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Abstract 1	
  

Sensor-based monitoring of vegetation phenology is being widely used to quantify 2	
  

phenological responses to climate variability and change. Digital repeat photography, in 3	
  

particular, can characterize the seasonality of canopy greenness. However, these data cannot be 4	
  

directly compared to satellite vegetation indices (e.g., NDVI, the normalized difference 5	
  

vegetation index) that require information about vegetation properties at near-infrared (NIR) 6	
  

wavelengths.  Here, we develop a new method, using an inexpensive, NIR-enabled camera 7	
  

originally designed for security monitoring, to calculate a “camera NDVI” from sequential 8	
  

visible and visible+NIR photographs. We use a lab experiment for proof-of-concept, and then 9	
  

test the method using a year of data from an ongoing field campaign in a mixed temperate forest. 10	
  

Our analysis shows that the seasonal cycle of camera NDVI is almost identical to that of NDVI 11	
  

measured using narrow-band radiometric instruments, or as observed from space by the MODIS 12	
  

platform. This camera NDVI thus provides different information about the state of the canopy 13	
  

than can be obtained using only visible-wavelength imagery. In addition to phenological 14	
  

monitoring, our method should be useful for a variety of applications, including continuous 15	
  

monitoring of plant stress and quantifying vegetation responses to manipulative treatments in 16	
  

large field experiments. 17	
  

 18	
  

 19	
  

Keywords: Digital repeat photography; green chromatic coordinate (gCC); near-surface remote 20	
  

sensing; normalized difference vegetation index (NDVI); phenology; stress monitoring. 21	
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Introduction 1	
  

 The phenology of terrestrial vegetation is highly sensitive to climate variability and 2	
  

change (Rosenzweig et al., 2007; Migliavacca et al., 2012). In the context of climate change, 3	
  

phenology is important because it mediates many of the feedbacks between terrestrial vegetation 4	
  

and the climate system (Richardson et al., 2013a). From an ecological perspective, phenology 5	
  

plays an important role in both competitive interactions and trophic dynamics, as well as in 6	
  

reproductive biology, primary production, and nutrient cycling (Morisette et al., 2009).  7	
  

 Satellite remote sensing can provide global coverage of vegetation phenology, but suffers 8	
  

from tradeoffs between spatial and temporal resolution (Zhang et al., 2003; White et al., 2009). 9	
  

Thus, over the last decade, there has been great enthusiasm for increased on-the-ground 10	
  

monitoring of phenology (Betancourt et al., 2005; Morisette et al., 2009; Polgar and Primack, 11	
  

2011). The general objective of these efforts is to better understand spatial and temporal 12	
  

variation in phenology, and how this variability is driven by environmental factors such as 13	
  

temperature, precipitation, and photoperiod (or insolation). Citizen science networks, such as the 14	
  

USA National Phenology Network (http://www.usanpn.org) and Project Budburst 15	
  

(http://budburst.org), are playing an important role in this monitoring, by engaging large 16	
  

numbers of motivated volunteers and establishing standardized protocols.  17	
  

Instrument-based approaches (Richardson et al., 2013b) provide a compelling alternative 18	
  

to observer-based phenology, because of the potential for high frequency, automated data 19	
  

collection in a manner that is scalable for regional or continental monitoring. In this context, 20	
  

digital repeat photography (e.g. Richardson et al., 2007, 2009; Sonnentag et al., 2012) is an 21	
  

attractive option because images can be analyzed either qualitatively or quantitatively, and 22	
  

analysis can focus on individual organisms or integrate across the field of view to obtain a 23	
  

community- or canopy-level perspective. Compared to data collected by a human observer, 24	
  

which tend to focus on discrete phenophases, such as flowering or budburst, the entire seasonal 25	
  

trajectory of canopy greenness can be characterized from digital camera imagery.  Additionally, 26	
  

the archived images provide a permanent visual record that can be reanalyzed as new tools and 27	
  

questions are developed. Camera-based monitoring (e.g. the PhenoCam network, 28	
  

http://phenocam.sr.unh.edu/) thus provides data at a spatial scale that is intermediate between 29	
  

ground observations of individual plants and satellite remote sensing.  30	
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 To date, most camera-based monitoring of vegetation phenology has been conducted 1	
  

using standard, consumer-grade digital cameras (e.g. Sonnentag et al., 2012). These typically 2	
  

record a three-layer image (red, green and blue: RGB), which is sufficient for the representation 3	
  

of colors in the visible spectrum (VIS, λ = 400-700 nm) as perceived by the human eye. For 4	
  

quantitative analysis, the average value of each color layer for all pixels within a user-defined 5	
  

region of interest (ROI) is extracted from each image to yield a digital number triplet (RDN, GDN, 6	
  

BDN). Then seasonal variation in the state of the canopy is characterized by the use of several 7	
  

color indices, such as the green chromatic coordinate (gCC,, Eq. 1a) and excess green (Gex, Eq. 8	
  

1b) (Sonnentag et al., 2012; Richardson et al., 2013b):   9	
  

  gCC = GDN 𝑅!" + 𝐺!" + 𝐵!"     Eq. 1a 10	
  

   GEX = 2GDN – RDN + BDN                               Eq. 1b  11	
  

 Conversely, satellite remote sensing of vegetation has traditionally used both visible and 12	
  

near-infrared (NIR, λ = 700-1400 nm) wavelengths. The reason for this is that healthy vegetation 13	
  

can be distinguished from other land cover types by its unique spectral signature, which 14	
  

combines low reflectance in the VIS with high reflectance in the NIR. Thus, the camera indices 15	
  

presented above, which are based only VIS wavelengths, are not directly comparable to standard 16	
  

satellite vegetation indices such as NDVI (Normalized Difference Vegetation Index, Eq. 1c), 17	
  

calculated from red band and NIR band reflectances (ρR and ρNIR, respectively) (Tucker, 1979). 18	
  

  𝑁𝐷𝑉𝐼   = 𝜌R − 𝜌NIR 𝜌! + 𝜌NIR     Eq. 1c 19	
  

Intriguingly, the CCD (charge-coupled device) or CMOS (complementary metal-oxide-20	
  

semiconductor) imaging sensors used in most digital cameras are sensitive to wavelengths in the 21	
  

NIR portion of the spectrum. An infrared cut filter is typically used to block these wavelengths 22	
  

from reaching the imaging sensor, as they are beyond the spectral range to which the human eye 23	
  

is sensitive and are thus not necessary for conventional color photography. Customized cameras 24	
  

have been used in the past to leverage this NIR sensitivity (Shibayama et al., 2009, 2011; 25	
  

Sakamoto et al., 2010, 2012; Nijland et al., 2013). For example, using a two-camera system 26	
  

Sakamoto et al. (2012) calculated an NDVI-style index that was more akin to the conventional 27	
  

NDVI than either gCC or GEX. The two-camera approach allows for simultaneous recording of 28	
  

information about the VIS and NIR properties of vegetation, but creates challenges related to 29	
  

camera alignment, cross-calibration, and synchronization of image capture. Very recently, 30	
  

relatively low-cost NDVI cameras have become available (e.g. MaxMax, Event-38, and Regent 31	
  



	
   4	
  

brands), but these have not been produced with long-term monitoring in mind, and such cameras 1	
  

are unable to also produce conventional RGB imagery—that is, infrared wavelengths are 2	
  

recorded at the expense of information in one of the RGB channels. 3	
  

Here, we show that a commercially-available, network-enabled camera (“webcam”) with 4	
  

a software-controlled infrared cut filter overcomes the above limitations. With the cut filter in 5	
  

place, standard 3-layer RGB imagery is recorded; with the filter removed, a monochrome 6	
  

RGB+NIR image is obtained. We develop a method to compute an NDVI-style vegetation index, 7	
  

which we call “camera NDVI”, from this imagery. A lab experiment, conducted under controlled 8	
  

conditions, is used as a proof-of-concept. We then apply the method to a one-year archive of 9	
  

images from the Harvard Forest to demonstrate the feasibility of employ this method for field 10	
  

monitoring of vegetation phenology, where day-to-day variation in weather and lighting cause 11	
  

additional challenges. As a final test, we compare the seasonality of camera NDVI from the 12	
  

Harvard Forest data with that obtained using co-located narrow-band radiometric instruments 13	
  

and from satellite sensors. Data from our camera system will be of value for quality assessment 14	
  

of phenology products derived from satellite imagery (e.g. White et al., 2009).  15	
  

 16	
  

Material and Methods 17	
  

Camera 18	
  

We used a NetCam SC IR (StarDot Technologies, Buena Park, CA) camera, featuring a 19	
  

Micron ½" CMOS active-pixel digital imaging sensor and configured for 1.3 megapixel (1296 x 20	
  

976) output. The camera was set at manual (fixed) white balance and, unless otherwise noted, 21	
  

automatic exposure. With a built-in uClinux operating system, the camera operates as a 22	
  

standalone system with Internet connectivity. Command scripts running on the camera controlled 23	
  

the infrared cut filter, image capture, and image upload to a remote server via FTP. The 24	
  

customized scripts used here are available in the “Tools” section of the PhenoCam project page 25	
  

(http://phenocam.sr.unh.edu/webcam/tools/) or from the corresponding author.  26	
  

 27	
  

Proof-of-concept lab experiment 28	
  

 We conducted a lab experiment to evaluate whether camera imagery can be used to 29	
  

accurately characterize the broadband spectral properties of different materials. We used the 30	
  

StarDot camera to record sequential color RGB and monochrome RGB+NIR images of materials 31	
  



	
   5	
  

with a wide range of spectral signatures (Figure 1). Each sample was illuminated from above 1	
  

with a 50 W Halogen lamp designed for indoor diffuse reflectance measurements (ASD 2	
  

ProLamp, Analytical Spectral Devices Inc., Boulder, CO). The StarDot camera was mounted on 3	
  

a tripod to the side of the sample and inclined downward at an angle of about 45°. Each sample 4	
  

filled approximately one-quarter of the camera’s field of view. For quality assurance, we 5	
  

included a multi-color reference panel in each image, made by painting red, green, blue, white 6	
  

and grey strips on a flat piece of plastic. We recorded four images of each sample: one image at 7	
  

fixed exposure (1/300 s) for both color RGB and monochrome RGB+NIR images, and one 8	
  

image at automatic exposure for both color RGB and monochrome RGB+NIR. Automatic 9	
  

exposure values were determined by the camera. The mean automatic exposure for the color 10	
  

RGB images was 1/30 s (minimum 1/120 s), compared with 1/200 s (minimum 1/350 s) for the 11	
  

monochrome RGB+NIR images. Thus the fixed exposure images were almost always under-12	
  

exposed compared to the automatic exposure images. 13	
  

We measured the reflectance spectrum (λ = 350–2500 nm) of each sample using a 14	
  

spectroradiometer (ASD FieldSpec 3, Analytical Spectral Devices Inc.) connected to a 5 cm (2 15	
  

inch) three-port integrating sphere (SphereOptics, Concord, NH) and a 10 W hemispheric 16	
  

collimated light source with a 6 V regulated power supply. White Spectralon discs were used as 17	
  

reference standards. The sphere featured an 8° near-normal incidence port, such that reflectance 18	
  

measurements include both diffuse and specular components. We processed the raw data to 19	
  

reflectances (1 nm increment) using ViewSpecPro software (Analytical Spectral Devices Inc.). 20	
  

Spectroradiometer NDVI was calculated using red and NIR band reflectances; specific 21	
  

wavelength ranges are reported below.  22	
  

Most of the samples (42) for this experiment were leaves picked from a selection of trees 23	
  

and shrubs native to New England, representing a wide range of leaf health and corresponding 24	
  

colors, from fresh dark green to senesced red to fallen brown leaves (Figure 1). We included 25	
  

other materials, including asphalt, cardboard, wood, and several paint color chips, for a total of 26	
  

51 samples.  27	
  

 28	
  

Field data 29	
  

We used field data from an ongoing measurement campaign at the 40 m “Barn Tower” 30	
  

(42.5353°N 72.1899°W) at the Harvard Forest, near the town of Petersham, MA, 110 km west of 31	
  



	
   6	
  

Boston. Mixed forest stands surrounding the tower are dominated by the deciduous species red 1	
  

oak (Quercus rubra L., ~40% of basal area) and red maple (Acer rubrum L., ~20% of basal 2	
  

area), with evergreen white pine (Pinus strobus L.) the dominant conifer. The MODIS land cover 3	
  

classification for the tower, and the land immediately surrounding the tower, is deciduous 4	
  

broadleaf forest.   5	
  

We used imagery (April 1, 2012 through March 30, 2013) from a StarDot camera that is 6	
  

mounted at the top of the tower. The camera points north and is inclined ~30° below horizontal. 7	
  

As in the lab experiments, command scripts on the camera trigger the infrared cut filter and 8	
  

obtain successive (about 30 s apart) color RGB and monochrome RGB+NIR imagery. Automatic 9	
  

exposure is used for each image. Images are uploaded by FTP to a remote server every 15 10	
  

minutes between 4 a.m. and 10 p.m. 11	
  

Also mounted atop the same tower is a pair of 4-channel (blue: 470 ± 20 nm, green: 557 12	
  

± 25 nm, red: 605 ± 35 nm, NIR: 750 ± 42 nm) narrowband radiometric sensors (Model 1850, 13	
  

Skye Instruments, Llandrindod Wells, UK). One unit with a cosine diffuser is pointed upwards to 14	
  

measure incident solar radiation, while the second unit, with a 25° field of view, is pointed in the 15	
  

same direction as the StarDot camera to measure radiation reflected by the canopy. We log 16	
  

measurements every 15 seconds and record 30 minute averages on a datalogger (CR1000, 17	
  

Campbell Scientific, Logan, UT). From these data, we calculated canopy reflectance (ρi) as in 18	
  

Eq. 2, where Qi ↓ and Qi↑ are measurements of the incident and reflected quantum flux, 19	
  

respectively, for each band i, and the calibration constant (ki) determined under natural (sunlit) 20	
  

conditions using a Spectralon panel. 21	
  

  𝜌! = 𝑘! 𝑄!↑ 𝑄!↓        Eq. 2 22	
  

 We calculated two indices from the narrowband radiometric sensors: radiometer NDVI 23	
  

(Eq. 3a) and radiometer gCC (Eq. 3b): 24	
  

 radiometer  NDVI = 𝜌!"# − 𝜌!"# 𝜌!"# + 𝜌!"#    Eq. 3a 25	
  

 radiometer  gCC = 𝜌!!" 𝜌!"# + 𝜌!!" + 𝜌!"#    Eq. 3b 26	
  

 27	
  

Image processing 28	
  

 Briefly, image analysis for both lab and field data included manual delineation of an 29	
  

appropriate ROI and extraction of color channel information for that ROI in each image. We also 30	
  



	
   7	
  

used an optical character recognition algorithm to read the image exposure from the text overlay 1	
  

at the top of each image. 2	
  

For the lab experiment, the ROI was adjusted for each sample to include as much of the 3	
  

sample as possible. For the field data, we defined separate deciduous (predominantly red oak and 4	
  

red maple) and conifer (white pine) ROIs, which were each roughly 440 x 440 pixels in size. The 5	
  

camera field of view did not change over time, and thus these ROIs were fixed over the period of 6	
  

analysis.  7	
  

We processed the camera imagery as follows. For each sample, we defined the ROI and 8	
  

determined the average pixel value (digital number) across the ROI for three channels in the 9	
  

color RGB images (RDN, GDN, BDN) and one channel in the monochromatic RGB+IR images 10	
  

(ZDN). If both images were taken at the same exposure, then the monochrome RGB+IR images 11	
  

could be partitioned to a visible component (YDN) plus a NIR component (XDN) according to Eq. 12	
  

4a, with the visible component calculated from the color RGB images as in Eq. 4b (Daniel 13	
  

Lawton, StarDot Technologies, personal communication). Then the NIR component, XDN, was 14	
  

estimated as ZDN – YDN. 15	
  

ZDN = YDN + XDN      Eq. 4a 16	
  

YDN = 0.30 * RDN + 0.59 * GDN + 0.11 * BDN   Eq. 4b 17	
  

However, if the images were taken at different exposures (where EY denotes the exposure 18	
  

of the color RGB image and EZ the exposure of the RGB+IR image), then these exposure 19	
  

differences had to be accounted for. Exploratory analyses indicated that division through by the 20	
  

square root of the exposure time offered a straightforward solution (Eq. 5a-d) to exposure 21	
  

adjustment. Note that camera systems with different gamma values, where γ is the exponent in 22	
  

the power law relationship between input and output signals of digital imaging systems, may be 23	
  

different (cf. Sakamoto et al., 2010, 2012).  Taking the square root of E assumes a γ = 2.0, a 24	
  

reasonable approximation of the actual StarDot value of γ = 1.7 (Daniel Lawton, StarDot 25	
  

Technologies, personal communication). However, our results were essentially the same 26	
  

regardless of whether we used 2.0 or 1.7.  27	
  

  𝑍!"′ = 𝑍!" 𝐸!      Eq. 5a 28	
  

  𝑅!"′ = 𝑅!" 𝐸!      Eq. 5b 29	
  

 𝑌!"′ = 𝑌!" 𝐸!      Eq. 5c 30	
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  𝑋!"′ = 𝑍!"′ − 𝑌!"′       Eq. 5d 1	
  

 We calculated camera NDVI as in Eq. 6, in terms of exposure-adjusted digital numbers. 2	
  

For fixed-exposure images, the same calculation was used, ignoring the primes (´).  3	
  

 Camera NDVI = 𝑋!"′ − 𝑅!"′ 𝑋!"′   +  𝑅!"′   Eq. 6 4	
  

For both radiometer and camera data, there was substantial variability in the derived 5	
  

indices at the 30 minute time step, which may be associated with factors such as overall light 6	
  

levels, cloudiness, and illumination geometry (see further analysis in Results). After comparing 7	
  

various averaging, quantile, and filtering methods, we derived daily estimates by calculating the 8	
  

arithmetic mean across all observations where the incident photosynthetic photon flux density 9	
  

(PPFD; measured at the top of the tower using a PQS-1 quantum sensor, Kipp & Zonen, Delft, 10	
  

the Netherlands) was greater than 200 µmol m-2 s-1. This method reduced day-to-day variability 11	
  

in the resulting time series better than the 90th percentile approach used by Sonnentag et al. 12	
  

(2012), although an obvious advantage of the latter approach is that it does not require solar 13	
  

radiation data.  14	
  

Because 𝑅!"′  and 𝑋!"′  are not direct measurements of reflectance, the magnitude of 15	
  

camera NDVI depends on the spectral distribution of the incident light. Thus, camera NDVI 16	
  

values from the lab experiments are not directly comparable to those from the field experiment, 17	
  

and those from the field experiment are not comparable to either radiometer or satellite NDVI 18	
  

values. To compensate for this, we re-scaled camera NDVI (yielding camera NDVIR) by 19	
  

estimating the coefficients of a linear regression between camera NDVI (for the deciduous ROI) 20	
  

and radiometer NDVI, where a is a slope coefficient, b is the y-axis intercept and ε is the model 21	
  

residual:  22	
  

  radiometer  NDVI = 𝑎 camera  NDVI + 𝑏 + 𝜀   Eq. 7 23	
  

 24	
  

Results 25	
  

Lab experiment 26	
  

 Spectral reflectance signatures differ markedly among the 51 samples scanned by the 27	
  

spectroradiometer (Figure 1). There are pronounced differences in reflectance spectra between 28	
  

green, yellowing, and red leaves, but the non-foliar samples added greatly to the variability 29	
  

among samples across both visible and near-infrared wavelengths. The variation in reflectance 30	
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across samples is smallest for violet and blue (400-500  nm) wavelengths, and largest for red 1	
  

(620-700 nm) and near infrared (700-1000 nm) wavelengths. 2	
  

  For the fixed exposure imagery (results not illustrated), digital numbers extracted from 3	
  

camera imagery for the red channel (RDN) are well correlated with mean reflectance over red 4	
  

wavelengths (620-700 nm) measured with the spectroradiometer (r = 0.91). Similarly, digital 5	
  

numbers for the near infrared (XDN) component of the RGB+NIR imagery are well correlated 6	
  

with mean reflectance over NIR wavelengths (700-1000 nm) measured with the 7	
  

spectroradiometer (r = 0.87). Camera NDVI is well correlated with spectroradiometer NDVI 8	
  

using these broad bands (r = 0.91), or using the spectral range of MODIS bands (band 1 = 620–9	
  

670 nm, band 2 = 841–867 nm) (r = 0.93).  10	
  

We used an iterative procedure to identify the wavelengths across which reflectance 11	
  

measured by the spectroradiometer is most highly correlated with RDN and XDN from the fixed 12	
  

exposure imagery. For RDN, we obtained a correlation of r = 0.96 across the range from 570-660 13	
  

nm (Figure 2A), whereas for XDN, we find a correlation of r = 0.91 across the range from 805-14	
  

815 nm (Figure 2B). For the fixed exposure imagery, there is an excellent correlation (r = 0.99) 15	
  

between camera NDVI and spectroradiometer NDVI calculated using these particular bands 16	
  

(Figure 2C).  17	
  

We conducted a similar analysis for the automatic exposure imagery. Exposure-adjusted 18	
  

digital numbers (Eq. 5b, 5d) for each channel are best correlated with mean reflectance, 19	
  

measured by the spectroradiometer, across an appropriate range of wavelengths (Figure 3). For 20	
  

example, 𝐵!"′  is most strongly correlated with mean reflectance across violet and blue 21	
  

wavelengths (430-515 nm, r = 0.92), 𝐺!"′  with green wavelengths (510-570 nm, r = 0.94), 𝑅!"′  22	
  

with yellow and red wavelength (575-710 nm, r = 0.96; Figure 4A), and 𝑋!"′  with near infrared 23	
  

wavelengths (800-815 nm, r = 0.88; Figure 4B). The contour plots in Figure 3 show how the 24	
  

strength of these correlations tended to fall off rapidly outside the optimal range. For example, 25	
  

𝑅!"′  is not well correlated with wavelengths < 575 nm or >710 nm, and 𝑋!"′  is not well 26	
  

correlated with wavelengths < 700 nm. For the automatic exposure imagery, camera NDVI is 27	
  

very well correlated with spectroradiometer NDVI using either the most-highly-correlated bands 28	
  

identified here (i.e. red 575-710 nm and NIR 800-815 nm; r = 0.96, Figure 4C), or the standard 29	
  

MODIS bands (r = 0.94).  30	
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 Results from the lab experiment demonstrate the potential of the StarDot camera imagery 1	
  

for characterizing the spectral properties of diverse materials, particularly in red and near 2	
  

infrared bands. By processing sequential VIS and VIS+NIR images, we are able to back-3	
  

calculate the NIR component. Furthermore, this experiment shows that camera NDVI is strongly 4	
  

correlated with spectroradiometer NDVI when using either fixed exposure or automatic exposure 5	
  

imagery. Since field images are recorded with automatic exposures to optimize dynamic range 6	
  

under varying illumination conditions, our ability to correct for variations in exposure is critical. 7	
  

These lab results prove that camera NDVI is sensitive to the variation in reflectances of a wide 8	
  

range of materials and surfaces. This indicates the potential for monitoring canopy phenology in 9	
  

the field using a similar approach to characterize the seasonal variation in canopy optical 10	
  

properties, as described in the following section. 11	
  

 12	
  

Field measurements 13	
  

 The green chromatic coordinate calculated from the narrowband radiometric sensors, 14	
  

radiometer gCC (Figure 5A), exhibits a seasonal pattern that is typical of deciduous forests (e.g., 15	
  

Sonnentag et al., 2012; Richardson et al., 2013b). Radiometer gCC rises rapidly in spring with 16	
  

budburst (day 115-120) and leaf development to a pronounced spiky peak (day 140; see Keenan 17	
  

et al., 2014, for discussion), before decreasing gradually over the course of the summer, and then 18	
  

declining rapidly (day 250) in autumn with leaf coloration and abscission (day 300).  For the 19	
  

deciduous ROI, camera gCC (Figure 5B) follows essentially the same seasonal pattern, with the 20	
  

notable exception of a more pronounced dip in greenness around day 290, corresponding to the 21	
  

peak of autumn colors and a marked increase in canopy redness that is clearly visible in the RGB 22	
  

camera imagery. The coniferous ROI shows a seasonally varying signal in camera gCC (Figure 23	
  

5C), but with substantially smaller amplitude than that for the deciduous ROI, reflecting the 24	
  

year-round presence of foliage but nevertheless indicating seasonal variation in foliar chlorophyll 25	
  

concentrations (Richardson et al., 2009). The start of spring green-up also begins about 30 days 26	
  

earlier, and the end of the autumn decline ends about 60 days later, for the coniferous ROI 27	
  

compared to the deciduous ROI. 28	
  

 By contrast, the seasonal cycle of radiometer NDVI differs from that of radiometer (or 29	
  

camera) gCC (Figure 5D). The primary difference is the absence of the spike seen in gCC around 30	
  

day 140. A secondary difference is the presence of a broad plateau in radiometer NDVI from 31	
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about day 130 to day 240. As a result, radiometer NDVI gives a better representation of the 1	
  

seasonal dynamics of canopy leaf area index (LAI) than does radiometer gCC (e.g. compare with 2	
  

Fig. 1 in Richardson et al., 2012). Additionally, the seasonal cycle of radiometer NDVI roughly 3	
  

parallels (and is comparable in magnitude to) that of MODIS NDVI (Figure 5D). In particular, 4	
  

the timing of the spring increase and autumn decrease in NDVI is similar in both time series. 5	
  

However, during the winter months the MODIS data are somewhat noisier than the radiometer 6	
  

data. 7	
  

There is a strong linear relationship (R2 = 0.89) between radiometer NDVI and camera 8	
  

NDVI for the deciduous ROI. The best-fit linear scaling coefficients (Eq. 7) are a = 0.53 ± 0.02 9	
  

SE and b = 0.84 ± 0.01, with σ(ε) = 0.041. Henceforth, we focus on the rescaled time series, 10	
  

camera NDVIR, for which the seasonal cycle is much more similar in shape to that of radiometer 11	
  

NDVI than camera gCC. For example, the relative rate of increase in both radiometer NDVI and 12	
  

camera NDVIR for the deciduous region of interest in spring is more gradual than the 13	
  

corresponding rate of increase in radiometer or camera gCC, and conspicuously absent in the 14	
  

camera NDVIR data for the deciduous region of interest is the gCC spike that occurs around day 15	
  

140. For the coniferous region of interest, camera gCC shows a seasonal pattern that is less 16	
  

pronounced than that for the  deciduous region of interest. However, there is no clear seasonal 17	
  

cycle in the camera NDVIR data for the coniferous region of interest. Together, these results 18	
  

suggest that camera NDVI is capturing different aspects of seasonal canopy dynamics than 19	
  

indices, such as gCC, that are based only on visible wavelengths (cf. Nijland et al. 2013). The use 20	
  

of both gCC and camera NDVI together give more information than can be obtained from either 21	
  

index on its own. The advantage of gCC is that it is sensitive to leaf color, which is related to 22	
  

pigmentation (Keenan et al. 2014), while camera NDVI is a better proxy for LAI. 23	
  

 24	
  

Non-phenological sources of variability in camera NDVI  25	
  

Even with averaging of 30-minute data to a daily product, the signal-to-noise ratio of 26	
  

camera NDVIR is somewhat higher than that of camera gCC (day-to-day variability being equal to 27	
  

about 8% of the seasonal amplitude for camera NDVIR, compared with 5% for camera gCC; 28	
  

compare Figures 5B and 5E), and indeed also higher than that of radiometer NDVI (compare 29	
  

figures 5E and 5D). Of course, some of the variation in both camera NDVI and radiometer NDVI 30	
  

can potentially be attributed to sky condition, shadow fraction, and illumination geometry, all of 31	
  



	
   12	
  

which can change over the course of the day or between one day and the next. And, some of this 1	
  

variability is undoubtedly the result of the brief (30 s) lag between the VIS and VIS+NIR 2	
  

imagery, which is unavoidable as the camera needs some time to adjust after the cut filter has 3	
  

been triggered on or off.    4	
  

We further investigate some of the factors associated with variability in camera NDVIR 5	
  

using the 30-minute data, focusing on the period from day 160 to day 200, when camera NDVIR 6	
  

for the deciduous region of interest is essentially stable at its maximum summertime value. 7	
  

During this period, camera NDVIR at the 30-minute time step (1 SD = 0.13) was 10 times more 8	
  

variable than at the daily time step (1 SD = 0.01). Much of the variability in the 30-minute data 9	
  

results from imagery captured under low-to-intermediate light levels (1 SD = 0.17 for PPFD < 10	
  

500 µmol m-2 s-1; 1 SD = 0.06 for PPFD ≥ 500 µmol m-2 s-1). At both dawn and dusk, camera 11	
  

NDVIR is considerably lower, and markedly more variable, than at mid-day, indicating both a 12	
  

systematic bias and a lower signal-to-noise ratio under low-light conditions. However, excluding 13	
  

periods with PPFD < 200 µmol m-2 s-1, the diurnal pattern (data from 6 a.m. to 6 p.m.) in camera 14	
  

NDVIR is negligible: a polynomial function of time of day accounts for no more than 2% of the 15	
  

total variance in camera NDVIR. This suggests that illumination geometry has only a minimal 16	
  

effect on camera NDVIR. Similarly, although camera NDVIR is highly variable when the ratio of 17	
  

diffuse/total PPFD is ≥ 0.90, the noisy observations are all associated with PPFD < 500 µmol m-2 18	
  

s-1.  19	
  

A final—and important, because it can not be entirely eliminated by filtering for lower-20	
  

light conditions—source of variation in camera NDVIR is the ratio of the exposure times for the 21	
  

RGB and RGB+NIR imagery, i.e. Eratio =  EY/EZ. A second-order polynomial of Eratio explains 22	
  

73% of the variation in 30-minute camera NDVIR, with both low (< 2) and high (>5) values of 23	
  

Eratio contributing to this pattern. Filtering for periods with PPFD ≥ 500 µmol m-2 s-1 eliminates 24	
  

most instances of low Eratio. High values of Eratio are most often associated with anomalously long 25	
  

RGB exposures (high EY). The RGB images associated with these long exposures are 26	
  

characterized by an anomalously bluish cast. We are unable to identify the specific lighting 27	
  

conditions (total PPFD, PPFD variance, direct PPFD, diffuse PPFD, or the direct/total PPFD 28	
  

ratio) that cause this effect. However, even considering only data acquired with 2 < Eratio < 5, 29	
  

Eratio still accounts for 40% of the variation in camera NDVIR between day 160 and day 200. 30	
  

Using a fixed exposure setting (with potentially different values of EY and EZ), and limiting the 31	
  



	
   13	
  

analysis to high-light, mid-day conditions, it should be possible to eliminate this source of 1	
  

variability in camera NDVIR. 2	
  

 3	
  

Discussion 4	
  

We have proposed a method by which an off-the-shelf networked digital camera, 5	
  

originally marketed for security monitoring applications, can be repurposed and used to obtain 6	
  

information about the spectral properties of vegetation in both visible and NIR wavelengths, and 7	
  

thus to calculate NDVI-style indices (cf. Nijland et al. 2013, who found that imagery from a 8	
  

filtered, infrared-sensitive camera was of no more value than conventional RGB imagery for 9	
  

tracking plant phenology and health). The lab experiment described here is used as a proof-of-10	
  

concept (Figs. 2, 4), and shows that not only can we back out the IR component from the 11	
  

RGB+NIR imagery, but also that our method for exposure-correction of auto-exposed imagery is 12	
  

effective. The field data, on the other hand, show how this method can be applied for long term 13	
  

monitoring of vegetation phenology in real-world conditions with varying solar illumination and 14	
  

weather conditions. Specifically, we show good agreement between data obtained using the 15	
  

camera NDVI method and the seasonal trajectory of NDVI measured using radiometric sensors 16	
  

(Fig. 5). This approach is highly economical: the camera used here retails for about US$1200, 17	
  

which is a fraction of the cost of a pair (upward- and downward-looking) of multi-channel 18	
  

radiometric sensors. While we did not rely on a reference panel for standardization, inclusion of 19	
  

a grey Spectralon (or other diffuse reflector) panel within the field of view of the camera would 20	
  

potentially be of value for normalization under changing illumination conditions (e.g. cloudy vs. 21	
  

sunny days); however, the results shown here suggest that even without this kind of calibration 22	
  

standard, it is possible to obtain high-quality data on the seasonal variation in canopy NDVI. 23	
  

Although our field experiment was conducted in a mixed forest ecosystem, there is no reason to 24	
  

believe that this method would not be applicable in other vegetation types, especially those with 25	
  

a strong seasonal cycle such as crops or grasslands. The signal-to-noise ratio may, however, be 26	
  

inadequate for tracking the seasonality of evergreen vegetation with a high LAI. This method is 27	
  

currently implemented at more than 40 core sites within the PhenoCam network 28	
  

(http://phenocam.sr.unh.edu), and future analysis of those data will confirm the viability of this 29	
  

approach. 30	
  



	
   14	
  

Networked cameras are well suited to field monitoring applications because with Internet 1	
  

connectivity (using cell phone modems, this is now possible even at remote field sites) images 2	
  

can be archived to an off-site server, and camera functionality can be monitored remotely. 3	
  

Furthermore, since this eliminates the need for manually swapping out memory cards, the 4	
  

potential for shifts in camera alignment are minimized, making it is easier to maintain a constant 5	
  

field of view. This facilitates image processing and improves data quality. 6	
  

We acknowledge that cameras with red and NIR sensitivity, primarily designed for 7	
  

precision agriculture applications, have been developed and are commercially available (e.g. the 8	
  

Agricultural Digital Camera by Tetracam, Inc., Chatsworth, CA, which retails for US$4800). 9	
  

These have been used for ecological studies (e.g. Steltzer and Welker, 2006; Higgins et al., 10	
  

2011), but we are not aware of this type of camera being installed in the field for continuous, 11	
  

long-term monitoring applications.  Conventional digital cameras have also been customized and 12	
  

used for similar work, but these have typically made use of two-camera systems, with one 13	
  

camera filtered for visible wavelengths and the other for near infrared wavelengths (e.g. 14	
  

Shibayama et al., 2009, 2011; Sakamoto et al., 2010, 2012; see also Nijland et al., 2013). What is 15	
  

unique about the present approach is that by controlling the camera’s infrared cut filter we 16	
  

instead obtained sequential images from a single sensor, rather than simultaneous images from 17	
  

two sensors. Not only does the single-camera approach reduce costs, it also eliminates issues 18	
  

related to parallax, sensor calibration, and image alignment. Our method could, in principle, be 19	
  

used with other camera systems although the linear scaling coefficients (a, b) reported here are 20	
  

probably specific to the StarDot NetCam SC IR. 21	
  

Compared to other low-cost, sensor-based methods for monitoring seasonal changes in 22	
  

the spectral properties of vegetation (e.g. radiometric instruments based on photodiodes, Garrity 23	
  

et al., 2010, or light emitting diodes, Ryu et al., 2010), a clear advantage of the camera approach 24	
  

is that it yields high-resolution images. This enables tracking the phenology of different 25	
  

organisms or groups of organisms by breaking the image into different regions of interest—e.g., 26	
  

deciduous and coniferous trees (e.g. Fig. 5E,F). False-color images similar to those traditionally 27	
  

generated from satellite imagery can also be generated using near infrared, red, and green bands 28	
  

(i.e. XRG rather than RGB), as shown in Figure 6. Thus, the camera effectively becomes a four-29	
  

channel imaging sensor. We acknowledge that higher-quality spectral image data could, 30	
  

potentially, be obtained from existing, commercially available multichannel or hyper-spectral 31	
  



	
   15	
  

cameras, e.g. Surface Optics SOC-710 or TetraCam MCA. However, for budget-limited 1	
  

observational and experimental studies, the system proposed here may represent an acceptable 2	
  

compromise, given its substantially lower cost and proven performance. 3	
  

Our camera NDVI approach is conceptually similar to that used to obtain broadband 4	
  

NDVI from readily available radiometric measurements of incident and canopy-reflected visible 5	
  

(PPFD) and total shortwave radiation (Huemmrich et al., 1999; Wang et al., 2004; Jenkins et al., 6	
  

2007; see review in Richardson et al., 2013b). The similarity of camera NDVI to radiometer 7	
  

NDVI, and the dissimilarity between camera NDVI and camera gCC, highlights the potential for 8	
  

camera NDVI to provide different information about the state of the canopy than can be obtained 9	
  

using only visible-wavelength (RGB) imagery. Furthermore, indices such as EVI (the enhanced 10	
  

vegetation index, which also uses blue channel information) can be calculated from the camera 11	
  

imagery in a similar manner. The resulting data should therefore be of great value for “apples-to-12	
  

apples” evaluation of landscape phenology products derived from satellite remote sensing, as 13	
  

suitable data for this kind of analysis are currently lacking (cf. Hufkens et al., 2012; note that 14	
  

landscape heterogeneity and the mismatch between the camera field of view and the satellite 15	
  

pixel to which it is being compared remain outstanding challenges). More generally, camera 16	
  

NDVI could be used for continuous monitoring of plant stress in greenhouse or nursery 17	
  

applications, or even quantifying responses to experimental manipulations in large field 18	
  

experiments (e.g. nutrient additions, elevated CO2, rainfall exclusion, etc.). 19	
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   20	
  

Figure 1. Reflectance spectra of the 51 samples (thin grey lines) used in the laboratory 1	
  
experiment. The heavier black lines indicate representative spectra from a healthy green leaf 2	
  
(bottom), a yellowing leaf (middle), and a red (top) leaf.  3	
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Figure 2. Correlation of digital number (color bands extracted from fixed-exposure camera 1	
  
imagery) and mean reflectance (measured with a spectroradiometer) for n = 51 samples in 2	
  
laboratory experiment. (a) mean reflectance from 570-660 nm vs. digital number of camera red 3	
  
channel; (b) mean reflectance from 805-815 nm vs. digital number of NIR component of camera 4	
  
RGB+NIR imagery; (c) spectroradiometer NDVI vs. camera NDVI calculated using RDN and 5	
  
XDN. 6	
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Figure 3. Contour plot showing linear correlation (Pearson’s r) of pixel values (digital numbers) 1	
  
of individual color bands, from digital camera imagery, with mean spectral reflectance over the 2	
  
region from λ1 (x axis) to λ2 (y axis) nm, as measured on a spectroradiometer. (a) Camera blue 3	
  
channel; (b) camera green channel; (c) camera red channel; (d) NIR component of RGB+NIR 4	
  
imagery. 5	
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Figure 4. Correlation of exposure-adjusted digital number (color bands extracted from auto-1	
  
exposure camera imagery) and mean reflectance (measured with a spectroradiometer) for n = 51 2	
  
samples in laboratory experiment. (a) mean reflectance from 575-710 nm vs. exposure-adjusted 3	
  
digital number of camera red channel (𝑅!"′ , ); (b) mean reflectance from 800-815 nm vs. 4	
  
exposure-adjusted digital number of NIR component of camera RGB+NIR imagery (𝑋!"′ , ); (c) 5	
  
spectroradiometer NDVI vs. camera NDVI calculated using 𝑅!"′  and 𝑋!"′  vs. spectroradiometer 6	
  
NDVI. 7	
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Figure 5. Time series of daily means (calculated for PPFD ≥ 200 µmol m-2 s-1) of vegetation 1	
  
indices calculated from radiometric instruments (a, d) and digital camera imagery, analyzed 2	
  
separately for deciduous (b, e) and coniferous (c, f) regions of interest, from instruments 3	
  
mounted on the Harvard Forest Barn Tower. In (d), the gray filled circles are the mean value of 4	
  
MODIS NDVI from a 3x3 window centered on the tower pixel. gCC is the green chromatic 5	
  
coordinate, NDVI is the normalized difference vegetation index.  6	
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Figure 6. Winter (February 1, top) and summer (July 6, bottom) false-color images (XRG) 1	
  
obtained from an infrared-enabled security camera mounted on the Harvard Forest Barn Tower. 2	
  
The near infrared component (X) is mapped to the red (R) channel, the red channel is mapped to 3	
  
the green (G) channel, and the green channel is mapped to the blue channel. Both images were 4	
  
taken from the top of the tower at 4 PM local standard time. The evergreen trees that are clearly 5	
  
visible in the top image are white pine (Pinus strobus). 6	
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