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Abstract
We analysed the sensitivity of a Case-2 bio-optical model where the water reflectance is 
computed as a function of concentrations of three optical water quality parameters (WQPs) 
of three Italian lakes (Garda, Mantua and Trasimeno) and their specific absorption and 
backscattering coefficients. The modelled reflectance is computed based on the spectral 
characteristics of three optical sensors, on-board Landsat-8, Sentinel-2 and Sentinel-3. The 
variance-based analysis was able to quantify the lake-dependence for all (50,000 runs) the 
simulated reflectance. The results confirmed that Sentinel-3 water reflectance is sensitive 
to WQPs in all the trophic conditions investigated.
Keywords: Sensitivity analysis, bio-optical model, water quality parameter, inland 
water.

Introduction
Multi- and hyper- spectral remote sensing provides a robust analytical tool to analyse 
temporal changes in water quality over wide areas by studying the interaction between 
electromagnetic radiation and the water body [Brando et al., 2003, 2009; Giardino et al., 
2007; Bresciani et al., 2012a,b; Olmason et al., 2013]. This interaction is mainly due to 
pure water and the optical active parameters such as Chlorophyll-a (Chl-a), Suspended 
Particulate Matter (SPM), Coloured Dissolved Organic Matter (CDOM) which control the 
extinction of radiation in the water column [Lindell et al., 1999; Pasterkamp et al., 1999; 
Dekker et al., 2001; Babin et al., 2003; Strömbeck et al., 2001]. The inversion of bio-
optical modelling is a well-known method to retrieve these parameters in inland and coastal 
waters [Dekker et al., 1995; Lee et al., 1999; Cracknell, 2001; Brando and Dekker, 2003; 
Dall’Olmo et al., 2005; Odermatt et al., 2012]. In the forward mode, the reflectance spectra 
simulated by bio-optical models depend on [e.g. Pierson and Strömbeck, 2001; Kutser et 
al., 2005] the concentrations of water components (e.g., Chl-a, SPM and CDOM), on the 
specific inherent optical properties (SIOPs), and on the downwelling light field. The bio-
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optical model simulation takes into account the wavelength-dependence of the reflectance 
spectra, which can be described according to the spectral channels of satellite sensors.
The latest satellite missions, such as Landsat Data Continuity Mission (LDCM) and 
Sentinels 2 and 3 [Donlon et al., 2012; Drusch et al., 2012] that carry new sensors, will 
enhance the research and monitoring of water environments by their temporal and spatial 
coverage, as well as the accuracy of retrieving water variables by their spectral and spatial 
resolution [Malenovsky et al., 2012].
Pahlevan et al. [2014] analysed the radiometric performance of Operational Land Imager 
(OLI), on board Landsat 8 [Irons et al., 2012], for water quality applications [e.g., 
Vanhellemont and Ruddick, 2014].They identified local gain factors for radiance and 
reflectance to improve the retrieval of in-water products by considering in situ measurements 
and other ocean colour satellites as a benchmark. The Ocean and Land Colour Instrument 
(OLCI), an improved continuation of Medium Resolution Imaging Spectrometer (MERIS) 
[Donlon et al., 2012], on-board Sentinel-3, is a useful satellite for monitoring waters 
environments which leaves the moderate spatial scale unchanged (300 m) [Aschbacher 
et al., 2012; Malenovsky et al., 2013; Palmer et al., 2014]. The Multi Spectral Instrument 
(MSI) on board Sentinel-2 has fewer bands and a wider bandwidth than OLCI [Drusch 
et al., 2012]. It thus provides high-resolution optical images for marine biodiversity and 
habitat analysis in coastal and inland areas [Malenovsky et al., 2012].
The sensitivity evaluation of models to retrieve the concentrations of water quality 
parameters (WQP) when applied to the spectral configurations of different sensors (and 
water types) fully exploits data gathered from these new satellite missions. The sensitivity 
analysis (SA) investigates the uncertainty of the input factors compared to the uncertainty 
in the model response [Saltelli et al., 2004]. The SA procedures are classified into three 
main groups: one-factor-at-a-time (OAT) [Morris, 1991], regression-based [Manache and 
Melching, 2008] and variance-based methods [Sobol, 1993; Saltelli et al., 2000, 2010; 
Lilburne et al., 2009].
The OAT method applied to the bio-optical model works by varying one WQP at a time 
and constraining the other variables [Uferman and Robinson, 2002]. Hence, the sensitivity 
index of a specific parameter depends on the central values of the other parameters, and the 
interactions among variables are omitted [Saltelli et al., 2006].
Garver and Siegel [1997] applied a linear regression sensitivity method to study the time 
series of IOP measurements of the Sargasso Sea in order to determine the best IOP model 
configuration. The definition of partial derivatives of the quasi-analytical algorithm (QAA) 
[Lee et al., 2002] enabled the uncertainties of the derived IOPs and the relative importance 
of the analysed parameters to be investigated [Lee et al., 2010]. A variance-based method 
was also applied to the Hydrolight [Mobley, 1994] simulated spectra of above-water remote 
sensing reflectance (Rrs(λ)) demonstrating the sensitivity of the semi-analytical inversion 
model to both the concentrations of water constituents [Duarte et al., 2003] and to geometric 
and bottom effects [Gerardino-Neira et al., 2008].
In this work, a variance-based procedure [Saltelli et al., 2010] was applied to study the 
sensitivity of a bio-optical model which simulates the water reflectance of three Italian 
lakes - Garda, Mantua and Trasimeno - with different trophic conditions by analysing the 
main effect of single WQPs and their interactions. The water reflectance was simulated 
according to a four-components model defined in Brando and Dekker [2003], by considering 
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the SIOPs typical of each lake and the spectral band definitions of Landsat8, Sentinel-2 and 
3, which can be potentially applied for lakes [Irons et al., 2012; Malenovsky et al., 2012; 
Vanhellemont and Ruddick, 2014; Lobo et al., 2014].
In the first part of the paper we describe the three Italian lakes used as test areas. We then 
outline the bio-optical analytical model used to simulate the water reflectance and to run 
the sensitivity analysis. Finally, the results are presented for the sensitivity indices of water 
reflectance for three water types/trophic conditions, according to the new generation of 
multi-spectral sensors.

Materials and methods
Study area
Lakes Garda, Mantua and Trasimeno were selected as representative of different trophic 
levels; for these lakes long-term data of in situ measurements on water quality characteristics 
are also available. The main morphological and trophic characteristics are summarized in 
Table 1. Lake Garda is the largest lake in Italy, located in a subalpine region and characterized 
by deep water. It is an important tourist site with oligo-mesotrophic waters and occasional 
cyanobacteria blooms during the fall, according to recent limnological studies [Salmaso 
and Mosello, 2010]. In Mantua the lakes are formed by three shallow fluvial lakes (fed by 
the river Mincio, the emissary of Lake Garda). Located in the centre of the Padana plain, 
their water status is strongly affected by pressure both from agriculture and industry. Excess 
growth of macrophyte vegetation and dystrophic water conditions makes the waters of 
the Mantua lakes very productive; the most intense phytoplankton blooms, characterized 
by high biomass in surface, occur in the summer [Bresciani et al., 2013]. The third test 
area is Lake Trasimeno, the largest in central Italy, characterised by shallow waters with 
recurrent wind-induced resuspension of bottom sediments and increasing water turbidity. A 
high amount of nutrients [Cingolani et al., 2005] induced by agricultural and zoo-technical 
activities, combined with meteorological conditions and tourism-related activities keep the 
level of the lake in between the meso- and eu-trophic status.

Table 1 - Study area.

Lake Surface 
(km2)

Latitude 
(North)

Altitude 
(m)

Average/max 
depth (m)

Trophic 
status Reference

Garda 370 45°37’ 65 136/346 Oligo-
mesotrophic

Giardino 
et al., 2007

Mantua 6.2 45°09’ 18 3.3/15 Eutrophic/
Distrophic

Bresciani 
et al., 2013

Trasimeno 124 43°08’ 258 4.5/6 Meso-
Eutrophic

Giardino 
et al., 2014

In situ data
In situ data (WQPs and SIOPs) used to simulate water reflectance and to perform the 
sensitivity analyses rely on data gathered from recent fieldwork in the study areas (see Tab. 
2). The data were all collected during summer (including previous and subsequent weeks), 
so as to be able to describe the usual conditions that can be found in the three lakes at 
this time of the year. Overall, WQP measurements were more numerous than SIOPs (e.g., 
Chl-a concentrations for Lake Garda) because WQPs were also achieved by traditional 
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limnological campaigns, where the optical properties were not measured. For Lake Garda, 
in situ measurements were collected between July and October [Bresciani et al., 2012a and 
references therein] over 11 years; for the Mantua lakes, the samples were collected during 
the summers of 2007, 2008, 2010 and 2011 [Bresciani et al., 2013 and references therein]; 
for Lake Trasimeno in situ data were collected between May and September 2008 and 2009 
[Giardino et al., 2014 and references therein].
The same methods were used to collect water samples and to perform the subsequent 
laboratory analysis on WQPs. The water samples were collected in the euphotic layer of 
the water column, water samples were filtered by GF/F filters of 47 mm, and the material 
retained was analysed by applying a spectrophotometric method adopting acetone for Chl-
a extraction [Lorenzen, 1967]. SPM measurements were performed by the gravimetric 
method [Van der Linde, 1998] and CDOM was measured by spectrophotometry at 440 nm 
[Babin et al., 2003]. Figure 1 shows the WQPs ranges over the three test sites.

Figure 1 - WQP box-plot comparison of the three sites in semi-logarithmic scale. Green refers to 
Chl-a values, blue the SPM and yellow the CDOM. Red and blue asterisks are the average and 
extreme values of distributions, respectively.

For the SIOPs the following methods were applied in each lake. The absorption spectra 
of particles retained on the filters ap(λ), were obtained using the filter pad technique 
[Strömbeck and Pierson, 2001] and were calculated according to Babin et al. [2003]. 
Filters were then treated with acetone to extract pigments and the absorption spectra of 
these bleached filters were measured to assess tripton (aTR(λ)), the inorganic particulate 
matter suspended in bodies of water. The absorption spectrum of phytoplankton aph(λ) was 
derived by subtracting aTR(λ) from ap(λ) spectra. The spectrophotometric determination and 
processing of the absorption spectra of CDOM, aCDOM(λ), were derived according to Babin 
et al. [2003]. The backscattering coefficients of the particles (bbp(λ)) were derived from 
HydroScat-6 measurements [Maffione and Dana, 1997].
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Table 2 - Number of samples collected per lake and their relative sampling periods.

Lake
Water quality parameter Inherent Optical Properties

Sampling period 
Chl-a SPM CDOM absorption backscattering

Garda 493 131 51 20 20 July-October
(2002-2003-2013)

Mantua 43 31 24 38 5 Summer 2011

Trasimeno 38 38 38 31 6 May - September 
(2008-2009)

SIOP data were spectrally resampled according the spectral response (Fig. 2) of Landsat 8 
[Barsi et al., 2011] and satellite band definitions of the central wavelength and bandwidth 
for Sentinel-2 and Sentinel-3 [Drusch et al., 2012; Donlon et al., 2012] in the range of 400-
740nm, which is sensitive to water reflectance (Fig. 3).

Figure 2 - Bandwidth for Landsat 8, and central wavelength and width for Sentinel-2 and Sentinel-
3 sensors. Red refers to all bands adopted during the simulations in the range 400-740 nm. [Barsi 
et al., 2011; Drusch et al., 2012; Donlon et al., 2012].

Figure 3 - SIOP values in the three study areas.
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Bio-optical analytical modelling
The bio-optical model used in this study was similar to previously published Case-2 
models [Brando and Dekker 2003; Dekker 2001; Pierson and Strömbeck, 2001], where 
the subsurface irradiance reflectance R(0-, λ) is calculated as a function of absorption and 
backscattering coefficients and of the shape of illumination light field according to [1]:

R f
b

a b
b

b
0 1−( ) = ( ) ⋅ ( )

( ) + ( ) [ ],λ λ
λ

λ λ

With:
bb(λ) = bbw(λ)+bbp(λ) = bbw(λ)+[SPM]·bbp

*(λ)
a(λ) = aw (λ)+ap(λ)+aCDOM(λ) = aw(λ)+[Chl-a]·a*

ph(λ)+[TR]·a*
TR(λ)+[CDOM]·a*

CDOM(λ)

bb(λ) is the spectral total backscattering coefficient, a(λ) is the spectral total absorption 
coefficient and f(λ) is a function of the ratio of the average cosine of the downwelling light 
to that of the upwelling light [Mobley, 1994].
The bb(λ) e a(λ) coefficients are given as a sum of the contribution of water and the i-th component. 
Each bbi(λ) and ai(λ) are defined by multiplying the concentrations of each single WQP ([Chl-
a], [CDOM], [SPM]) by its relative SIOPs. aw(λ) and bbw(λ) are absorption and backscattering 
contributions of pure water. The concentration of tripton [TR] was retrieved from [Chl-a] and 
[SPM] according to Brando and Dekker [2003] and Giardino et al. [2007] [2]:

TR SPM 7 Chl a[ ] = [ ] − −[ ] [ ]0 0 2. ·

Sensitivity analysis
The SA of the above analytical model was performed with the algorithm [Zambrano-
Bigiarini, 2013] based on the variance method described in Saltelli et al. [2010]. The 
algorithm is implemented in the open-source software package SIMLAB developed at the 
Joint Research Centre [Saltelli et al., 2004].
The variable values are produced by the quasi-random number generator [Dutang and 
Savicky, 2013] covering the being set determined from the available in situ measured 
WQPs. The sample distribution is assumed as normal with a confidence level of 68% to 
ensure an interval large enough to cover the real variability of all the WQP concentrations. 
To represent all the input combinations, the quasi-random sequence of each variable is 
combined with the other variables; at first, two sets of input values are sampled producing 
two matrices (A and B). To complete the possible permutations, a third matrix is obtained 
by the radial sampling of values by matrixes A and B [Saltelli, 2002].
The SA of the model output (Y=f(x)) to the variables involved (x=(x1,….,xi,…..xk)) and 
their coupling is performed by varying each i-th variable (from 1 to k) separately, first order, 
fi(xi), and together, second order fij(xi, xj) [3].

R f x f f x f x x fi i
i

k

ij i j
j ii

( , ) ( ) , ... , ,...,0 0
1

1 2− = = + ( ) + ( ) + +
= >
∑ ∑∑λ kk kx x x1 2 3, ,...,( ) [ ]
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Firstly, two WQPs are constrained and the third variable is the variable of the model. The 
runs then involve two variables with the third WQP constrained. This running mode analyses 
the sensitivity of the model to each variable and to each variable-coupling. The single output 
represents the simulated water reflectance of which the total variance (V(Y)) is composed of 
single and coupling contributions of the quasi-random sequences of the variables, according 
to the following general equation expressed for a specific wavelength [4]:

V Y V V V Vxi x xi j x x xi j m ki i j i j m
( ) = + + +…+ [ ]∑ ∑ ∑< < < …12 4

V(Y) is the simulated reflectance variance, Vi is the single contribution to the total variance 
due to the i-th variable (xi) and, in our case, represents the sensitivity of the output model, 
R(0-, λ), to the specific WQP. The coupling contribution, Vxixj, is due to the two-variable 
(i-j) interaction. The k index is the number of variables (model input) and n the number of 
runs [Saltelli et al., 2010; Lilburne and Tarantola, 2009].
With the based-variance method, the sensitivity indices can be retrieved. The single 
contribution is described by the main effect (Si), representing the first order of sensitivity 
index determined for each variable [5]:

S
V

V Yi
xi= [ ]

( )
5

If the sum of the main effects of the WQP is less than 1, the output variability is partly due 
to the coupling variables. The orders higher than one represent the variable interactions (V12 
+ V13 + V23 + V123). Where there is no interaction in the model, these terms will be close to 
0. The total sum of all sensitivity indices is 1 [Saltelli et al., 2010] [6].

1 6= + + +… [ ]∑ ∑∑ ∑∑∑> >>
S S Sii ijj ii ijmm jj ii

The total sensitivity index (Sti) is the sum of all sensitivity indices involving the i-WQP. 
For instance, in the case of three parameters, the total indices are St1 = S1+S12 + S13 + S123, 
St2 = S2 + S12 + S23 + S123 , St3 = S3 + S13 + S23  + S123. Sti describes the single and coupling-
variable contribution of each WQP to the model response. The Sti-Si measures the coupling-
variable contribution per i-th variable, the higher this value, the more the coupling-variables 
contribute to the output.
To estimate Si and Sti for all the parameters, the total number of model runs (n) depends on 
the sample size (N) and variable amount (k) according to the Equation [7]:

n N k 2= +( )( ) [ ]* 7

The Sobol’ sensitivity analysis also provides the most significant interactions between pairs 
of variables by calculating the second order sensitivity indices (Sij) [Saltelli et al., 2006].
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Results
The bio-optical model simulation was performed on 10000 samples (N) per WQP (i.e. 
Chl-a, SPM and CDOM) obtaining 50000 simulated reflectances (n) per lake, sensor and 
sensitivity indices, according to Eq. [7].
Focusing on simulated reflectances, according to the spectral configuration of OLI, OLCI 
and MSI for the three lakes, Fig. 4 highlights that reflectance values, have peak in the green 
region (about 550 nm), which is typical in turbid productive waters, such as those in the 
Mantua and Trasimeno lakes [Bresciani et al., 2013; Giardino et al., 2014]. In Lake Garda 
the simulated spectra are lower due to the lower concentrations of SPM of Lake Garda 
compared to Mantua and Trasimeno.
The lower reflectance in the blue (± 0.03) is due to Chl-a and CDOM. This shape is clear 
for the Sentinel-3 sensor, which has four bands in the blue region from 400 to 490 nm (Fig. 
4). The OLCI sensor on board Landsat 8, which has two bands in the blue, is also able to 
capture this behaviour. In addition Sentinel-2 holds great potential for assessing Chl-a in 
productive turbid waters by considering the last two bands at 705 and 740 nm [Gitelson et 
al., 2007].

Figure 4 - Simulated reflectance and relative variation in the study areas according to the spectral 
characterization of sensors.

Once the variability of the modelled reflectance in different inland water environments 
had been assessed, the model variability due to changes in these environmental conditions 
was analysed. The SA of the analytical model highlighted the contribution of each WQP 
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considering the status of the lake and wavelengths. The simulated reflectances considering 
the Landsat 8, Sentinel-2 and Sentinel-3 sensors had different sensitivity indices due to 
their band spectral definitions.
The quantitative assessment of the SA procedure provided the main effects and coupling 
effects of the three WQPs per band in all the lakes studied (Fig. 5). The stacked area plot 
in Figure 5 shows the cumulated total of main effects and interactions (see Sensitivity 
Analysis section) vs. wavelengths in the lakes and sensors studied (the retrieved Sti-Si is 
not discussed in this paper because the average value is close to 0, due to the overall low 
levels of interaction between the WQPs).

Figure 5 - Stacked area plot of the cumulated total of main effects and interactions vs. wavelength 
in lakes and sensors studied.

The sensitivity indices of Lake Garda (Fig. 5) show that values of main effect of CDOM are 
high in the bands of the blue region for all sensors, where CDOM has a strong absorption 
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coefficient [Babin et al., 2003], and small variations in concentrations show a change in 
water reflectance. SChl-a has an important weight in the range 442 - 510 nm with higher 
values than 25%. In this range, at 490 nm, Giardino et al. [2007] identified the maximum 
variation in the first derivative of reflectance due to Chl-a variation. In terms of longer 
wavelengths, the bio-optical model is sensitive to variability in SPM with values of Si 
increasing up to the peak in the range from 550 to 620 nm, whereas the sensitivity of two 
other parameters has the opposite behaviour. These results are also similar to a previous 
analysis in the area with Hyperion [Giardino et al., 2007]. Low coupling effects are mainly 
under 5% of total variance (Fig. 5).
In Lake Trasimeno, the SPM main effect is generally high according to trophic conditions 
[Giardino et al., 2010], in particular moving toward the red region for all the sensors. This 
result highlights how the SPM variability affects water reflectance. Indeed SPM has a spatial 
pattern concentration, which consequently causes different spectral responses of the water 
reflectance [Giardino et al., 2014]. In all bands, the sum of the main effects of WQPs in Lake 
Trasimeno are always lower than 100%, which means that there are coupling effects (4-6%). 
CDOM and SPM are dominant variables in the coupling effect over the first part of the 
spectrum, while moving towards the red bands, this effect is mostly due to SPM and Chl-a.
In case of eutrophic waters such as the lakes of Mantua, the main effect of Chl-a has a 
higher averaged sensitivity index than in Garda and Trasimeno in the first bands (25%). 
This then falls to 708 nm for Sentinel-2 and Sentinel-3 runs. The values of the main effect 
of CDOM are negligible in all bands. Similar to Lake Trasimeno, the sum of the main WQP 
effects in the Mantua lakes is never 100%, but always close to 96%.
As expected the model is sensitive to the WQP variations as a function of the trophic 
condition of the lakes. In all the channels and sites, the SPM has a strong influence in 
modelling the water reflectance.
The contribution of Chl-a in the simulated reflectance of Mantua (Fig. 4) is clear in SChl-a 
(Fig. 5) calculated in the red bands of Sentinel-3. This is consistent with the Gitelson Indices 
[Gitelson et al., 2007] adopted by Bresciani et al., 2013 who analysed the variability of 
Chl-a in the same spectral range. In Garda and Trasimeno, Sentinel-2 and Landsat 8 had 
comparable main effects in terms of Chl-a, CDOM and SPM, particularly in the first part of 
the spectrum (Fig. 5).
In addition to the WQP sensitivity analysis, the sensitivity analysis for the SIOPs was 
also performed for the three lakes. The normalized RMSD (root-mean-square-deviation) 
between the water reflectance simulated with maximum and minimum SIOP values was 
54% in Garda, 23% in Trasimeno and 32% in Mantua. The variance-based procedure 
considering different SIOPs analysed the variability of the main effects of the variables 
(WQPs) depending on the trophic status. The average results are summarized in Table 
3 considering all sensors. Figure 6 shows the variation in the main effects of the WQPs 
obtained with total environmental variability of the SIOPs considering the Sentinel3 sensor. 
In the spectrum, CDOM and Chl-a had more variability compared to SPM up to 550nm, 
whereas with longer wavelengths, the SPM main effect variation is affected more by SIOP 
variation. The CDOM and SPM main effects are the most sensitive to variations in SIOPs 
in Lake Garda at 400 nm, with changes in values up to 19%, while their average variability 
along the spectrum is 9% (Tab. 3). In Trasimeno and Mantua, the main effects of Chl-a are 
the most sensitive with a variation up to 17% and 13%, respectively.
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Table 3 - Averaged variations in main effect for each WQP and sensor.
S2-MSI S3-OLCI L8-OLI

Chl-a SPM CDOM Chl-a SPM CDOM Chl-a SPM CDOM

Garda 6% 7% 4% 6% 9% 9% 5% 7% 5%
Trasimeno 14% 7% 8% 13% 8% 9% 17% 9% 10%
Mantova 7% 7% 1% 13% 10% 3% 9% 8% 1%

Figure 6 - Main effect variation considering the total environmental range of SIOPs (* refers to the 
minimum; the point refers to the average, and + to the maximum) for Sentinel3 in the three lakes.

Conclusions
This work describes the spectral sensitivity of the new remote sensing sensors to the WQP 
using the water reflectance simulated by analytical modelling applied to three Italian lakes, 
describing different trophic conditions. The lakes are Garda, Trasimeno and Mantua, which 
are characterized by different biophysical properties, concentration ranges of water quality 
parameters and bio-optical parameters. The sensitivity analysis presented in this study 
and applied to the forward analytical model defines the contribution, both separately and 
combined, of CDOM, SPM, Chl-a to water reflectance simulation in terms of main effects 
and interactions.
The results highlight the important role of SPM in describing water reflectance in the three 
lakes, except in the blue spectral region where Chl-a and CDOM also have significant 
main effects. The quantitative definition of variable sensitivity indices may be another 
way to describe lacustrine apparent optical properties. Sentinel-2 seems to show the best 
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agreement between spatial resolution, spectral definition and sensitivity to variations in three 
WQPs. The sensitivity results of Sentinel-2 and Landsat 8 in Lake Garda and Trasimeno 
demonstrate the effectiveness of these sensors for Chl-a analysis (Fig. 3) in terms of meso-
eutrophic and oligotrophic status. In addition the combined use of these two sensors may 
improve the revisit time of the study area with a good spatial resolution (about 30m) and 
a comparable sensitivity. On the other hand, the higher spectral resolution of Sentinel-3 
makes this sensor more sensitive to variations in WQPs in the forward analytical model in 
the trophic conditions studies.
These results provide important information relating the sensitivity of the new generation 
sensors to different trophic statuses. In forward analytical modelling, the sensitivity indices 
of simulated reflectance depend on the spectral response function of the sensor, as shown 
in Figure 3. This sensitivity classification is useful in terms of the efficiency of a sensor in 
retrieving water quality parameters (WQP) through inversion bio-optical modelling.

Acknowledgements
This work was undertaken as part of the CLAM-PHYM Project, funded by the Italian Space 
Agency (ASI, contract No. I/015/11/0). The study was also cofunded by the European 
Community’s Seventh Framework Programme (FP7/2007-2013, grant agreement n° 606865, 
INFORM project). We are grateful to Mauro Musanti and Erica Matta (CNR-IREA) for the 
technical support. We would also like to thank the anonymous reviewers whose comments 
helped to improve the manuscript.

References
Aas E. (1987) - Two-stream irradiance model for deep waters. Applied Optics, 26: 2095-

2101. doi: http://dx.doi.org/10.1364/AO.26.002095.
Aschbacher J., Milagro-Pérez M.P. (2012) - The European Earth monitoring (GMES) 

programme: Status and perspectives. Remote Sensing of Environment, 120: 3-8. doi: 
http://dx.doi.org/10.1016/j.rse.2011.08.028.

Babin M., Stramski D., Ferrari G.M., Claustre H., Bricaud A., Obolensky G., Hoepffner 
N. (2003) - Variations in the light absorption coefficients of phytoplankton, nonalgal 
particles, and dissolved organic matter in coastal waters around Europe. Journal of 
Geophysical Research, 108: 3211. doi: http://dx.doi.org/10.1029/2001JC000882.

Barsi J.A., Markham B.L., Pedelty J.A. (2011) - The operational land imager: spectral 
response and spectral uniformity. Proceedings SPIE 8153, Earth Observing Systems 
XVI, 81530G. doi: http://dx.doi.org/10.1117/12.895438.

Brando V.E., Dekker A.G. (2003) - Satellite hyperspectral remote sensing for estimating 
estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote 
Sensing, 41 (6): 1378-1387. doi: http://dx.doi.org/10.1109/TGRS.2003.812907.

Brando V.E., Anstee J.M., Wettle M., Dekker A.G., Phinn S.R., Roelfsema C. (2009) - 
A physics based retrieval and quality assessment of bathymetry from suboptimal 
hyperspectral data. Remote Sensing of Environment, 113: 775-770. doi: http://dx.doi.
org/10.1016/j.rse.2008.12.003.

Bresciani M., Bolpagni R., Braga F., Oggioni A., Giardino C. (2012a) - Retrospective 
assessment of macrophytic communities in southern Lake Garda (Italy) from in situ 
and MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) data. Journal of 



29

European Journal of Remote Sensing - 2015, 48: 17-32

Limnology, 71 (1): 180-190. doi: http://dx.doi.org/10.4081/jlimnol.2012.e19.
Bresciani M., Vascellari M., Giardino C., Matta E. (2012b) - Remote Sensing Supports the 

Definition of the Water Quality Status of Lake Omodeo (Italy). European Journal of 
Remote Sensing, 45: 349-360. doi: http://dx.doi.org/10.5721/EuJRS20124530.

Bresciani M., Rossini M., Cogliati S., Colombo R., Morabito G., Matta E., Pinardi M., 
Giardino C. (2013) - Analysis of intra- and inter-daily chlorophyll-a dynamics in Mantua 
Superior Lake with spectroradiometric continuous measures. Marine and Freshwater 
Research, 64: 1-14. doi: http://dx.doi.org/10.1071/MF12229.

Cingolani L., Marchetti G., Martinelli A., Rapi G., Cantucci A. (2005) - Misure per il 
contenimento del carico diffuso nel Piano di Tutela delle acque della Regione Umbria. 
2nd International Conference LIFE, Libri ARPA Umbria, Italy.

Cracknell A.P., Newcombe S.K., Black A.F., Kirby N.E. (2001) - The ADMAP (algal bloom 
detection, monitoring and prediction) Concerted Action. International Journal of Remote 
Sensing, 22: 205-247. doi: http://dx.doi.org/10.1080/014311601449916.

Crosetto M., Tarantola S., Saltelli A. (2000) - Sensitivity and uncertainty analysis in spatial 
modelling based on GIS. Agriculture, Ecosystems and Environment, 81: 71-79. doi: 
http://dx.doi.org/10.1016/S0167-8809(00)00169-9.

Dall’Olmo G., Gitelson A.A. (2005) - Effect of bio-optical parameter variability on 
the remote estimation of chlorophyll-a concentration in turbid productive waters: 
experimental results. Applied Optics, 44: 412-422. doi: http://dx.doi.org/10.1364/
AO.44.000412.

Dekker A.G., Malthus T.J., Hoogenboom H.J. (1995) - The remote sensing of inland water 
quality. In: Advances in Environmental Remote Sensing, Danson F.M. and Plummer 
S.E. (Eds.), Chichester, United Kingdom Wiley, pp. 123-142.

Dekker A.G., Brando V.E., Anstee J.M., Pinnel N., Kutser T., Hoogenboom H.J., Pasterkamp 
R., Peters S.W.M., Vos R.J., Olbert C., Malthus T.J. (2001) - Imaging spectrometry 
of water.  In: Imaging Spectrometry: Basic Principles and Prospective Applications, 
Dordrecht, The Netherlands: Kluwer 4, Remote Sensing and Digital Image Processing, 
pp. 307-359.

Donlon C., Berruti B., Buongiorno A., Ferreira M.-H., Féménias P., Frerick J., Goryl P., 
Klein U., Laur H., Mavrocordatos C., Nieke J., Rebhan H., Seitz B., Stroede J., Sciarra 
R. (2012) - The Global Monitoring for Environment and Security (GMES) Sentinel-3 
mission. Remote Sensing of Environment, 120: 37-57. doi: http://dx.doi.org/10.1016/
j.rse.2011.07.024.

Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B., Isola 
C., Laberinti P., Martimort P., Meygret A., Spoto F., Sy O., Marchese F., Bargellini 
P. (2012) - Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational 
Services. Remote Sensing of Environment, 120: 25-36. doi: http://dx.doi.org/10.1016/
j.rse.2011.11.026.J.

Duarte M., Velez-Reyes M., Tarantola S., Gilbes F., Armstrong R. (2003) - A probabilistic 
sensitivity analysis of water-leaving radiance to water constituents in coastal shallow 
waters. In: Proceedings of SPIE, Ocean-color Remote Sensing: Inherent Optical 
Properties and Applications I, 5155: 162-173.

Dutang C., Savicky P. (2013) - R package version 1.13-randtoolbox: Generating and 
Testing Random Numbers.



Manzo et al.		  	 Sensitivity analysis of a bio-optical model 

30

Garver S.A., Siegel D.A. (1997) - Inherent optical property inversion of ocean color spectra 
and its biogeochemical interpretation: I. Time series from the Sargasso Sea. Journal 
of Geophysical Research., 102 (C8): 18607-18625. doi: http://dx.doi.org/10.1029/
96JC03243.

Gerardino-Neira C., Goodman J., Velez-Reyes M., Rivera W. (2008) - Sensitivity Analysis 
of a Hyperspectral Inversion Model for Remote Sensing of Shallow Coastal Ecosystems. 
In: Proceedings of IEEE International Geoscience & Remote Sensing Symposium, 
IGARSS 2008, Boston, Massachusetts, USA, 8-11 July 2008, pp. 98-101.

Giardino C., Brando V.E., Dekker A.G., Strömbeck N., Candiani, G. (2007) - Assessment of 
water quality in Lake Garda (Italy) using Hyperion. Remote Sensing of Environment, 
109: 183-195. doi: http://dx.doi.org/10.1016/j.rse.2006.12.017.

Giardino C., Bresciani M., Villa P., Martinelli A. (2010) - Application of remote sensing in 
water resource management: the case study of Lake Trasimeno, Italy. Water Resources 
Management. doi: http://dx.doi.org/10.1007/S11269-010-9639-3.

Giardino C., Candiani G., Bresciani M., Lee Z., Gagliano S., Pepe M. (2012) - BOMBER: 
A tool for estimating water quality and bottom properties from remote sensing 
images. Computers & Geosciences, 45: 313-318. doi: http://dx.doi.org/10.1016/
j.cageo.2011.11.022.

Giardino C., Bresciani M., Valentini E., Gasperini L., Bolpagni R., Brando V.E. (2014) 
- Airborne hyperspectral data to assess suspended particulate matter and aquatic 
vegetation in a shallow and turbid lake. Remote Sensing of Environment, 157: 48-57. 
doi: http://dx.doi.org/10.1016/j.rse.2014.04.034.

Gitelson A.A., Schalles J.F., Hladik C.M. (2007) - Remote chlorophyll-a retrieval in turbid, 
productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment, 
109: 464-472. doi: http://dx.doi.org/10.1016/j.rse.2007.01.016.

Gordon H.R., Brown O.B., Evans R.H., Brown J.W., Smith R.C., Baker K.S., Clark D.K. 
(1988) - Semianalytic radiance Model of Ocean Color. Journal of Geophysical Research, 
93 (D):10909-10924.

Irons J.R., Dwyer J., Barsi, J.A. (2012) - The next Landsat satellite: The Landsat Data 
Continuity Mission. Remote Sensing of Environment, 122: 11-21. doi: http://dx.doi.
org/10.1016/j.rse.2011.08.026.

Kutser T., Pierson D., Kallio K., Reinart A., Sobek S. (2005) - Mapping lake CDOM by 
satellite remote sensing. Remote Sensing of Environment, 94: 535-540. doi: http://
dx.doi.org/10.1016/j.rse.2004.11.009.

Lee Z., Carder K.L., Mobley C.D., Steward R.G., Patch J.S. (1999) - Hypespectral 
remote sensing for shallow waters: 2. Deriving bottom depth sand water properties 
by optimization. Applied Optics, 38: 3831-3843. doi: http://dx.doi.org/10.1364/
AO.38.003831.

Lee Z.P., Carder K.L., Arnone R.A. (2002) - Deriving inherent optical properties from 
water color: a multiband quasi-analytical algorithm for optically deep waters. Applied 
Optics, 41 (27): 5755-5772. doi: http://dx.doi.org/10.1364/AO.41.005755.

Lee Z.P., Arnone R., Hu C.M., Werdell P.J., Lubac B. (2010) - Uncertainties of optical 
parameters and their propagations in an analytical ocean color inversion algorithm. 
Applied Optics, 49 (3): 369-381. doi: http://dx.doi.org/10.1364/AO.49.000369.

Lilburne L., Tarantola S. (2009) - Sensitivity analysis of spatial models. International 



31

European Journal of Remote Sensing - 2015, 48: 17-32

Journal of Geographical Information Science, 23 (2): 151-168. doi: http://dx.doi.org/10
.1080/13658810802094995.

Lindell T., Pierson D., Premazzi G., Zilioli E. (1999) - Manual for monitoring European 
lakes using remote sensing techniques. Luxembourg, Office for Official Publications of 
the European Communities, EUR Report n. 18665 EN.

Lobo F.L, Costa M.P.F., Novo E.M.L.M. (2014) - Time-series analysis of Landsat-MSS/TM/
OLI images over Amazonian waters impacted by gold mining activities. Remote Sensing 
of Environment, 157: 170-184. doi: http://dx.doi.org/10.1016/j.rse.2014.04.030.

Lorenzen C.J. (1967) - Determination of chlorophyll and pheo-pigments: spectrophotometric 
equations. Limnology and Oceanography, 12: 343-346. doi: http://dx.doi.org/10.4319/
LO.1967.12.2.0343.

Maffione R.A., Dana D.R. (1997) - Instruments and methods for measuring the 
backwardscattering coefficient of ocean waters. Applied Optics, 36: 6057-6067. doi: 
http://dx.doi.org/10.1364/AO.36.006057.

Malenovsky Z., Rott H., Cihlar J., Schaepman M.E., Garcia-Santos G., Fernandes R., 
Berger M. (2012) - Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for 
scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 
120: 91-101. doi: http://dx.doi.org/10.1016/j.rse.2011.09.02.

Manache G., Melching C.S. (2008) - Identification of reliable regression- and correlation-
based sensitivity measures for importance ranking of water-quality model parameters. 
Environmental Modelling & Software, 23: 549-562. doi: http://dx.doi.org/10.1016/
j.envsoft.2007.08.001.

Mobley C.D. (1994) - Light and water: radiative transfer in natural waters. Academic 
Press.

Morris M.D. (1991) - Factorial sampling plans for preliminary computational experiments. 
Technometrics, 33: 161-174. doi: http://dx.doi.org/10.1080/00401706.1991.10484804.

Odermatt D., Gitelson A., Brando V.E., Schaepman M. (2012) - Review of constituent 
retrieval in optically deep and complex waters from satellite imagery. Remote Sensing 
of Environment, 118: 116-126. doi: http://dx.doi.org/10.1016/j.rse.2011.11.013.

Olmanson L.G., Brezonik P.L., Bauer M.E. (2013) - Geospatial and Temporal Analysis of 
a 20-Year Record of Landsat-Based Water Clarity in Minnesota’s 10,000 Lakes. Journal 
of the American Water Resources Association, 50 (3): 748-761. doi: http://dx.doi.
org/10.1111/jawr.12138.

Pahlevan N., Lee Z., Wei J., Schaaf C.B., Schott J.R., Berk A. (2014) - On-orbit 
radiometric characterization of OLI (Landsat-8) for applications in aquatic remote 
sensing. Remote Sensing of Environment, 154: 272-284. doi: http://dx.doi.org/10.1016/
j.rse.2014.08.001.

Palmer S.C., Hunter P.D., Lankester T., Hubbard S., Spyrakos E., Tyler A.N., Présing M., 
Horvàth H., Lamb A., Balzter H., Tóth V.R. (2014) - Validation of Envisat MERIS 
algorithms for chlorophyll retrieval in a large, turbid and optically-complex shallow 
lake. Remote Sensing of Environment, 157: 158-169. doi: http://dx.doi.org/10.1016/
j.rse.2014.07.024.

Pasterkamp R., Dekker A.G., Hoogenboom H.J., Rijkeboer M., Hakvoort J.H. (1999) - The 
effect of the specific inherent optical properties on assessing water quality in Dutch 
inland waters using matrix inversion. IEEE International Geoscience and Remote 



Manzo et al.		  	 Sensitivity analysis of a bio-optical model 

32

Sensing Symposium, 4: 2095-2097.
Pierson D.C., Strömbeck N. (2001) - Estimation of radiance reflectance and the 

concentrations of optically active substances in Lake Malaren, Sweden, based on direct 
and inverse solutions of a simple model. The Science of the Total Environment, 268: 
171-188. doi: http://dx.doi.org/10.1016/S0048-9697(00)00680-X.

Salmaso N., Mosello R. (2010) - Limnological research in the deep southern subalpine 
lakes: synthesis, directions and perspectives. Advances in Oceanography and Limnology, 
1 (1): 29-66. doi: http://dx.doi.org/10.1080/19475721003735773.

Saltelli A., Chan K., Scott M. (2000) - Sensitivity Analysis. Probability and Statistics Series. 
John Wiley & Sons, New York, NY, USA, pp. 475.

Saltelli A. (2002) - Making best use of model valuations to compute sensitivity indices. 
Computer Physics Communications, 145: 280-297. doi: http://dx.doi.org/10.1016/
S0010-4655(02)00280-1.

Saltelli A., Tarantola S., Campolongo F., Ratto M. (2004) - Sensitivity analysis in practice: 
a guide to assessing scientific models. John Wiley & Sons.

Saltelli A., Ratto M., Tarantola S., Campolongo F., European Commission, Joint Research 
Centre of Ispra (2006) - Sensitivity analysis practices: strategies for model-based 
inference. Reliability Engineering and System Safety, 91 (10-11): 1109-1125. doi: 
http://dx.doi.org/10.1016/j.ress.2005.11.014.

Saltelli A., Annoni P., Azzini I., Campolongo F., Ratto M., Tarantola S. (2010) - Variance 
based sensitivity analysis of model output. Design and estimator for the total sensitivity 
index. Computer Physics Communications, 181 (2): 259-270. doi: http://dx.doi.
org/10.1016/j.cpc.2009.09.018.

Sobol’ I.M. (1993) - Sensitivity estimates for nonlinear mathematical models. Mathematical 
Modeling and Computational Experiment, 14: 407-414.

Strömbeck N., Pierson D.C. (2001) - The effects of variability in the inherent optical 
properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters. 
Science of the Total Environment, 268: 123-137. doi: http://dx.doi.org/10.1016/S0048-
9697(00)00681-1.

Ufermann S., Robinson I. S. (2002) - On the sensitivity of semi-analytical algorithms for 
the retrieval of water quality parameters from optical measurements in coastal waters. 
IGARSS 2002, IEEE International, 3: 1456-1458. doi: http://dx.doi.org/10.1109/
IGARSS.2002.1026147.

Vanhellemont Q., Ruddick K. (2014) - Turbid wakes associated with offshore wind turbines 
observed with Landsat 8. Remote Sensing of Environment, 145: 105-115. doi: http://
dx.doi.org/10.1016/j.rse.2014.01.009.

Van Der Linde D. (1998) - Protocol for Total Suspended Matter (Ispra: CEC-JRC). Technical 
Note.

Zambrano-Bigiarini M. (2013) - Sobol_sensitivity.R. Available online at: http://ipsc.jrc.
ec.europa.eu/fileadmin/repository/eas/sensitivity/software/sobol_sensitivity.R (active 
at 7th of July 2013).


