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Mapping of settlement areas from space is entering a new era. With the recently developed Global Urban Foot-
print (based on radar data from TanDEM-X) and the Global Human Settlement Layer (based on optical data),
two new initiatives that promise to map complex settlement patterns at global scales and unprecedented spatial
resolutions are about to enter the scientific and map user community. However, comparative studies on these
layers' strengths and weaknesses, especially in terms of their potential added value with regard to existing
lower resolution maps, as well as their assessed accuracy are still absent. In this regard, we introduce a multi-
scale cross-comparison framework that uses the best existing urban maps as a benchmark. To paint a complete
picture, we simultaneously address several components of map accuracy including relative inter-map agree-
ment, absolute accuracies and pattern-based classification differences. This framework is applied to present re-
gionally representative results from two Central European test sites. In this, we find that the new base maps
bring decisive advancements in preserving the small-scale complexity of global human settlement patterns be-
yond urban core areas. Relative inter-map comparison exposes low density settlement regions traditionally
under-represented by lower resolution maps that are now recognized. Absolute metrics such as the Kappa coef-
ficient of agreement (K) show that accuracies of the new high resolution layers (K = 0.56-0.58) nearly double
those of existing products. Beyond, they feature substantial consistency between urban (K = 0.46-0.50) and
rural landscapes (K = 0.41-0.45). Results from pattern-based exploration further reveal significant correlation
of accuracies with physical pattern variations such as settlement density and mark a clear shift of accuracies
from large to medium and small patch sizes. This differentiated view on classification accuracies shows that
the new generation of urban maps constitutes a significantly enhanced spatial representation of large-scale

settlement patterns.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Global urbanization may well be the most important transformation
that our planet will undergo in the 21st century. Even today, more than
half or the world's population - approximately 54% - is living in urban
areas, marking the dawn of the “urban century” (UN, 2014a). According
to the United Nations' population projections, this share is expected to
further increase to two-thirds in 2050 making cities the focal places of
worldwide demographic growth. As our world progresses to demo-
graphically urbanize, the upcoming decades will bring along substantial
changes with regard to size and spatial patterns of human settle-
ments on our planet. New dimensions of urban landscapes such as
mega-regions are increasingly being recognized (e.g., Florida, Gulden, &
Mellander, 2008; UN-HABITAT, 2013; Taubenbdck et al., 2014). Beyond,
spatial complexity of urban transformation through e.g., peri-
urbanization (e.g., Simon, 2008, Taubenbdck, 2015), growth of

* Corresponding author.

http://dx.doi.org/10.1016/j.rse.2016.03.001
0034-4257/© 2016 Elsevier Inc. All rights reserved.

urban villages and edge cities (Garreau, 1991; Anthrop, 2000), or the
infrastructural delinking of rural areas located in the urban shadow
(Main, 1993, Taubenb&ck & Wiesner, 2015) is constantly increasing.
From a spatial perspective, the social, economic and environmental im-
plications of global urbanization are not directly tangible. Nonetheless,
the requirement of detailed, up-to-date, accurate and consistent infor-
mation on the spatial patterns and dynamics of global settlements is
today widely acknowledged (Potere & Schneider, 2007; Taubenbdck
et al., 2012; Esch, Marconcini, Felbier, Heldens, & Roth, 2014; Esch
et al.,, 2012; UN 2014a, 2014b; GEO, 2014). In fact, it presents one key
to understanding worldwide urbanization processes, and prerequisite
to developing and supporting actions towards sustainable urban and
rural development goals.

In this regard, satellite-based earth observation (EO) from space has
long been recognized as an independent tool for the provision of area-
wide spatial information on the location of settlement features and
their spatial distribution from global (i.e., large-scale urban areas) to
local scales (i.e., individual buildings). In the past decades, several initia-
tives coming from both government and academia have produced
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profound global maps on the size and spatial distribution of human set-
tlements or related spatial attributes. This first generation of urban
maps heavily relied on satellite sensors of relatively low geometric res-
olution (LR; 2300 m acc. to EC-Copernicus, 2014). However, with the
Global Urban Footprint (GUF) (Esch et al.,, 2013) and the Global
Human Settlement Layer (GHSL) (Pesaresi et al,, 2013), two new initia-
tives that promise to be capable of mapping fine-scale and complex
human settlement patterns at unprecedented spatial resolutions and
global scales are now becoming available. Knowledge on these layer's
strengths and weaknesses in terms of their assessed accuracy, quality
and overall agreement is however yet few and far.

In this regard, we present the first comprehensive cross-comparison
that integrates these recent advancements in high resolution (HR;
4-30 m) settlement mapping into the portfolio of existing coarse
resolution urban maps. To answer the call for a degree of confidence
associated with the results from remote sensing-based land cover clas-
sifications (e.g., Richards, 1986; Congalton, 1991; Foody, 2002), our
focus is on the capabilities of recently produced HR settlement maps re-
specting the best existing LR maps as a benchmark. To paint a complete
picture, we develop and apply a comprehensive, multi-layered compar-
ison framework that incorporates techniques of absolute accuracy as-
sessment, analysis of relative inter-map agreement and exploration of
pattern-based classification differences. We apply this framework for
two large-scale test sites of varying landscape character in Central
Europe. Within this setting, we present quantitative regional evidence
on the mapping capabilities of the latest efforts in HR settlement map-
ping. In this, we address several specific research questions on the accu-
racy and validity of the respective layers under test:

(1) How and to which degree do new high resolution settlement
layers correspond to existing global products of lower geometric
resolution in a Central European setting?

(2) How accurate are different - high and low resolution - global
geo-information layers in absolute terms regarding the represen-
tation of complex settlement features and their spatial configura-
tion in Central Europe?

(3) How does the accuracy of these layers vary for structurally differ-
ent areas, i.e., urban versus rural landscapes, in Central Europe?

(4) Does the accuracy of global settlement layers show spatial varia-
tion with regard to the physical configuration of human settle-
ments, i.e., size or density, in Central Europe?

Building upon the presented framework, we aim at fostering the
user-oriented assessment and definition of the novel products on the
way to a global inventory of high resolution settlement information.
The remainder of this work is organized as follows. The subsequent sec-
tion presents relevant background information on past and present
mapping and validation efforts followed by a review of techniques for
meaningful accuracy assessment techniques. Section 3 depicts the layers
under study from a technical perspective in combination with a brief de-
scription of the selected test sites, reference and ancillary data employed.
The key methodological framework is summarized in Section 4 along
with the scale-dependent steps of analysis taken. Section 5 presents
the main results that are summarized and discussed in Section 6.
Section 7 concludes with a final perspective and future directions.

2. Background & rationale

2.1. Overview of past and present global settlement mapping initiatives and
their validation

Until the year 2000, only one dataset existed that aimed at
representing the extent of the Earth's urban areas. The Digital Chart of
the World (Danko, 1992; also known as Vector Map Level 0 (VMAPO))
was the predecessor to several global human settlement mapping
initiatives since the millennium. These initiatives have produced an
extended portfolio of ten global urban maps. Among these, six present

urban areas as distinct human settlement outlines. In addition, four
more layers model continuous physical features related to human settle-
ment activity such as the degree of imperviousness of the land surface,
the intensity of stable night-time illumination or the ambient local pop-
ulation. Satellite remote sensing data employed were mainly imagery
from coarse resolution optical sensors such as the Moderate Resolution
Imaging Spectroradiometer (MODIS), Satellite Pour I'Observation de la
Terre (SPOT) or the Defense Meteorological Satellite Program's Opera-
tional Linescan System (DMSP-OLS). Table 1 gives a comprehensive
overview of these layers including particular thematic and geometric
specifications, data employed for map generation and their assessed ac-
curacy according to Potere, Schneider, Angel, and Civco (2009).

Although these layers' usefulness and applicability for global analy-
sis of larger urban areas are widely recognized, there are some problem-
atic issues associated with their use: Heterogeneity in terms of
geometric resolution (300 m-10 km), thematic representation (multi-
category/binary/continuous information), and employed input data
(EO/census/maps/data fusion) demands a high degree of expert knowl-
edge by the map user. Beyond, the issue of a missing universally accept-
ed, consistent and unambiguous definition of urban areas across these
datasets is one of the major drawbacks with regard to their application
(Schneider, Friedl, & Potere, 2010). Consequently, there is a large dis-
agreement between the maps' total estimated shares of urban land at
the global scale (Fig. 1). Beyond, inconsistencies between different
scales of map representation (i.e., global vs. regional) are evident as in-
dicated by the regional numbers for the city of Cologne, Germany. Fur-
ther issues arise from low update frequencies, often data-dependent
representation of human settlements (Schneider et al., 2010) as well
as limited accuracy of the maps due to the spectral and spatial heteroge-
neity of built environments (Forster, 1983, 1985; Small, 2001, 2005).
Ultimately, the coarse geometric resolution of EO data exploited so far
does not embrace the full spatial complexity of large scale settlement
patterns (Welch, 1982) and calls for novel HR layers that enable an en-
hanced spatial representation.

To answer this call, JRC and DLR have initiated the development of
two new global products that promise to be a major leap forward re-
garding the derivation of spatially highly resolved settlement informa-
tion on the global scale. The Global Urban Footprint (GUF) (Esch et al,
2012, 2013) builds upon the known capabilities of radar imagery for
classification, monitoring and analysis of urban agglomerations at su-
pranational levels (Henderson & Xia, 1997). It employs satellite imagery
that is independent from weather, time-of-day and environmental
conditions (Lewis, 1968). In contrast, the Global Human Settlement
Layer (GHSL) (Pesaresi et al., 2013) initiative proposes a novel approach
to map, analyze and monitor human settlements and ongoing urbaniza-
tion processes in the 21st century. Exploiting high and very high resolu-
tion (HR/VHR) optical satellite imagery, GHSL is - although not globally
available yet — up-to-date the largest and most complete known exper-
iment based on optical EO data. Another promising approach that uses
multi-spectral satellite imagery in combination with existing urban
area maps is presented by Miyazaki, Shao, Koki, and Shibasaki (2013).
It is, however, not subject to analysis in this work as the respective
settlement layer only covers larger cities (>100.000 inhabitants)
while disregarding other, lower density, settlement landscapes. Sim-
ilarly, GUF and GHSL define urban areas based on distinct physical
settlement features: Man-made vertical structures (GUF) or build-
ings (GHSL), respectively, mark the structuring elements for the der-
ivation of generalized aerial representations of built-up areas (JRC,
2012; Esch et al., 2012). This eases the simultaneous assessment of
these new high resolution geo-information products in the remain-
der of this work.

Despite these extensive efforts in global human settlement mapping
now and in the past, comparative studies on these layers' strengths and
weaknesses in terms of their assessed accuracy are still limited. Fig. 2
presents a comprehensive but non-exhaustive categorization of the
published literature in this regard. While most studies relating to
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Overview of new (bottom section) and existing (top section) global urban maps; datasets employed in this study are printed in bold (adopted and updated from Schneider et al., 2010;
accuracy statistics adopted from Potere et al., 2009).

Abbr. Map Producer Time- Definition of urban Resolution Primary data Urban Relative Absolute
(Reference) stamp areas and map sources extent City scale Accuracy—
representation (km?) agreement—  Overall acc./
Adj. R? Kappa
VMAPO Vector Map US National 1992 Class: Populated Scale Operational 276.000 0.56 0.977/0.49
Level 0/ Digital Imagery and places 1:1.000.000  navigation
Chart of the Mapping Agency (thematic multi- charts, maps
World (5™ ed.) (US-NIMA) category)
(Danko, 1992)
GLC00 Global Land European 1999/2000  Class: Artificial ~ 1.000m EO (SPOT- 308.000 0.36 0.970/0.45
Cover 2000 Commission surfaces and Vegetation
(Bartholme & Joint Research associated areas 2000), LITES
Belward, 2005)  Center (thematic multi- (Africa)
(EC-JRC) category)
GLOBC GlobCover v2 European 2009 Class: Artificial ~300m EO (MERIS), 336.000 0.30 0.968/0.46
(Arino et al., Commission surfaces and GLCO00
2007; ESA, Joint Research associated areas
2011) Center (urban areas > 50%)
(EC-JRC) (thematic multi-
category)
HYDE History Database Netherlands 2000 Percentage of urban ~10.000m LSCAN, 532.000 0.73 0.969/0.44
of the Global Environmental areas (built-up, cities) GLC2000,
Environment Assessment (continuous, %) national / sub-
(Goldewijk, Agency national census
2011) (PBL) & land use
statistics,
administrative
city gazetteers
IMPSA Global US National 2000/2001  Density of ~ 1.000m LSCAN, LITES 572.000 0.60 0.975/0.61
Impervious Geophysical Data constructed
Surface Area Center impervious surfaces
(Elvidge et al., (US-NGDC) (continuous, %)
2007)
MOD500 MODIS 500m University of 2001/2002  Built environment ~500m EO (MODIS 657.000 0.90 0.972/0.63
Map of Global Wisconsin and including non- 500m)
Urban Extent Boston vegetated, human
(Schneider et al., (US-NASA) constructed elements
2009) (>50%)
(thematic binary)
MODIK MODIS 1km Boston 2000/2001  Urban and built-up ~ 1.000m EO (MODIS 727.000 0.67 0.960/0.50
Map of Global University areas 1km), LITES
Urban Extent (US-NASA) (thematic binary)
(Schneider et al.,
2003)
GRUMP Global Rural- Earth Institute at 1995 Urban extent ~ 1.000m VMAP, census  3.532.000 0.75 0.839/0.22
Urban Mapping ~ Columbia (thematic binary) data, LITES
Project University
(CIESIEN, (CIESIN)
2004)
LITES DMSP-OLS US National 1992-2015  Nighttime ~1.000m EO (DMSP- NA - -
Nighttime Lights Geophysical Data (ongoing)  illumination intensity OLS)
(Elvidge et al., Center (continuous, %)
2001) (US-NGDC)
LSCAN Landscan Oak Ridge 1998-2014  Ambient (average per ~ 1.000m VMAPO, NA - -
(Bhaduri et al., National (ongoing)  24h) global LITES,
2002) Laboratory population MODIK, maps,
(US-ORNL) distribution census data, HR
(continuous, counts) imagery
GUF Global Urban German 2011-2013  Built-up areas marked 12m EO NA - -
Footprint Aerospace Center by the presence of (TerraSAR-
(Eschetal. , (DLR) vertical structures X/TanDEM-X)
2013) (e.g., buildings)
GHSL Global Human European 2014 Built-up areas marked  10m HR EO (multi- NA - -
(PANTEX) Settlement Layer Commission (ongoing) by the presence of sensor optical

(Pesaresi et al.,
2013)

Joint Research
Center (EC-JRC)

buildings

data; 0.5-10m)

the first generation of global urban maps focused on single product ac-
curacies, more comprehensive studies comparing multiple products are
scarce. The majority of these relate to the assessment of multi-category
land over datasets that do not allow urban-specific conclusions. The

most comprehensive, urban-specific review and comparison have
been given by Potere and Schneider (2009) as well as Potere et al.
(2009). In this, they present a quantitative non site-specific comparison
of eight coarse resolution urban maps on the global, continental and city
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Fig. 1. Comparison of total urban area estimates of eight global urban maps on a global (red; thsds. km?) and a regional scale for the city of Cologne, Germany (blue; km?) (adopted from
Klotz, Wurm, & Taubenbdck, 2015; global estimates adopted from Schneider et al., 2010). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

level. Beyond, they determine absolute accuracies with regard to a strat-
ified sample of 140 cities as well as relative inter-map agreement on the
city-scale.

Accuracy investigations relating to recent initiatives in HR settle-
ment mapping such as GUF and GHSL are yet relatively limited and fo-
cused on single-product accuracies. In fact, until today no study has
aimed at an integrative and comparative validation of HR settlement
layers with regard to existing lower resolution products. The rationale
of our research intends to address this gap.

2.2. Land cover classification accuracy assessment

The exploration of classification accuracy methods to retrieve infor-
mation about the quality of the thematic maps derived from remotely
sensed data has been the focus of many studies (e.g., Congalton, 1991;
Congalton & Green, 2008; Stehman & Czaplewski, 1998; Foody, 2002).
Validation concepts have evolved considerably from early first-level vi-
sual confidence tests of the derived maps and non-site specific
comparisons of gross classification rates to more sophisticated
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Fig. 2. Schematic categorization of a literature review on past validation efforts of multi-category and urban-specific land cover datasets (Defourny et al., 2009; Giri et al., 2005; Herold et al.,
2008; Latifovic and Olthof, 2004; Mayaux et al., 2006; Mayaux et al., 2004; McCallum et al., 2006; Morisette et al., 2004; Stehmann, 2000; Strahler et al., 2006; Tatem et al., 2005).
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pixel- (Congalton, 1994; Jensen, 1999) and object-based (Rutzinger,
Rottensteiner, & Pfeifer, 2009) approaches. Nowadays, site-specific
comparisons of class labels derived by classification with appropriate
validation data have been widely accepted as a standard for reporting
quantitative accuracy metrics (Congalton, 1994; Congalton & Green,
2008; Foody, 2006). At the core of most studies, the error or confusion
matrix between the actual (columns) and the predicted (rows) class la-
bels establishes a statistical basis for the description of classification ac-
curacies (Congalton, 1991). Several descriptive measures and analytical
techniques have been proposed to quantify accuracy and respective
error: The producer's accuracy (commonly called sensitivity or recall
for binary classification scenarios) is the counterpart of the error of
omission. In contrast, the user's accuracy (precision) is complementary
to the error of commission (Story & Congalton, 1986). Beyond, as the
share of all correctly assigned sample units of the error matrix, the over-
all accuracy is commonly reported as a standard descriptive measure.
However, many authors (e.g., Foody, 2002) have criticized its sole
reporting due to the negligence of class-specific errors and thus, overes-
timation of the overall thematic map value.

As a consequence, several multivariate analytical measures have
been proposed that rely on the entire error matrix and consider both
types of errors: Kappa (Galton, 1892) presents a discrete multivariate
statistic to test if binary (Cohen, 1960) or multi-categorical (Fleiss,
1971) classifications are significantly different from one another or re-
spective reference data. Kappa highlights the differences between the
actual agreement in the error matrix (i.e., the correctly classified sample
units presented by the major diagonal) and the chance agreement pre-
sented by the column and row totals. Landis and Koch (1977) pro-
posed a categorization of Kappa in which values of 0.00 to 0.20 are
regarded as poor, 0.21 to 0.4 as fair, 0.41 to 0.6 as moderate, 0.61 to
0.8 as substantial, and 0.81 to 1.00 as almost perfect agreement to
ease the comparison of multiple classification outputs. Although
commonly applied as a standard, several authors have criticized
the use of Kappa for its uni-modal response to prevalence
(Allouche, Tsoar, & Kadmon, 2006), i.e., imbalanced class distribu-
tions in the reference data, and its over-estimation of chance agree-
ment (Foody, 1992). Consequently, Congalton and Green (2008)
have introduced several ways for the modification of Kappa such as
weighting of errors and calculation of confidence limits whereas others
have proposed alternative measures insensitive to prevalence such as
the True-Skill-Statistic (Allouche et al., 2006).

Beyond single descriptive and analytical measures, other multivari-
ate techniques have been applied to the error matrix (Congalton &
Green, 2008): Normalization has been proposed to establish direct
comparability between matrices of different-sized sample populations
(Congalton, Oderwald, & Mea, 1983; Stehman, 2004). In addition,
fuzzification of the error matrix is meant to account for semantic uncer-
tainties and ambiguities induced by geolocation errors, differences in
geometric resolution or fuzziness of thematic class descriptions between
different land cover classification schemes (e.g., Gopal & Woodcock,
1994; Powers, 2007; Perez-Hoyos, Garcia-Haro, & San-Miguel-Ayanz,
2012). In this, fuzzy sets establish a variable degree of class membership
to rate the appropriateness of class allocation, thus increasing the signif-
icance of the accuracy assessment.

Although many of the presented techniques are today widely ac-
cepted as standards for reporting quantitative accuracy estimates,
there are still many critical considerations associated with the design
of systematic validation frameworks. Foody (2002, 2008) gives a
comprehensive review in this regard: Predominantly, the selection of
appropriate accuracy measures plays a key role for the conceptualiza-
tion of a meaningful approach. Until today, there is no single universally
accepted measure of agreement that is insensitive to all different fea-
tures of the error matrix. Instead, a reasonable selection of measures
must always consider the different components of accuracy to be eval-
uated and should be extended beyond the use of a single metric. Fur-
thermore, poor quality of collected reference data may be transferred

to the map resulting in reduced accuracy values of the thematic infor-
mation content. A considerate selection of the sampling scheme, i.e., the
sampling design and size, is thus one of the most important a priori con-
siderations (Dicks & Lo, 1990; Stehman, 1999). Non-thematic mis-
registration and geolocation errors can further decrease accuracy of re-
sults accompanied by negative effects of mis-interpretation and mixed
pixels. The latter is problematic due to the rigidness of the error matrix
which assumes pure pixels and neglects the possibility of mixed land
cover types within single pixels. Finally, to account for the structural
and physical peculiarities of settlement areas, there has been a recent
call for techniques respecting the variability of landscape patterns within
the accuracy assessment process (Foody, 2006; Taubenbock, Esch,
Felbier, Roth, & Dech, 2011).

Based on this review, we introduce a systematic framework incorpo-
rating different comparative, descriptive, analytical and pattern-based
techniques beyond standard accuracy assessment protocols. To over-
come differences in spatial resolution, thematic representation and
landscape pattern, we follow a multi-layered comparison concept: As a
first step, we conduct a relative comparison between recent initiatives
in HR settlement mapping and existing urban maps of coarser geomet-
ric resolution to identify the potential added value of the new base
maps. Based on these results, we secondly evaluate absolute overall
and landscape-specific accuracies of all layers under test in terms of
mapping spatially detailed and complex settlement features. In this,
we build upon a considerate selection and combination of meaningful
accuracy measures. To complete the picture, we explore the influence
of the physical pattern variations on the classification results using
pattern-based validation techniques.

3. Study sites and data
3.1. Test sites

We apply the proposed comparison framework to two large-scale test
sites of Central Europe comprising square regions of 100 by 100 km.
These have been selected for their varying settlement character and the
large-scale availability of appropriate reference data for map validation.
The test site of Cologne in the Western parts of Germany features a strong
polarity between urban and rural landscape character. The eight larger
cities (Cologne, Diisseldorf, Essen, Dortmund, Bochum, Duisburg, Wup-
pertal and Bonn) located in the Northern and Western parts of the test
site are home to more than 4 million people (UN, 2014a). Contrasting
this highly urbanized area, the Sauerland region located in the Eastern
and South-eastern parts of the test site comprises several medium-
sized towns (<300,000 inhabitants) of peri-urban character. Beyond, dis-
tinctly rural areas with <150 inhabitants per km? (according to the na-
tional census definition listed by UN (2014b)) exhibit a more
fragmented settlement pattern (Fig. 3). The second test site of Tuscany,
Italy, features a somewhat different spatial and demographic picture: As
the only larger city, Florence, located in the Northern part of the test
site, has around 700,000 inhabitants. Beyond, very few medium-sized
towns describe the region's polycentric settlement structure
(Burgalassi, 2010). However, the largest part of the test site is marked
by rural livelihoods, i.e. communes with <10.000 inhabitants according
to the national census definition. Continuously low densities reflect the
dispersed and fragmented settlement structure. This makes the test
sites specifically relevant for accuracy investigations with regard to the
presumably enhanced mapping capabilities of new HR settlement layers
in such landscapes.

3.2. Reference data

As an agreed standard for meaningful accuracy assessment (e.g. U.S.
Bureau of the Budget, 1947; ASPRS, 1990; FGDC, 1998), the comparison
of any given map product should be conducted against reference
data that are independent from the map and preserves better
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geometric or thematic reliability. Since the main focus of our study is
on the accuracy in mapping fine-scale settlement patterns, we em-
ploy two reference features of varying spatial complexity at the
core of our reference database: Buildings (BRef) and settlement
areas (BURef). As sound ground truth information, we opt for build-
ing outlines as the core element of settlement areas which we derive
from consistent and reliable sources. As cadastral data is rarely existent
or accessible for large aerial extents such as the selected test sites
(10,000 km?), we employ alternative sources. For the test site of Cologne,
we derive footprints of individual buildings from the German topograph-
ic map 1:25,000 (BKG, 2014) from 2008 at a spatial resolution of 2.5 m as
described by Wurm, d'Angelo, Reinartz, and Taubenbdck (2014). For
Tuscany, building outlines with equal geometric specifications were de-
rived from the Carta Technica Regionale of 2010 (Regione Toscana,
2015a). Subsequently, all data have been transformed to Universal
Transverse Mercator (UTM) projection (zone 32) with ellipsoid World
Geodetic System 84 as displayed in the subsets of Fig. 3.

Quality considerations regarding the reference data relate to their
geometric, temporal and semantic specifications: The layers under test
exhibit maximum temporal shifts with regard to the reference of 6
and 8 years, respectively. To rate the influence of these time gaps, visual
confidence checks have been performed by backdating a one percent
stratified random sample of the reference (>3,000 buildings for both
sites) to built-up areas identified from Landsat imagery of the year of
the respective map. Change of less than three percent for both sites

show that temporal shifts can be widely disregarded due to low urban
growth dynamics. Beyond, positional accuracies of the reference data
are around 10 m for the city of Cologne (GeoBasisNRW, 2013) and
6 m for the Tuscany test site (Regione Toscana, 2015b). Although
these inaccuracies must be accepted with regard to the building mask,
we can partly compensate these by the spatial generalization of settle-
ment areas. In this regard, we employ the widely accepted semantic
definition of built-up areas that describe aerial units recording the full
or partial presence of buildings and the space-in-between buildings
(Tenerelli & Ehrlich, 2011). Thus, we derive a generalized settlement
mask, BURef, from the building mask, BRef, using a grid cell size of
12 m (Fig. 3) based on the native geometric resolution of the HR settle-
ment maps investigated in this study. Beyond the compensation of inac-
curacies due to mis-registration, the value of this additional HR
reference layer lies in the more comprehensive representation of settle-
ments encompassing other human-constructed elements such as roads
and or impervious surfaces in close proximity to buildings (JRC, 2013).
As an equivalent semantic descriptor, we use the term settlement area
synonymous to built-up area from this point onward.

3.3. Settlement layers under test
Although this paper focuses on the validation of new advancements

in HR global settlement mapping, i.e., GUF and GHSL, with the MODIS
500 m Map of Global Urban Extent (MOD500) and Globcover



(GLOBC), we integrate two more layers into the analysis. This is as
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these products yet set the benchmark of state-of-the art global settle-

ment mapping in terms of thematic accuracy and spatial resolution ac-
cording to Potere et al. (2009). Fig. 4 depicts the aerial representations
of all layers subject to analysis for the selected test sites. The following
subsections briefly summarize their inherent methodologies, underly-
ing source data and semantic definitions of settlement areas.
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3.3.1. MODIS map of global urban extent (MOD500)

197

MOD500 (Schneider et al., 2009) has been widely applied for global
analysis in past academic research. The higher-ranking goal of this ini-
tiative was to produce an up-to-date, seamless and spatially consistent
map of urban areas from a global MODIS Collection 5 coverage of the
years 2001 and 2002. The data featuring a spatial resolution of ca.

[1]

Horen

A

Fig. 4. Aerial views and subsets of the test sites Cologne, Germany (left), and Tuscany, Italy (right), displaying the layers under test in this study, namely GUF, GHSL, GLOBC and MOD500;
the center columns represents total estimates of settlement areas (km?) by these layers for both test sites compared to BRef and BURef, respectively. Source background map: Esri, HERE,
DeLorme, MapmyIndia, OpenStreetMap contributors, and the GIS User Community.
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500 m has been processed through a stratified supervised classification
approach based on training data visually collected from higher resolu-
tion optical imagery. In addition, posteriori class membership functions
were exploited for classification optimization. Due to the sole reliance
on optical EO data, MOD500 defines urban areas based on physical attri-
butes, i.e., places that are dominated by the built environment. These in-
clude a mix of human-constructed elements and impervious surfaces. In
this context, the term ‘dominated’ implies aerial coverage >50% of a
pixel. Reviewing Potere et al. (2009), MOD500 has been selected for
this study as it is up-to-date the best known global urban map in
terms of thematic accuracy (Table 1). For our study, MOD500 has been
re-projected from its native geographic projection to UTM resulting in
geometric resolutions of 347.9 m (Cologne) and 405.7 m (Tuscany),
respectively.

3.3.2. Globcover (GLOBC)

Compared to MOD500, GLOBC is a multi-category global land cover
product that has been first published in 2005 and updated in 2009
(Arino et al., 2007). GLOBC employs an automated land cover classifica-
tion scheme based on spectro-temporal clustering of stratified produc-
tion regions using a full year of observations from Medium Resolution
Imaging Spectrometer (MERIS) on-board ENVISAT (ESA, 2011). It com-
prises 22 thematic land cover classes — one dedicated to artificial sur-
faces and associated areas. Similar to MOD500, this category is defined
as pixels having an urban area percentage of >50%. Although Potere
and Schneider (2009) found only moderate accuracies for GLOBC
(Table 1), itis yet considered in this study as it is up-to-date the geomet-
rically highest resolved dataset. Re-projected from its native geographic
projection the dataset features an output resolution of 249.9 m and
278.5 m, respectively.

3.3.3. Global Urban Footprint (GUF)

Based on the German satellite constellation of TerraSAR-X (TSX) and
TanDEM-X (TDX) two global coverages of the Earth's entire land-mass
have been acquired between 2011 and 2013. The GUF processor ex-
ploits the local speckle information, i.e., the local coefficient of variation
and the fading texture of the radar imagery which is acquired in single-
polarized StripMap mode at 3 m spatial resolution. This texture infor-
mation highlights heterogeneous built-up areas featuring strong back-
scattering signals due to direct or double bounce reflection in the
proximity of vertical structures such as buildings (Esch et al., 2013).
This information feeds into a fully automatic unsupervised classification
that spatially generalizes these seeds to derive a binary built-up/non
built-up classification in a so far unique spatial resolution of 12 m. The
GUF output is mainly related to built-up regions that feature vertical
structures (e.g., houses, walls, traffic signs, etc.) but excludes impervious
surfaces without a vertical component. Initial validation efforts carried
out for the GUF report region-specific accuracies ranging between 60%
and 95% (Esch et al.,, 2010, 2013; Taubenbock et al.,, 2011, 2012).

3.3.4. Global Human Settlement Layer (GHSL)

GHSL is a similar product aiming at the derivation of a globally con-
sistent spatial representation of human settlements. It exploits multi-
resolution (0.5-10 m), multi-platform, multi-sensor (panchromatic,
multispectral) and multi-temporal optical image sources. Up until
today, the dataset covers more than 24 million square kilometers of
the earth's land surface. The information extraction is heavily based
on PANTEX (Pesaresi, Gerhardinger, & Kayitakire, 2008) — a rotation-
invariant, anisotropic textural measure based on the grey level co-
occurrence matrix of the input imagery. The strong correlation between
this textural information and the local density of buildings produces a
continuous built-up index [0, 1] that can be semantically translated to
a dichotomic built-up mask (Pesaresi et al., 2013; Ouzounis, Syrris, &

Pesaresi, 2013). Thus, the term ‘built-up’ of the GHSL definition refers
explicitly to pixels that coincide with buildings, but ideally excludes
non-building vertical structures as compared to GUF. First validation ef-
forts by JRC (2012) used a visual validation protocol and reported over-
all accuracies for PANTEX between 80% and 90% with region-specific
accuracy variations. For this study, the 10 m GHSL output, i.e. PANTEX,
has been derived from pan-sharpened SPOT-5 imagery. Based on the as-
sumption that all positive values greater zero present pixels that coin-
cide with buildings, we threshold PANTEX accordingly to derive a
binary built-up mask. This step complies with the conceptual definition
of built-up areas by Ehrlich and Tenerelli (2013) and is thus analogous
to the spatial generalization of BURef. Eventually, nearest neighbor re-
sampling to the GUF resolution is applied to create a comparable pair
of HR layers.

3.4. Ancillary data

In order to assess and compare classification accuracies of the layers
under test in areas of varying landscape character, i.e., urban vs. rural
areas, a transferrable rule for spatial zoning is required. Since an accept-
ed and semantically consistent global definition of urban and rural areas
is yet non-existent, we employ a data-driven approach. By the Global
Rural-Urban Mapping Project's (GRUMP) urban extent layer, we use
an ancillary data source that allows for a general distinction of urban
and rural landscapes. GRUMP is not subject to validation in this study
as it features by far the lowest accuracies among all urban maps
reviewed by Potere et al. (2009) (Table 1). This is mainly due to its
strong reliance on buffered census data and LITES, thus corresponding
more closely to population than built-up areas. However, its very gener-
alized and clumpy layout presents a particular strength that allows for a
consistent coarse-level separation of urban and rural extents (Fig. 3).
As we consider the density of the built environment as one of the
main distinguishing features of urban and rural areas (Fina, Krehl,
Siedentop, Taubenbdck, & Wurm, 2014), consistency and plausibility
of the structural divergence of the GRUMP classes are verified in Table
2. Thus, spatial zoning via GRUMP enables us to examine landscape-
specific accuracies of the layers under test.

In terms of the spatial transferability of this approach, it must be ac-
knowledged that while the original GRUMP dataset dating back to 1995
presents an eligible choice for regions of Central Europe, it is deemed
outdated for parts of the world that feature higher urban growth dy-
namics. Nevertheless, its inherent methodology described by Balk,
Pozzi, Yetman, Deichmann, and Nelson (2005) could be reasonably ap-
plied to update and transfer spatial zoning based on up-to-date data
sources to other cultural areas of the world.

4. Methodological framework

We introduce a multi-scale comparison framework (Fig. 5) to achieve
a comprehensive and systematic description of the accuracy and valid-
ity of the layers under test. In this, map accuracy is deconstructed to
various components for both new HR and existing LR settlement layers
in an integrative manner. Based on the review of techniques for mean-
ingful accuracy assessment in Section 2.2, the analytical framework
incorporates different pixel-, object- and pattern-based validation

Table 2
Mean building and settlement densities of the GRUMP classes derived from BRef and
BURef, respectively.

Building density Settlement density

(BRef, %) (BURef, %)

Cologne Tuscany Cologne Tuscany
GRUMP class “Urban” 5.76 3.22 17.04 243
GRUMP class “Rural” 1.40 0.37 5.10 1.04
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Fig. 5. Multi-scale cross-comparison framework listing the scale-specific steps of analysis, associated research questions as well as the respectively employed test, reference and ancillary

data layers.

techniques to answer the research questions addressed in the
introduction.

As a first step, we explore the potential added value of the novel HR
maps with regard to existing products of coarser geometric resolution.
This analysis is conducted on the LR scale that relates to the native spa-
tial resolution of GLOBC and MOD500. Using techniques of performance
evaluation (Section 4.1), we evaluate the trade-off between over- and
under-representation of these benchmark datasets by novel HR layers.
This relative assessment establishes an understanding on the degree
and nature of inter-map agreement. As a proof of concept, regions of
map deviation and thus, potential HR map evolution, are quantitatively
explored.

Based on these results, secondly, we determine absolute accuracies
on the high resolution scale of analysis (Section 4.2). Building upon on a
considerate selection of accuracy metrics, we assess the performance
of the respective layers under test with regard to their accuracy in map-
ping explicit spatial settlement features. In this context, we asses all
maps with regard to both, the building (BRef) and the settlement
mask (BURef), to explore and specify each layer's semantic definition.
Beyond the perspective on the overall test site extent, we integrate
landscape-specific statistics for urban and rural areas in this assessment.

Ultimately, in a third step, we conduct a differentiated assessment of
absolute classification accuracies that respects spatially altering

Table 3
Conceptualization of the error matrix for a binary classification scenario; n = TP + FP +
FN + TN.

Reference data

Presence Absence
Layer under test Presence TP FP
Absence FN N

structural characteristics of the built environment (Section 4.3). This as-
sessment on the medium resolution scale (MR; 30-300 m) of analysis
helps us to refine our understanding of layer-specific accuracies. We ex-
ploit pattern-based evaluation techniques to examine accuracy varia-
tions as a function of settlement density and size. In this, we present
an advanced object-based approach evaluating the spatial overlap be-
tween mapped and referenced settlement patches. This establishes an
understanding of the scale-dependent accuracy variations.

The following subsections describe the applied methods on each
specific analysis scale. As a central conceptualization for all methodolog-
ical steps taken, the error matrix (Table 3) formally compares spatial
units (i.e., pixels or objects) of the binary classifications under test
against the reference data as the basis for the calculation of specific ac-
curacy measures. Given an arbitrary binary classifier, there are four pos-
sible outcomes for n elements of an error matrix: True positives (TP) and
true negatives (TN) describe correctly detected presences and absences,
respectively. In contrast, false positives (FP) and false negatives (FN) are
incorrectly classified absences (commission) and incorrectly rejected
presences (omission), respectively, of the reference. This common con-
ceptualization is naturally adopted to the urban/non-urban categoriza-
tion in the remainder of this work. With regard to the review of
accuracy metrics presented in Section 2.2, we follow the terminology
commonly used for the performance evaluation of binary classifiers
from this point onward as compared to remote sensing-specific nota-
tions such as e.g., producer's and user's accuracy.

4.1. Low resolution analysis

On the LR scale of analysis, we employ precision-recall curves (PR
curves) and related error statistics to quantify the relative inter-map
agreement between each pair of HR and LR settlement layer (Fig. 5).
As a conceptual foundation of the cross-comparison framework, this
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step is meant to establish an understanding on the degree and nature of
map correspondence and disagreement, respectively, between multi-
resolution layers. Beyond, the motivation of this step inheres in the ex-
ploration of the potential added value of the novel HR products with re-
gard to existing LR maps. PR analysis allows us to identify particular
regions of disagreement via the HR maps' density domain. PR curves
are strongly related to the receiver operating characteristics (ROC;
Kullback, 1968) and have long been used in evaluation of information
retrieval systems (e.g. Raghavan, Bollmann, & Jung, 1989; Manning &
Schutze, 1999; Fawcett, 2006). In this, they have been proven
advantageous compared to ROC curves as they paint a more informative
picture when dealing with highly skewed class distributions (Davis &
Goadrich, 2006).

As a prerequisite for PR analysis, spatial aggregation is applied to HR
layers to produce a continuous density derivate at lower geometric res-
olution that bridges the resolution gap between layers. Let X € {0,1} be
an image with a binary domain presenting non built-up and built-up
areas at a high geometric resolution, i.e., GUF or GHSL, Eq. (1) produces
the built-up density D for each pixel x € X (Ouzounis et al,, 2013):

_ Len{x|class(x) = 1}

D) >

(1)

In this, D(x) denotes the fraction of pixels labelled as ‘built-up’
(coded as ‘1") within the square structuring element N. The edge length
s of N corresponds to the native spatial resolution of lower geometric
resolution layers, i.e., GLOBC or MODIS.

Following this preliminary, PR curves reflect the trade-off of recall
and precision between the pairs of thresholded density aggregates
from HR layers and binary LR layers. In this regard, recall presents the
fraction of TP out of the positives of the LR layer (TP rate; also called sen-
sitivity or completeness), whereas precision is the fraction of FP out of
the negatives of the corresponding HR map (positive predictive value
(PPV)). This ratio is calculated and visualized in PR space for all possible
threshold values T applied to the continuous density representation of D
of HR layers. Thus, the lowering of the density threshold from 100% to
0% is conceptually equivalent to the discretization (or masking) of the
density layers from GUF and GHSL, respectively, at a particular thresh-
old value D(X) > T. This is followed by the calculation of respective per-
formance measures - recall and precision - against the respective LR
counterpart. The PR curve is thus, complementary to the gradual course
of over- (pgp) and under-representation (pgy) of a LR layer by a respec-
tive HR layer:

_2ildi<Dy; =1)

Pan(T) = 2ilyi=1) @
_ 2il(di2T)1(y; = 0)
pep(T) = Ty AdeT) 3)

whereby, d; € D presents the continuous density measurements derived
from HR layers and its respective dichotomic class representation at a
particular threshold T, and y; € {0,1} reflects the binary class representa-
tion of LR layers. In this manner, we employ PR curves to rate and exam-
ine inter-map agreement between layers as a function of the built-up
density measured by HR layers. In order to compare agreement be-
tween map combinations that produce different curves in PR space,
the minimum error rate ER,,;, presents a consistent quality metric. It de-
scribes the minimum total of over- (pgp) and under-representation (pgy)
identified from PR space:

ER min = min[pey(T) + pre(T)], 3T (4)

ERin theoretically ranges between 0% and 200% whereby small values
testify good correspondence of the respective HR and LR layer in their
way of discriminating settlement areas at a given threshold. Beyond,
we use the capabilities of PR analysis for threshold optimization to

empirically identify the optimal cut-off value at which the error rate is
minimal (T(ER;,) ). This allows us to quantitatively characterize density
margins of map correspondence and disagreement, respectively. Fol-
lowing this protocol, we examine PR curves in combination with the
statistics of ERi;, and T(ER ) to investigate overall and landscape-
specific agreement between each pair of HR and LR layers across sites.

4.2. High resolution analysis

Based on the results of the previous comparison, the focus of the HR
analysis is on assessing site-specific absolute accuracies of all layers in
terms of mapping explicit settlement features. To give a first quantita-
tive estimate of the accuracy of the maps under study, we follow a
straight forward object-based approach. The point-in-polygon test
(PIP; Rutzinger et al., 2009) employs vector representations of BRef to
count the buildings spatially covered by an aerial classification. We
overlay the settlement extent of each dataset with the centroid of
each building footprint from BRef to calculate shares of buildings cov-
ered and omitted, respectively. Although, this type of assessment does
not embrace a complete thematic description of absolute map accuracy,
the analysis gives a first indication of the completeness of classifications
in terms of capturing the core elements of human settlements.

Subsequently, we conduct a pixel-based evaluation based on
the error matrix and the respective reference data described in
Section 3.2. As the tabulation of the error matrix postulates equal geo-
metric resolutions of the map and the reference, when necessary, we re-
sample the datasets under investigation to the geometric resolutions of
BURef (2.5 m) and BRef (12 m), respectively. In this scenario, positional
inaccuracies due to up-sampling amount to relatively small maximum
errors of 1.25 m and 6 m, respectively. For the analysis of absolute clas-
sification accuracies, we follow the recommendations by Foody (2006,
2008) and base the interpretation of results on a combination of mean-
ingful accuracy metrics beyond the use of a single statistic. As standard
descriptive measures, we report the overall accuracy (A), the TP rate
(TPR), the TN rate (TNR) and the precision (positive predictive value
(PPV)) according to Egs. (5), (6), (7) and (8).

A TP + TN _TP+1N (5)
TP+ FP+ TN + FN n

TPR = TPZ—PFN (6)

TNR = FPZ—NTN (7)

PPV = TPT—JI:FP (8)

These measures enable a descriptive qualification of classification
accuracy: Sensitivity and specificity are complementary to errors of
omission and measure the completeness of the built-up and non built-
up categories, respectively. On the contrary, precision addresses the cor-
rectness of the classification result and is intrinsically related to errors of
commission.

Beyond these descriptive measures, we employ further multivariate
analytical measures that consider both types of errors based on the en-
tire error matrix. These are Kappa (K, Eq. (9); Congalton et al., 1983), F-
score (F, Eq. (10); Rijsbergen, 1979) and True-Skill-Statistic (TSS,
Eq. (11); Allouche et al., 2006):

(TP + TN) (TP + FP)(TP + FN) + (FN + TN)(TN + FP)
K —

n n2
| _ (TP FP)(TP+ FN) + (FN 1 TN)(TN + FP) ©)
)
p__ 2P 2xTPRxPPV 10)
~ 2TP+FP+FN  TPR+PPV
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TP x TN — FP x FN
(TP + TN)(FP + EN)

K has been extensively used in research as it is specifically designed
to correct the overall accuracy of the classification by the accuracy in-
duced by chance. This is quantified by the first and second term in the
enumerator of Eq. (9). As an equally conservative measure of classifica-
tion performance, F measures the trade-off between sensitivity (TPrate)
and precision (PPV) by the harmonic mean of these descriptive accuracy
terms. Thus, F is essentially a class-specific quality measure adding to
the results of K by penalizing both missed detection and false alarm
within the urban domain (Labatut & Cherifi, 2011). Although both of
these comprehensive measures are commonly applied in the published
literature, they are critically discussed as being sensitive to imbalanced
datasets (Jeni, Cohn, & Torre, 2013). This is commonly the case for
settlement areas as they cover - especially for large-scale perspectives
on urban, peri-urban and rural landscapes - only a small portion of
the entire test site extent. To encounter this potential weakness, we ad-
ditionally employ TSS which corrects for the dependence on prevalence
while still keeping all advantages of K (Allouche et al., 2006).

The proposed set of measures enables a systematic and comprehensive
description of absolute classification performance with regard to the de-
scribed reference data base. In this context, an added value arises from
the simultaneous assessment of the layers under test with regard to both
the building (BRef) and the settlement mask (BURef). This allows for a re-
verse exploration of each layer's thematic definition. Beyond, we integrate
the spatial zoning via GRUMP into both PIP-tests and the pixel-based as-
sessments to further determine landscape-specific accuracy estimates.

TSS = — TPR+TNR — 1 (11)

4.3. Medium resolution analysis

On the MR scale of analysis, we conduct a final pattern-based assess-
ment to give a structured insight into the mapping capabilities of GUF and
GHSL (Fig. 5). We study absolute accuracy statistics as a function of selected
physical features of the built environment. Thus, we are able to account for
the physical heterogeneity of the settlement fabric in the assessment and
refine our understanding of layer-inherent accuracy variations. Spatial
aggregation is used to increase the level of abstraction of the thematic infor-
mation content. This allows us to assess and compare spatial functions
derived from the built-up representations in the map and the reference.

We follow this conception in two ways: (1) We investigate density
functions that describe the urban fabric represented by each HR
layer using linear regression techniques. This approach has been pro-
posed in previous work (e.g., Taubenbdck et al., 2011; Ouzounis et al.,
2013) and is originally motivated in the exploration of the influence of
physical density variations on the classification output. (2) Beyond, we
study classification differences with regard to the size of settlement patches
to establish a stronger understanding on the scale-dependent mapping
capabilities of each layer. In doing so, we present a novel object-based ap-
proach that exploits information of the mutual overlap between mapped
and referenced settlement patches.

(1) The objective of the first pattern-based assessment lies in the quan-
tification how well density metrics derived from the independent
reference are described by the automatically-derived settlement
layers GUF and GHSL. We derive continuous measurements
representing building (BRef) and settlement (BURef) densities
from the reference. Using Eq. (1), both reference and HR settlement
layers are aggregated at a spatial resolution of 200 m. This scale has
been found to feature a reasonable trade-off between generaliza-
tion and fitting quality by Pesaresi, Halkia, and Ouzounis (2011)
and Ouzounis et al. (2013), as well as independent investigations.
The authors showed a strong increase of fitting quality for the
density function through stepwise aggregation up to a scale of
200 m (R? ~ 80%) and distinct saturation at coarser scales.

Given the density aggregates derived from GUF and GHSL, we
explore their correlation with both the building (BRef) and the

(2

settlement (BURef) density. To support the analysis of the
scatterplots of these bivariate distributions, we compute the Pear-
son coefficient of correlation r from first order linear regression
(Everitt, 2002):

=152 (12)
RSS =", (d, _ a)z (13)
155 = 0 (d - d)” (14)

where RSS and TSS are the residual and total sums of squared errors,
respectively, n is the total number of observations, d is the average
value of the generalized reference D and d is the response of the re-
gression model.

—

In a second pattern-based assessment, we further analyze classifi-
cation variation with regard to the size of adjacent built-up areas.
On this patch level, we evaluate the mutual overlap between
mapped and referenced settlement patches (BURef). This approach
has previously been applied for the evaluation of building extrac-
tion protocols from HR airborne or satellite sensors
(e.g., Rottensteiner, Trinder, Clode, & Kubik, 2005; Rutzinger et al.,
2009; Wurm et al., 2014). However, compared to the analysis of
building footprints, an unambiguous one-to-one allocation be-
tween settlement patches of the reference and the map is not feasi-
ble by GIS-based procedures. Thus, we establish a many-to-many
relationship, initially merging all adjacent settlement patches of
each layer. Subsequently, the overlap between a reference patch
pr € P, and its intersecting mapped patches p,, € Py, is computed
in the way that o0,,,=a;nn/a. In turn, the overlap between a
mapped patch and its corresponding reference patches is described
as 0,y = Aimny/0rm. From this, we proceed by classifying the percent
mutual overlap between patches according to Rottensteiner et al.
(2005):

none
weak  10%
partial 50%
strong 80%

Orm/0mr<10%
<Orm/Omr £50%
<Orm/Omr <80%
<Orm/0mr £100%.

(15)

To eventually obtain a measure of the accuracy with regard to
patch size variation, we compute the completeness (TP rate,
Eq. (6)), correctness (PPV, Eq. (8)) and overall quality (F,
Eq. (10)) of each layer for pre-defined patch size bins. To do so,
we count the respective numbers of TP, FN and FP for each bin
based on a threshold T, = 50% to account for both completely or
partly corresponding patches of the maps and the reference:

TPcomp (0rm > To): number of reference patches that are either partly
or completely mapped;

TPcorr (Omr > T,): number of the mapped patches that are either part-
ly or completely referenced;

FN (0, < T,): number of reference patches that are not (partly)
mapped;

FP (01, £ T,): number of mapped patches that are not (partly) refer-
enced.

Fig. 6 gives a schematic exemplification of various cases of patch
relationships and their resulting classification applying a threshold
of T, = 50%. The calculation of consistent quality metrics for each
patch size bin allows us to asses each product's capabilities in cap-
turing the scale-dependent complexity of the settlement pattern.
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Fig. 6. Schematic display of possible patch relationships (sharp corners: referenced patches, round corners: mapped patches), calculation of the percent mutual overlap and the resulting

binary classification TPomp/FN and TP/FP, respectively, using a threshold value T, of 50%.

5. Results

Fig. 4 depicts the map representations of GUF, GHSL, GLOBC and
MOD500 across the selected test sites allowing for a first visual compar-
ison of all maps under study. The map representations of GUF and GHSL
seem quite similar in overall pattern and extent, but are somewhat more
expansive compared to MOD500 and expecially, GLOBC. More
specifically, high spatial detail and fragmentation of the settlement
pattern, especially beyond the urban core areas, is contrasted by
limited numbers of patches and spatial complexity of LR layers. Spatial
statistics displayed further enable a quantitative comparison of gross set-
tlement area estimates with the reference. It can be seen that all maps
significantly over-represent the building mask (BRef). Over-estimation
ranges from 231% and 318% for the most conservative estimate by
GLOBC, to maximum values of 587% and 612% by GHSL. Lower disagree-
ment is found with regard to the settlement mask (BURef). While GUF
and GHSL roughly double the extent of the referenced settlement areas
of both sites, the estimates by the LR layers approximate the reference
more closely, especially for the rural Tuscany region.

Although these numbers are assumed to be related to layer-inherent
errors of commission or omission, respectively, the non site-specific na-
ture of this assessment cannot ascertain locational agreement between
classifications and the reference. The following sections present the re-
sults from multi-scale cross-comparison that allow for site-specific con-
clusions on each thematic map's value.
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5.1. Low resolution analysis — relative inter-map comparison

We first investigate if the significantly increased spatial resolu-
tion of recent developments in global settlement mapping translates
to enhanced mapping capabilities. The inter-map agreement
between pairs of HR and LR layers serves as valid indicator marking
areas of potential map evolution in the HR maps' density domain.
PR curves displayed in Figs. 7 and 8 depict the trade-off between
precision (TP rate) and recall (PPV) of the aggregated HR layers
with regard to GLOBC and MOD500, respectively. Complementary
plots within these figures show the course of ER across the entire
threshold domain as well as the empirically derived optimal
threshold values T(ERin).

The PR curves reveal that only moderate correspondence exists be-
tween all pairs of HR and LR layers on the test site level. None of the curves
approaches the top right-hand corner of the PR space that marks optimum
recall and precision. Based on the area under the PR curve and the visual
impression from Fig. 4, GUF and GHSL exhibit only minor differences com-
pared to a particular LR layer and across test sites. This indicates a substan-
tial degree of agreement between HR layers. Both correspond slightly
better to GLOBC which presents, especially for Cologne, the more conser-
vative estimate of urban land. Beyond, significantly stronger inter-map
agreement for all map combinations is evident for the Cologne site as
the respective curves dominate Tuscany's for the largest part of the
threshold domain. This is presumably due to Cologne's significantly higher
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Fig. 7. PR curve (left) and threshold plot (right) displaying the overall correspondence between HR settlement information by GUF/GHSL against GLOBC; dots mark empirically derived

threshold values T(ER ).
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optimal threshold values T(ER ).

settlement density (Table 2) and total share of urban land (Fig. 4) that are
reflected more extensively by LR layers on the test site level.

Despite the limited overall agreement, a distinct density-dependent
relationship between HR and LR layers is visible. This is revealed by the
examination of particular regions of the PR space. As T decreases all
curves move from conservative areas (low recall, high precision) of
the PR space to the liberal ones (high recall, low precision). In this, PR
curves of Cologne feature a distinct convex profile. With the lowering
of T to high and subsequently medium cut-off values, a strong increase
of TP marks a substantial rise of recall at the cost of an only moderate
loss of precision. With regard to the density domain, this indicates sub-
stantial agreement between HR and LR layers for medium to high mag-
nitudes, presumably larger urban areas featuring continuous urban
fabric. With the continued shifting of T to lower densities, increasing
FP occurrences are observed in favour of an only moderate further
gain in recall. Consequently, strong degradation of precision and thus,
overall agreement, reflect decisive over-representation of the LR settle-
ment extents by HR layers in the low density range. Although the den-
sity margin of maximum agreement is less pronounced for the Tuscany
site due to limited overall agreement, a similar tendency is evident by
the slight convex form of the respective PR curves. In line with these ob-
servations, complementary threshold plots show a visible decline of ER
with increasing densities for all map combinations reaching distinct
minima in the medium and high density range. Due to the spatially
more conservative delineation of urban areas by GLOBC, these minima
are found within higher density margins as compared to MOD500. Nev-
ertheless, all observations strongly indicate that the spatial reduction of
GUF and GHSL to medium and high density areas, respectively, supports
stronger inter-map agreement. In contrast, correspondence in low den-
sity areas seems generally limited.

To quantitatively confirm these observations, we study respective
error statistics — ERnin and T(ER,i,) — derived from PR space in more de-
tail (Tables 4 & 5). In line with the limited agreement observed in PR
space, we find substantial error rates exceeding 60% for all pairs of

Table 4
Overall and landscape-specific statistics of inter-map agreement between HR layers and
GLOBC.

layers. It is noteworthy that error rates for both GUF and GHSL yield
very similar magnitudes with regard to each LR layer and test site — a
further indication of the marked consistency between these layers. For
Cologne, ER,,;, between HR and LR layers ranges from 60% to 73%,
whereas substantially higher magnitudes of error between 80% and
96% are observed in Tuscany in line with the course of the respective
PR curves. Across sites, T(ER;in) exceeds 43% (GUF) and 65% (GHSL)
against GLOBC, as well as 17% and 28% against MOD500. This proofs
that lower density built-up areas of GUF and GHSL below these empiri-
cally derived thresholds must be largely disregarded to preserve good
inter-map agreement. PR statistics for urban and rural areas (Tables 4
and 5) by incorporating GRUMP for spatial zoning further add to these
results by landscape-specific qualification of map agreement. Lower
values of ER,;;, and thus, stronger agreement, in high density urban
areas support the previous findings. The respective optimum thresholds
are naturally lower as compared to the overall test site perspective. In
contrast, maximum correspondence in rural areas is rather poor and as-
sociated with very high threshold values. Thus, best agreement between
HR and LR layers in these regions is theoretically established by masking
out the largest parts of settlement areas mapped by GUF and GHSL.
Overall, these findings establish a clear proof of concept and under-
standing of map evolution with regard to structural and landscape-
specific image regions. Although map combinations exhibit moderate
agreement within medium to high density margins of HR layers, it is ev-
ident that HR layers identify built-up areas in regions where LR do not
provide this capability. These regions are identified to be primarily
low to medium density rural areas beyond the extents of LR products.
As these landscape characteristics however mark the general nature of
disagreement between layers, map evolution can also be expected in
terms of precision for other image regions of lower densities: E.g.,
peri-urban areas, at the urban fringe, in low density inner-urban dis-
tricts or close to inner-urban spaces of unoccupied land. As the spatial
generalization of HR layer however, reduces the degree of site-
specificity in this analysis, it remains to be seen if these disparities

Table 5
Overall and landscape-specific statistics of inter-map agreement between HR layers and
MOD500.

GUF GHSL GUF GHSL
Overall Urban Rural Overall Urban Rural Overall Urban Rural Overall Urban Rural
Cologne  ERmin (%) 68.92 62.15 8828 60.78 5523  96.93 Cologne  ERpmin) (% 73.47 5452 9556 69.52 5445  94.15
T(ERmin) (%)  49.87 4874 6912 7822 67.43  78.85 T(ERmin) (%)  16.85 8.56  83.61 27.54 1400  95.05
Tuscany  ERpin (%) 79.71 7116 98,52  82.65 7457  98.89 Tuscany  ERpin (%) 96.33 82.05 96.20 90.05 80.97 98.68
T(ERmin) (%)  43.24 4295 97.82 64.82 64.79  98.44 T(ERmin) (%)  25.84 532  90.72 29.61 851 96.70
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translate to absolute accuracies with regard to reliable reference data in
subsequent analysis.

5.2. High resolution analysis — absolute accuracy assessment

The previous analysis has proven significant overall and landscape-
specific disparities between HR and LR settlement information. Howev-
er, the relative comparison does not reveal to what extent the various
products detect settlement features correctly. To obtain knowledge
about the absolute accuracy, especially for HR layers, we analyze statis-
tics computed from PIP-test. This is followed by the analysis of the se-
lected set of pixel-based accuracy metrics derived from overlay with
the building (BRef) and the settlement mask (BURef).

PIP-statistics displayed in Fig. 9 show that the HR settlement maps,
GUF and GHSL, paint a very complete picture of Cologne's building in-
ventory (900,871 buildings) capturing the lion's shares of 87% and 90%,
respectively. In contrast, they omit roughly one-third of the buildings
in Tuscany (364,544). These increased omission rates are most probably
related to the smaller sizes of settlements and stronger fragmentation in
this region. Nevertheless, these numbers are opposed by significantly
larger shares of unmapped buildings by GLOBC and MOD500. While
MOD500 captures at least close to half of the building centroids for
Cologne, more conservative GLOBC reaches only 25%. For the more
scattered settlement patterns of Tuscany both layers omit an even larger
share of buildings (~80%). These basic descriptive measures establish a
first impression regarding the completeness of the mapped settlement
pattern with regard to the core features of human settlements.

More robust and differentiated information about the accuracy of
the classification results can be retrieved from the extended set of
pixel-based accuracy measures presented as bar charts in Fig. 10. Over-
all accuracies displayed in Fig. 10a imply high accuracies and only insig-
nificant differences between all layers. With regard to BRef, layer-
specific accuracies lie well above 80% for Cologne and 90% for Tuscany
despite large differences in spatial resolution. As A, however, does not
respect class-specific errors, further descriptive statistics enable a
more differentiated assessment of the thematic maps' value. Sensitivity
(TPrate) and specificity (TN rate) give information about the complete-
ness, whereas precision (PPV) exposes the correctness of classifications.
Building footprints of the reference amount to very small shares of the
test sites' aerial extents, i.e., five percent for Cologne and one percent
for Tuscany. Considering these low prevalence rates, overall high de-
grees of specificity across sites constitute the general ability of each
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Fig. 9. Overall PIP-statistics for all layers under study.

approach to identify non-urban areas. In contrast, significant differences
arise between HR and LR layers from the examination of sensitivity.
While GUF and GHSL detect more than 77% of building pixels across
sites, GLOBC and MODIS paint a less complete picture of the building
stock with a TP rate in the range of 35% and 40%. This is in line with
the results from the previous PIP-analysis. Contrasting these still mod-
erate magnitudes of omission, it is obvious that all layers essentially
do not feature the capabilities to map individual building outlines cor-
rectly. Precision barely reaches 15% in Tuscany and just exceeds 20% in
Cologne testifying a high share of mapped pixels not belonging to the
building mask. This is due to the fact that all layers essentially define
built-up or settlement areas as aerial extents including spaces in be-
tween buildings. These findings translate to only poor to moderate clas-
sification accuracies in terms of K and F across test sites, whereby HR
layers perform slightly better. It is worth noticing that the improved
spatial resolution of HR layers barely reflects in K and F. Only TSS indi-
cates decisive differences in classification accuracy of approximately
36% between HR (TSS = 0.75) and LR (TSS = 0.39) layers averaged
across test sites. This is due to the fact that K and F respond to low prev-
alence by maximizing values for GLOBC and MOD500 when specificity
exceeds sensitivity (Allouche et al.,, 2006; Jeni et al., 2013). In contrast,
TSS is widely insensitive to prevalence.

With regard to the settlement mask (Fig. 10b), quantitative metrics
exhibit very similar orders and magnitudes in terms of sensitivity, spec-
ificity and overall accuracy as compared to the building mask. The spa-
tial generalization of the building reference to a settlement mask
(BURef), however, results in improved precision of the classifications,
especially for GUF and GHSL. In this regard, remaining over-
classification by GLOBC and MOD500 is naturally related to these layers'
coarse spatial resolution. For the GUF, errors of commission have been
found to mainly relate to false alarm in image regions featuring texture
characteristics similar to that of built-up areas such as rugged terrain
(Esch, Marconcini, Marmanis et al., 2014) or to the horizontal displace-
ment of strong backscattering signals detected as urban seeds next to
vertical structures (Taubenbock et al., 2011). In contrast, GHSL responds
in this to the spatial generalization of PANTEX accompanied by incorrect
commission of objects resembling built-up textures (e.g., excavations,
construction sites, etc.) (Wania, Kemper, & Tiede, 2014). Due to reduced
prevalence rates - ca. 12% for Cologne and 3% for Tuscany - differences
of accuracies between HR (K = 0.58; F = 0.42) and LR (K = 0.31; F =
0.24) layers now reflect also in K (AK = 0.17) and F (AF = 0.18) across
test sites. With regard to the HR settlement reference, GUF (F = 0.55; K
= 0.51; TSS = 0.72) and GHSL (F = 0.53; K = 0.48; TSS = 0.75) reach
moderate to substantial absolute accuracies. In contrast, GLOBC (F =
0.37; K = 0.28; TSS = 0.28) and MOD500 (F = 0.33; K = 0.27; TSS
= 0.34) do not exceed fair accuracies. This is mainly due to their coarse
geometric resolution resulting in an average 42%-difference with regard
to HR layers in terms of TSS. These results give clear evidence that HR
settlement layers feature significantly improved completeness and cor-
rectness. Beyond, the simultaneous assessment of the layers under test
with regard to both BRef and BURef enables a reverse exploration of each
HR layer's semantic definition. In this regard, GUF and GHSL draw a gen-
eralized outline of the spatial building distribution due to the stronger
correspondence to the settlement mask.

From previous analysis, we can assume that layer-specific accuracies
are very consistent across test sites. From these results, we move on to
the analysis of landscape-specific statistics incorporating GRUMP's
urban and rural classes into the analysis for spatial zoning (Fig. 11).
PIP-tests on the landscape level clearly reveal higher degrees of com-
pleteness for GUF and GHSL as compared to GLOBC and MOD500, par-
ticularly in the rural parts of the selected test sites. Although both HR
layers feature a slightly higher building share in urban areas, they still
capture more than 80% of all buildings in rural areas of Cologne
(249,910 buildings) and almost 50% in Tuscany (133,436). In contrast,
GLOBC and MOD500 show significantly lower shares in urban areas
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Fig. 10. Overall pixel-based accuracy measures for all layers under study compared to a) BRef and b) BURef (F, K and TSS are rescaled to 100%).

and almost entirely neglect buildings in rural areas. Their omission rates
constantly exceed 88% across sites. While, GUF and GHSL again show
high consistency, GLOBC presents more conservative estimates in
terms of building coverage as compared to MOD500. These results -
both analogies and differences - are well in line with our findings
from PR analysis.

We subsequently analyze pixel-based map accuracies at the land-
scape level for both test sites (Fig. 11). As the thematic and spatial rep-
resentations of the maps have been proven to correspond more closely
to the semantic definition of the generalized settlement mask (BURef),
we disregard the building mask (BRef) at this point. Naturally, we

again find moderate to substantial agreement for both GUF (F = 0.59; K
= 0.50; TSS = 0.68) and GHSL (F = 0.56; K = 0.46; TSS = 0.71) in the
urban domain. In this, they outperform the respective LR layers as their
advantageous spatial resolution allows more accurately tracing the spa-
tially detailed outlines of built-up areas as marked by higher sensitivity
and precision. This indicates decisive map evolution in areas located at
the urban fringe or close to inner-urban open spaces. Nevertheless,
both GLOBC (F = 0.38; K = 0.28; TSS = 0.30) and MOD500 (F =
0.38; K = 0.23; TSS = 0.33) perform significantly better than chance
manifesting their potential for global analysis of larger urban areas.
Maximum discrepancies, however, exist between HR and LR layers
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Fig. 11. Landscape-specific PIP-statistics and pixel-based accuracy measures for all layers under study for a) urban b) rural areas (F, K and TSS are rescaled to 100%).
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Fig. 12. GUF (top) and GHSL (bottom) as a function of building (BRef; left) and settlement density (BURef, right) displayed for both test sites at an aggregation scale of 200 m.

in the rural setting. Here, HR layers significantly exceed the geomet-
ric capabilities of existing LR products which are too coarse to detect,
and too generalized to delineate, small-scale fragmented settlement
patches. This is testified by significantly reduced sensitivity and pre-
cision of LR layers. In contrast, both GUF (F = 0.45;K = 0.44; TSS =
0.66) and GHSL (F = 0.44; K = 0.41; TSS = 0.64) exhibit only relatively
little performance loss compared to urban areas. Moderate to substantial
agreement found with regard to the reference underpin their extended
applicability in rural areas. This verifies our findings from Section 5.1 in
the way that regions of disagreement identified in PR analysis largely cor-
respond to correctly detected settlement areas by GUF and GHSL. These
areas have been traditionally neglected by GLOBC and MOD500. Conse-
quently, average values of F, K and TSS are below 10% for both LR layers.

5.3. Medium resolution analysis — pattern-based accuracy assessment

The previous results have underlined the enhanced capabilities of new
developments in global settlement mapping. However, these standard
accuracy assessments did not consider spatially altering structures
of urban, peri-urban and rural environments. To explore pattern-
based dependencies between the classifications and the physical set-
tlement structure, we present the results from two final absolute as-
sessments of GUF and GHSL that respect the physical variability of
the landscape pattern by the notations of (1) urban density and
(2) settlement patch size. When applicable, GLOBC and MOD500
again function as benchmarks.

(1) The first pattern-based assessment focuses on the relationship
between density metrics derived from the independent refer-
ence and the automatically-derived HR settlement layers.
Scatterplots in Fig. 12 display the correlations of density mea-
surements from GUF and GHSL against the observed building
(BRef) and settlement (BURef) densities at the empirically
found aggregation scale. As a functional descriptor, a linear re-
gression model is fitted to the point clouds. The quality of each
model and thus, the degree of correlation, is described by the co-
efficient of correlation r that quantifies the share of the real world
structural variability explained by the respective map.

From the scatterplots on the left side of Fig. 12 relating to BRef, it
can be generally retained that both layers significantly over-
classify real-world building densities. The approximation by the
linear regression lines shows increasing over-estimation with in-
creasing building densities when compared to the ideal trend
line that presents a theoretical maximum of 100% explained var-
iability. This pattern-based dependency is due to the layer-
inherent semantic definition of settlement areas that does not
comply with individual building outlines (see Section 5.2).
Once again, both layers perform considerably better for Cologne,
where more than 80% of the structural variability is explained by
GUF and 76% by GHSL. This is due to locational, morphological
and structural characteristics. The Cologne site features a highly
structured building pattern in its large-scale urban agglomera-
tion located in a flat region. In contrast, Tuscany exhibits a
more diverse and fragmented arrangement with fuzzy transi-
tions in a more rugged terrain facilitating the classification pro-
cess. Although both layers show significant over-classification
and quantitative inconsistencies, especially in high density cate-
gories (Table 6), r still reveals that both GUF and GHSL present at
least systematic first-level proxies for a two-class distinction of
high and low building densities.
The correlation with built-up or settlement densities derived
from BURef represented on the right-hand side of Fig. 12 implies
a more accurate representation of the structural variability by
GUF and GHSL. This is manifested by higher r values ranging be-
tween 0.67 and 0.87 across sites. Maximum values are again
found for Cologne. Mean densities in Table 6 endorse this finding
by more consistent orders of magnitudes of the mapped densi-
ties. Nevertheless, again reduced but explicit over-estimation is
found, particularly in the medium density range between 20%
and 80%. These are due to limitations in terms of precision iden-
tified for both GHSL and GUF in Section 5.2. This corresponds to
the findings of Taubenbéck et al. (2011) who evaluated
pattern-based accuracies for the GUF for a city region in
Indonesia. In contrast, both classification approaches work
more accurately in areas with extremely high or extremely low
densities. Thus, a clear pattern-based dependency is proven in
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Table 6
Trends of over-classification with regard to categorized building (BRef; top) and settlement (BURef; bottom) density classes by GUF and GHSL.
Reference Density (%) Area (km?) GUF density (%) GHSL density (%)
Cologne Tuscany Cologne Tuscany Mean Cologne Tuscany Mean
Building density (BRef) 0 5939 6902 1.67 0.89 1.28 291 0.88 1.90
>0-20 2996 2974 30.69 14.20 22.44 34.99 16.23 25.62
20-40 938 105 84.45 83.10 83.77 92.58 88.92 90.75
40-60 118 16 90.13 84.99 87.55 97.22 93.96 95.58
60-80 8 2 86.32 87.35 86.84 96.24 98.93 97.58
80-100 1 1 86.22 72.48 79.35 97.10 98.44 97.76
Settlement density (BURef) 0 5788 6734 1.57 0.85 1.21 2.78 0.82 1.80
>0-20 2166 2913 17.10 9.69 13.39 20.17 1143 15.80
20-40 758 208 52.62 60.37 56.49 59.37 65.44 62.40
40-60 632 93 75.72 80.99 78.35 84.46 86.84 85.66
60-80 548 43 88.68 89.81 89.25 95.97 95.13 95.55
80-100 108 9 93.68 91.20 92.44 98.41 98.76 98.59

(2)

the way that accuracies of GUF and GHSL are sensitive to built-up
density variations. Consequently, we can retain that both GUF
and GHSL hold - on a spatial aggregation level - the potential
for structural qualification of the built environment beyond bina-
ry formats.

In addition to the analysis of building and built-up densities, we
analyze the dependence of the classification results with respect
to the varying size of settlements at the object level. Beyond the
exploration of pattern-dependent characteristics of the classifi-
cations, we aim at a user-oriented quantification of accuracies
that can be expected with regard to a particular scale of analysis
that could be defined by a minimum settlement size. Fig. 13 a
displays patch size frequencies of all maps under study and
the reference normalized to each layer's total number of
patches. The abscissa uses an exponential scaling of patch
size bins to a base of two. In this, the minimum patch size of
one pixel (144 m?) corresponds to the geometric resolution
of BURef (12 m). For the ease of comparison the patch sizes
are further grouped into three patch size ranges using equal
intervals of the exponential domain. It can be seen that both
GUF and GHSL show frequency-size distributions very similar
to the reference with maxima in the lower patch size range
between 22 and 2° pixels (=500 m?>-5000 m?) and exponen-
tial decay approaching the abscissa with increasing patch
sizes. Only GUF features a second maximum of patches
consisting of single pixels, presumably isolated buildings or
false positives. In contrast, LR layers cover only the medium
and large patch size range due to their coarse geometric reso-
lution. Beyond, they show a trend of log-linear decay in line
with the recognized rank-size rule of city sizes (Potere &
Schneider, 2009).

Results of the evaluation on the patch level are presented in
Fig. 13b to d. The line charts show completeness (TP rate), cor-
rectness (PPV) and overall quality of the classification (F) plot-
ted against the range of patch size bins. In terms of
completeness (Fig. 13b), we find strong analogies between
GUF and GHSL as well as between GLOBC and MOD500. HR
layers exhibit a steady gain in completeness, i.e., the share of
reference patches at least partially detected, from small- to
medium-sized patches. They reach substantial agreement (TP
rate > 60%) at 2% pixels (=~2,300 m?) and perfect agreement at
the transition from medium to large patches (2!' pixels
=~ 0.3 km?). In contrast, LR source data of GLOBC and MOD500
do not enable the detection of most small- and medium-scale
settlements. Thus, they exhibit only low completeness

rates (<40%) up to a patch size that corresponds to their na-
tive spatial resolution (2° to 21° pixels). For larger patches,
completeness values slowly increase reaching substantial
agreement not until a size of 2'2 pixels (=~ 0.6 km?). Conse-
quently, perfect completeness is only reached for maximum
patch sizes.

Simultaneously, the analysis of correctness (Fig. 13c) reveals
information about the patch size-dependent precision of clas-
sifications. Again, both HR layers show very similar trends.
70% or more of all mapped patches consisting of only very
few pixels (<24 ~ 2300 m?) present, however, false positives.
This fact can be mainly attributed to misclassification and
partly to spatial mis-match between mapped and the refer-
enced patches. Consequently, low correctness is evident for
small settlements consisting of only a few buildings. Never-
theless, a strong gain in correctness is observed in the medium
patch size range approximating, and ultimately reaching,
100% for medium to large settlement sizes. In correspondence
with the frequency-size distributions (Fig. 13a), GLOBC and
MODS500 are naturally too generalized to correctly represent
small- to medium-sized settlements up to a size of 2° to 21°
pixels (=~70,000 m?-0.15 km?). Nevertheless, they still pos-
sess capabilities in mapping settlements larger than their
squared native spatial resolution in good correctness accord-
ing to the applied mutual overlap threshold.

The overall quality of each map with regard to patch size is
depicted in Fig. 13d by the course of F which is computed as
the harmonic mean of correctness and completeness. Thus,
the F-score presents a conservative measure of map quality.
Reflecting the previous findings, for all layers a distinct
pattern-based quality gain is observed with increasing
patch size. While HR maps feature distinct limitations in
terms of correctness for the range of smaller patches up to
24 pixels (~2,300 m?), they exhibit a decisive increase in
map quality in the medium patch size range, that GLOBC
and MOD500 naturally neglect. Substantial agreement
(F > 60%) with referenced patches from BURef is reached at
a size of 2° pixels (=~ 10,000 m?). This size corresponds to
an edge length 100 m of an idealized square patch. As GUF
and GHSL promote both higher degrees of sensitivity and
precision over the entire patch size range, this results in an
improved scale-dependent representation of spatially de-
tailed settlement patterns. This is particularly evident fore
medium to large patch sizes for which HR layers approach
map qualities of 100% at smaller magnitudes than LR
products.
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6. Summary & discussion

For the presentation and discussion of the main findings from multi-
scale cross-comparison it is referred to the research questions addressed
in Section 1 of this work:

(1). How and to which degree do new high resolution settlement
layers correspond to existing global products of lower geometric
resolution in a Central European setting?

Using PR curves to investigate the inter-map agreement between
new and existing urban maps, we find a distinct potential added value
in recent settlement mapping efforts. While pairs of HR and LR layers
moderately correspond in core, high density urban areas, we demon-
strate that GUF and GHSL clearly detect urban areas beyond the extents
of GLOBC and MOD500. Respecting landscape-specific differences of
the selected test sites we localize regions of strong map disagree-
ment predominantly in low and medium density, rural and peri-
urban areas. These have so far been neglected by global maps due
to their coarse geometric resolution. Based on this finding, GUF and
GHSL can further be expected as potentially more accurate in other
low density spaces of urban environments (e.g., areas at the urban
fringe, inner-urban low density spaces, etc.) — both in terms of pre-
cision and completeness. Results from this relative map comparison
give a profound understanding of the disparities between new HR
and existing LR settlement maps.

(2). How accurate are different — high and low resolution - global
geo-information layers in absolute terms regarding the representa-
tion of complex settlement features and their spatial configuration
in Central Europe?

We define settlement areas by spatially two explicit features of these
environments, i.e., buildings and built-up areas. From absolute pixel-
based accuracy assessment and PIP-tests with regard to the building
mask, we find that GUF and GHSL feature significantly improved com-
pleteness in terms of mapping the spatial buildings distribution. Never-
theless, they generally lack the capabilities to map outlines of individual
buildings due limitations in terms of precision. Although highly re-
solved, they rather paint a generalized picture of the spatial building
configuration that encompasses structured built-up areas with en-
hanced spatial detail. This strengthens our understanding of these
novel products' semantic definition. In contrast, GLOBC and MOD500
feature a far more generalized spatial representation incorporating fur-
ther aerial features such as intra-urban spaces and two-dimensional im-
pervious surfaces. In consequence, when assessed against the
settlement mask, both HR layers naturally greatly outperform LR layers
marked by substantial agreement with the reference. Although both
GUF and GHSL are prone to quantifiable layer-specific errors of com-
mission, improved accuracies relate to both increased sensitivity and
precision in terms of mapping the small-scale spatial complexity of
the settlement pattern. In contrast, LR layers are too generalized to
correctly delineate the complex, irregular outlines of larger urban
areas, and too coarse to completely detect smaller scale human set-
tlements. In this context, measures insensitive to low prevalence
such as TSS have been found to give a more robust indication of accu-
racy differences.

(3). How does the accuracy of these layers vary for structurally dif-
ferent areas, i.e., urban versus rural landscapes, in Central Europe?

By the application of landscape-specific PIP-tests and pixel-based ac-
curacy assessments with regard to the settlement reference, we spatial-
ly differentiate results for urban and rural landscapes. In this, the
advanced capabilities of HR settlement maps become more evident
than before. While existing LR products generally allow for the

delineation of larger cities in their correct dimension and a spatially
generalized form, they are too coarse for applications in rural areas.
Confronting these limitations, also GUF and GHSL exhibit quantifiable
weaknesses in terms of sensitivity and precision in these regions.
These, however, amount to an only slight reduction of overall accuracies
as compared to urban areas manifested in moderate to substantial
agreement in terms of K, F and TSS. Taking into account that GLOBC
and MOD500 almost entirely neglect settlements in rural areas, high
consistency between urban and rural areas of the new HR base maps
impressively underline their extended spatial applicability. Beyond
their increased completeness in rural areas, they were also found ad-
vantageous as they promote higher precision in delineating complex
outlines of larger urban areas.

(4). Does the accuracy of global settlement layers show spatial vari-
ation with regard to the physical configuration of human settle-
ments, i.e., size or density, in Central Europe?

Ultimately, we explore the influence of physical pattern variations
on the classification results of both GUF and GHSL. First, we find that
both layers significantly over-estimate true building densities and
thus, only allow for general binary density separation of the settlement
fabric. This observation corresponds to our findings from pixel-based
accuracy assessment and originates from the semantic definitions of
GUF and GHSL. In contrast, built-up or settlement densities are repre-
sented quite consistently by both layers which is manifested in strong
correlations between the maps and the reference. Although we find sig-
nificant over-estimation for medium magnitudes, a clear pattern-based
dependency with regard to built-up densities is proven. Thus, a signifi-
cant added value of GUF and GHSL lies in the structural qualification of
settlement configuration beyond binary formats at a spatial aggregation
scale. These results may provide useful information with regard to con-
tinued efforts in classification optimization on a regional scale.

Secondly, we explore pattern-dependent classification differences of
GUF and GHSL with regard to the size of settlement patches. The scale-
dependent evaluation of the thematic quality clearly reflects the per-
spectives on completeness and correctness with regard to patch sizes.
All layers depict a pattern-based accuracy gain with increasing patch
size. For smaller patch sizes that are exclusively existent in HR maps,
these layers still adhere distinct limitations in terms of precision. Never-
theless, they clearly improve the scale-dependent representation of the
settlement pattern marked by a clear shift of accuracies from large to
medium- and small-scale patch sizes due to significantly higher degrees
of completeness as compared to GLOBC and MOD500. This is manifested
in a strong gain in map quality exceeding substantial agreement to the
reference at a patch size of ca. 10,000 m?.

The presented findings clearly testify the decisive advancements of re-
cent efforts in global human settlement mapping. In general terms,
GUF and GHSL exhibit significant improvements in terms of complete-
ness, precision and accuracy with regard to existing lower resolution
products. Increased sensitivity of the new base maps promotes a more
complete representation of the settlement pattern, especially in rural
areas. On the other hand, improved precision adds to a more correct de-
lineation of the complex form of small-scale settlement characteristics.
In this, the high consistency of accuracies between urban and rural
areas of the new base maps is especially noteworthy. Beyond, we find
quantifiable accuracy variations with regard to spatially altering struc-
tural characteristics such as density and settlement size. It becomes
clear that HR layers possess additional structural information on an ag-
gregated spatial scale that may even allow for a differentiated qualifica-
tion of the built environment beyond binary formats. Although relying
on naturally very different source data (radar vs. optical), it is especially
important to note that both GUF and GHSL feature only insignificant dis-
parities throughout the analysis. In fact, HR layers show the highest de-
gree of correspondence among all pairs of layers in terms of Kappa
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(K = 0.63). This consistency additionally strengthens our confidence as-
sociated with these new maps resulting from independent initiatives.

In the context of this paper, it must be underlined that the presented
results only give representative evidence for highly structured urban-
ized landscapes that can be found e.g., in Central Europe. Although
these sites feature considerable physical variability, settlement charac-
teristics vary to a much greater degree around the globe. As a conse-
quence, accuracies may differ considerably in correspondence to
differences in building material, construction type, settlement structure
and physical surrounding. Some independent studies focusing on site-
specific settings of other cultural areas have already shown that classifi-
cation accuracies of HR layers can be significantly lower. For the GHSL,
these are e.g., arid regions in Africa that feature bright open soil surfaces
and scattered vegetation resulting in higher probabilities of false alarm
(JRC, 2012). In turn, the GUF information extraction can feature weak-
nesses when applied to areas of sparse and scattered settlement struc-
tures with a weak vertical expression, particularly in terms of
confusion with other vertical elements such as trees or high river
banks (Esch et al,, 2013, 2010). An independent investigation by DLR re-
vealed that although Kappa statistics did not exceed agreement of 20%
in a rural setting of sub-Saharan Africa, GUF and GHSL exclusively detect
shares of the small-scale, fragmented settlement structures among the
pool of global settlement maps. Further region-specific validation stud-
ies are essential to confirm these findings and present comprehensive
knowledge on the accuracy variation of HR settlement information
around the globe. The increasing availability of large inventories of HR
validation data from open digital sources will ease the way to a stronger
understanding of each map's strengths and weaknesses in both space
and time.

Ultimately, it should be acknowledged, that within this work, we
promote the comparison of datasets that rely on different specifications
in terms of their geometric resolution and their inherent semantic def-
initions of settlement areas. One might come to the conclusion that
these conceptual differences hamper comparison of the respective
maps, especially the assessment of LR layers with regard to high resolu-
tion reference data. In contrast, we consider these base conditions as the
main determining factor for exploring disparities of past and present
mapping efforts and reasonably respect them during the interpretation
of the obtained results.

7. Conclusion

It has been seen shown that the design of meaningful accuracy as-
sessment framework needs to consider various components of map ac-
curacy beyond traditional pixel-based approaches to paint a complete
picture. In this regard, we present a comprehensive and systematic
cross-comparison framework that integrates both recently initiated
high, and the best known low resolution settlement products of global
coverage. With regard to appropriate reference data available for two
large-area test sites of varying landscape character in Central Europe,
we explore multiple aspects of map accuracy. These include relative
inter-map agreement between HR and LR layers, absolute overall and
landscape-specific accuracies as well as pattern-dependent classifica-
tion differences. In general, we find significantly improved mapping ca-
pabilities of the new base maps in terms of spatial completeness and
precision, particularly in areas naturally neglected by LR products.

With regard to the immense dynamics of global urban transforma-
tion and the evolution of new forms and patterns of human settlements,
an understanding of the strengths and weaknesses of global settlement
information is of crucial importance when applying these datasets. The
presented work gives strong evidence that the development and appli-
cation of HR datasets will decisively add to our understanding and man-
aging of the manifold aspects of worldwide urbanization on our planet.
In this, products such as GUF and GHSL will extend their applicability
way beyond global analysis of core urban areas. In fact, they lay the
foundation for monitoring the growth of cities as well as the regional

evolution of peri-urban and rural settlement patterns in high spatial de-
tail, independently and at global scales.
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