the proposal of two variants of the original model of 488 

Yu and Rosewell (1996a)—Models D and E. We compared three versions of the original 489 

model of Yu and Rosewell, in which only , only  or both and were allowed to vary 490 

over the year by using a periodic function. Although the ability of the models to predict the R 491 

factor was supposed to increase with themodel complexity, the validation statistics did not 492 

allow such a clear conclusion to be drawn, since the original model of Yu and Rosewell 493 

(1996a) yielded results which were marginally better than the other two variants. Hence, even 494 

though there are strong theoretical evidences in favor of a model with both  and  parameters 495 

allowed varying, for practical use we have to recommend the simplest formulation with only  496 

varying, that is, the original formulation of Yu and Rosewell (1996a). It is possible that a 497 

model with both parameters varying—model E—provides a better way to estimate the rainfall 498 

erosivity at a monthly or even a daily basis, although this hypothesis has not been tested in this 499 

work. Due to the high complexity and non-linearity of model E, it is also possible that better 500 

results be obtained by using fitting methods other than the genetic algorithm used in this work. 501 

These possibilities, however, would need further testing and are outside the scope of this 502 

work, which is restricted to predicting the RUSLE R factor. 503 
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In contrast, the method based on the exponential relationship of Richardson et al. (1983) 504 

yielded unsatisfactory results, systematically underestimating the annual erosivity and the 505 

variance thereof. This outcome has been reported on many occasions, and has been attributed 506 

to the logarithmic transformation that is usually performed on the variables to allow parameter 507 

estimation by the least squares method. However, our results demonstrate that under-508 

estimation of the R factor is caused by the sub-optimal character of the OLS algorithm. We 509 

have shown that when the weighted least squares method was applied—Model B—the 510 

underestimation was reduced very significantly. This fact confirmed that underestimation by 511 

theOLS algorithm is due toexcessive significance being placed on many small events that do 512 

not contribute materially to the cumulative annual erosivity expressed by the R factor. In fact, 513 

the results of our analyses confirmed the paramount importance of the contribution of very 514 

few, but intense, daily rainfall events to total annual rainfall erosivity. 515 

In the absence of daily rainfall data, other ways to estimate the R factor are based on 516 

regression upon intensity precipitation indices on monthly or annual scales. These are 517 

commonly available statistics that are readily obtainable through any meteorological service. 518 

Our results showed that the modified Fournier index or its modified form—the FF index—are 519 

not appropriate for estimating the R factor and result in severe underestimation.The best 520 

alternative to using a daily-based approach was a multivariate linear model based on three 521 

indices (the cumulative precipitation for the five days with most rain, the maximum wet spell 522 

duration, and the ratio between the length of the average wet and dry spells). 523 

The parameter values obtained from models A and B in this study are similar to those obtained 524 

in several studies carried out in other Mediterranean areas (Bagarello and D’Asaro 1994, 525 

Petkovsek and Mikos 2004, D’Asaro et al. 2007). All those studies developed regional models 526 

based on exponential relationships upon daily rainfall amounts. One or more model 527 

parameters were considered spatially invariant and were maintained equal for all the stations 528 

in the study area. In this study we have preferred to perform an at-site analysis, i.e. calibrating 529 
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all the model parameters individually for each station. This was recommended due to the 530 

existence of contrasting rainfall regimes within the study area, and also because regional 531 

variations were found in the values of the parameters when fitted individually for each site 532 

There remain inherent limitations in the use of daily weather records for estimating the rainfall 533 

erosivity term in the universal soil loss equation. Erosivity includes kinetic energy and 534 

intensity measures that are poorly represented by daily rainfall values (Selker et al. 1990). 535 

Future research may provide better calibration of the Brown and Foster (1987) rainfall kinetic 536 

energy equation by measuring natural rainfall properties in any particular region. 537 
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Figure Captions 682 

 683 
Figure 1. Location of the study area and the precipitation observatories of the SAIH network. 684 

As it is part of a hydrological warning and control system, the SAIH network is not evenly 685 

distributed; more importance is placed on headwater areas at the borders of the study area. 686 

However, this distribution coincides with the spatial variation of rainfall characteristics, which 687 

shows small spatial variance in the center of the Ebro Basin and maximum spatial variance 688 

towards its margins. 689 

Figure 2. Spatial distribution of the RUSLE R factor in the Ebro Basin. 690 

Figure 3. Monthly distribution of rainfall erosivity (RUSLE R factor) and precipitation in the 691 

Ebro Basin. 692 

Figure 4. Monthly distribution among the analyzed observatories for parameter a from the 693 

Richardson et al. (1983) exponential relationship. 694 

Figure 5. Monthly distribution among the analyzed observatories for parameter b from the 695 

Richardson et al. (1983) exponential relationship. 696 

Figure 6. Comparison between observed R values (ordinate axis) and those estimated by 697 

various methods (abscissa axis): A) model A; B) model B; C) model C; D) model D; and E) 698 

model E. Line of best fit (continuous diagonal line), and regression line (dashed). 699 

Figure 7. Spatial distribution of estimated R values by: A) model A; B) model B; C) model C; 700 

D) model D and E) model E; . These maps can be compared to Figure 2. 701 

Figure 8. Comparison between observed R values (ordinate axis) and those estimated by 702 

various methods (abscissa axis): F) model F; G) model G; and H) model H. Line of best fit 703 

(continuous diagonal line ), and regression line (dashed). 704 

Figure 9. Spatial distribution of estimated R values by: F) model F; G) model G; and H) 705 

model H. 706 

707 
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Table 1. Acronyms and definition of the selected indices from the daily precipitation series. 708 

 709 

710 

Acronym Definition Units 

P Total precipitation mm 

WD Number of wet days (precipitation >1mm) days 

PI Simple daily intensity (P/WD) mm 

C90 Annual 90th percentile mm 

R90N Nº of events with precipitation greater than  long-term 90th percentile (P90) days 

R90T Percentage of total precipitation from events above P95 % 

C95 Annual 95th percentile mm 

R95N Nº of events with precipitation greater than  long-term 90th percentile (P95) days 

R95T Percentage of total precipitation from events above P95 % 

C99 Annual 99th percentile mm 

R99N Nº of events with precipitation greater than  long-term 90th percentile (P99) days 

R99T Percentage of total precipitation from events above P99 % 

R1GD Greatest day total precipitation mm 

R3GD Greatest 3-day total precipitation mm 

R5GD Greatest 5-day total precipitation mm 

R7GD Greatest 7-day total precipitation mm 

R9GD Greatest 9-day total precipitation mm 

R11GD Greatest 11-day total precipitation mm 

R13GD Greatest 13-day total precipitation mm 

R15GD Greatest 15-day total precipitation mm 

R17GD Greatest 17-day total precipitation mm 

R19GD Greatest 19-day total precipitation mm 

R21GD Greatest 21-day total precipitation mm 

WSM Max nº of consecutive wet days (precipitation >1mm) days 

DSM Max nº of consecutive dry days (precipitation <1mm) days 

WS Average  Max nº of consecutive wet days (precipitation >1mm) days 

DS Average  Max nº of consecutive dry days (precipitation <1mm) days 

RS Ratio (WS/DS)  
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Table 2. Error statistics. 711 

Statistical criteria Definitions: 

 

 

N : nº of observations 

O : observed R value 

Ō: mean of obs. R values 

P: predicted R value 
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Table 3. Correlation coefficients between the observed R factor and several precipitation intensity indices. See 715 

Table 1 for definition of the indices. 716 

P WD PI C90 R90N R90T C95 

0.50* 0.042 0.79* 0.76* 0.047 0.18 0.80* 

R95N R95T C99 R99N R99T R1GD R3GD 

0.036 0.19 0.80* 0.056 0.26* 0.79* 0.84* 

R5GD R7GD R9GD R11GD R13GD R15GD R17GD 

0.84* 0.82* 0.80* 0.79* 0.77* 0.75* 0.74* 

R19GD R21GD WSM DSM WS DS RS 

0.72* 0.71* 0.0068 0.10 0.094 0.049 0.044 

* significant at the confidence level =0.05 717 

718 



 30 

Table 4. Regression coefficients and variance, and regression analysis for the precipitation intensity indices (see 719 

Table 1) and the modified Fournier index (MFI). 720 

 721 

722 

Explanatory variables r
2
 Variables selected 

Regression against precipitation intensity 

indices based on daily data 

0.727 R5GD, WSM, RS 

Modified Fournier Index 0.250 --- 

FF index  0.408 --- 
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Table 5. Accuracy measurements for the R factor models: means and standard deviations of the observed and 723 

predicted values. 724 

  Mean Standard dev. MBE MAE NS 

Observed 903.9 619.91 ---  ---  ---  

Model A 708.2 573.5 -194.4 205.9 0.745 

Model B 774.8 628.5 -128.4 152.8 0.839 

Model C 969.8 696.4 64.9 97.6 0.947 

Model D 1000.2 729.3 95.0 132.4 0.909 

Model E 998.2 697.9 93.0 124.5 0.910 

Model F 1025.9 530.2 120.8 243.2 0.574 

Model G 805.4 320.4 -97.6 329.6 -1.903 

Model H 830.1 392.6 -73.2 293.6 -0.512 

 725 
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