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Abstract 

The purpose of the present article is to take stock of a recent exchange in Organizational 

Research Methods between critics (Rönkkö & Evermann, 2013) and proponents (Henseler et al., 

2014) of partial least squares path modeling (PLS-PM). The two target articles were centered 

around six principal issues, namely whether PLS-PM: (1) can be truly characterized as a 

technique for structural equation modeling (SEM); (2) is able to correct for measurement error; 

(3) can be used to validate measurement models; (4) accommodates small sample sizes; (5) is 

able to provide null hypothesis tests for path coefficients; and (6) can be employed in an 

exploratory, model-building fashion.  We summarize and elaborate further on the key arguments 

underlying the exchange, drawing from the broader methodological and statistical literature in 

order to offer additional thoughts concerning the utility of PLS-PM and ways in which the 

technique might be improved.  We conclude with recommendations as to whether and how PLS-

PM serves as a viable contender to SEM approaches for estimating and evaluating theoretical 

models.        
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Reflections on Partial Least Squares Path Modeling 

Introduction  

Partial least squares path modeling (PLS-PM) has begun to achieve widespread usage 

among applied researchers.  Starting with the initial work by Wold (1966, 1973, 1975), the 

application of PLS-PM has been stimulated by comprehensive expositions and computer 

implementations by Lohmöller (1984, 1987, 1988, 1989), Chin (1988, 1998, 2003) and others 

(for detailed historical reviews of the development of PLS-PM, see Mateos-Aparicio, 2011; 

Trujillo, 2009).  PLS-PM has also received thorough treatment in a number of textbooks (Abdi, 

Chin, Vinzi, Russolillo, & Trinchera, 2013; Hair, Hult, Ringle, & Sarstedt, 2014; Vinzi, Chin, 

Henseler, & Wang, 2010), and both proprietary and open source software packages for 

conducting PLS-PM are now widely available (Addinsoft, 2013; Chin, 2003; Kock, 2013; 

Monecke, 2013; Ringle, Wende, & Will, 2005; Rönkkö, 2013; Sanchez & Trinchera, 2013).  

PLS-PM is gaining a particularly strong foothold in fields such as marketing and information 

systems research, as evidenced by three special journal issues during the past three years: one in 

the Journal of Marketing Theory and Practice (Hair, Ringle, & Sarstedt, 2011) and two in Long 

Range Planning (Hair, Ringle, & Sarstedt, 2012, 2013).  PLS-PM has also spread to the 

organizational sciences (Antonakis, Bastardoz, Liu, & Schriesheim, 2014; Hulland, 1999; 

Rönkkö & Everman, 2013), and its momentum appears to be on the rise.   

PLS-PM has garnered a wide following largely due to beliefs by its users that it has 

important advantages over other analytical techniques, such as regression analysis, structural 

equation modeling (SEM), and simultaneous equation estimators (e.g., two-stage and three-stage 

least squares). However, methodological discussions of PLS-PM have raised questions about its 

statistical underpinnings and its viability as an estimation procedure.  For instance, a number of 
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reviewers have found that PLS-PM practitioners do not fully acknowledge its various pitfalls and 

have offered detailed methodological guidelines intended to remedy or avoid these pitfalls (e.g., 

Hair, Sarstedt, Ringle, & Mena, 2012; Hair et al., 2013; Henseler, Ringle, & Sinkovics, 2009; 

Hair, Sarstedt, Pieper, & Ringle, 2012; Marcoulides & Chin, 2013; Marcoulides & Saunders, 

2006; Peng & Lai, 2012; Ringle, Sarstedt, & Straub, 2012). Other critics go further, maintaining 

that regardless of how rigorously PLS-PM is applied, it suffers from intractable statistical flaws 

that warrant a drastic reduction of its use (Goodhue, Thompson, & Lewis, 2013), or even its 

complete abandonment (e.g., Antonakis, Bendahan, Jacquart, Lalive, 2010; Rönkkö, in press; 

Ronkko & Everman, 2013; Rönkkö & Ylitalo, 2010).  A common theme of these critiques is that 

the availability of proven, powerful, and versatile modeling techniques, such as SEM, can 

preclude the use of PLS-PM altogether.  In response to these mounting concerns, some 

proponents of PLS-PM have devised innovative statistical approaches to improve its 

performance in both model estimation and testing (e.g., Dijkstra, 2010, 2014; Dijkstra & 

Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press).  Whereas the preliminary 

theoretical and empirical evidence for these new strategies appears promising, these methods are 

still in their infancy and have yet to be fully evaluated through a comprehensive program of 

simulation research.  

A recent manifestation of the tensions between the critics and proponents of PLS-PM has 

appeared in two articles published in Organizational Research Methods.  From the critical 

perspective, Rönkkö and Evermann (2013) used a series of conceptual arguments and empirical 

demonstrations in an attempt to show that several commonly held beliefs about particular 

properties and capabilities of PLS-PM – namely, that it is in fact an SEM technique, is able to 

correct for measurement error, can validate measurement models, works well in small samples, is 



5 
 

able to provide null hypothesis tests on path coefficients, and can be used in an exploratory, 

model-building fashion – are “methodological myths and urban legends” (p. 426).  In response, 

Henseler et al. (2014) provided a point-by-point rebuttal to each of Rönkkö and Evermann’s 

critiques, maintaining that most of their arguments are based on narrowly-conceived simulations 

and fundamental misconceptions about the purposes and capabilities of PLS-PM.  Whereas the 

exchange presented by these articles raises issues that are timely and important, the potential 

usefulness of this debate for guiding future work on PLS-PM is hampered by the fact that the 

issues raised were left largely unresolved.  Moreover, the exchange did not capture some 

additional issues that are relevant to the potential utility of PLS-PM, which draw from the 

broader literature on multivariate data analysis.   

The purpose of the present article is to (a) summarize and reflect on the key issues that 

underlie the exchange between Rönkkö-Evermann and Henseler et al.; (b) attempt to resolve 

these issues in an even-handed manner; and (c) draw from other areas of statistical theory and 

practice (e.g., psychometrics, econometrics, SEM, causal graphs) to offer additional thoughts 

concerning the utility of PLS-PM and ways in which the PLS-PM estimator might be improved.  

We hope to provide food for thought that will interest both critics and proponents of PLS-PM, 

with the intent of challenging both sides to seek common ground concerning the overriding goal 

of applied statistical modeling, which is to provide unbiased and efficient estimates of model 

parameters that allow meaningful tests of theories that embody important substantive 

phenomena.  We conclude with recommendations as to whether and how PLS-PM serves as a 

viable contender to SEM approaches in model estimation and evaluation.   Table 1 summarizes 

the positions on PLS-PM across all three articles, with respect to each of the six core issues and 
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an overall judgment on whether PLS-PM should be abandoned as a statistical tool for applied 

research.      

-------------------------------------------- 

Insert Table 1 about here 

------------------------------------------ 

 

1. Can PLS-PM be characterized as an SEM method? 

Rönkkö and Evermann began their critique by questioning the treatment of PLS-PM as a 

method of SEM, based on two arguments.  First, PLS-PM estimates path models not with latent 

variables, but with weighted linear composites of observed variables.  Second, rather than using 

path analysis with simultaneous equations, PLS uses separate OLS regressions that estimate 

relationships between the composites.  For these reasons, Rönkkö and Evermann asserted that 

PLS is more akin to OLS regressions on summed scales or factor scores than to covariance 

structure analysis.  The authors subsequently moderated their position, however, saying that 

“although PLS can technically be argued to be an SEM estimator, so can OLS regression with 

summed scales or factor scores: Both fit the definition of the term estimator (emphasis in 

original) (Lehmann & Casella, 1998, p. 4) because they provide some estimates of model 

parameters” (p. 433).  Nonetheless, Rönkkö and Evermann continued by criticizing the quality of 

PLS-PM estimates, noting that they are biased and inconsistent, and further added that “the lack 

of an overidentification test is another disadvantage of PLS over SEM” (p. 433). 

Henseler et al. countered by citing previous researchers, including Wold, who have 

characterized PLS-PM as a method of SEM.  Henseler et al. also argued that PLS-PM falls well 

within various descriptions of SEM, which generally refer to statistical techniques that examine 

relationships between independent and dependent variables within a presumed causal structure 
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(e.g., Byrne, 1998; Ullman & Bentler, 2001).  In addition, they maintained that the core, 

underlying statistical framework for PLS-PM is the “composite factor model”, a more general 

case of the common factor model that is the foundation of SEM.  Moreover, Henseler et al. 

criticized SEM for its reliance on the common factor model, arguing that this model “rarely 

holds in applied research” (emphasis in original) and that other models should be considered, 

particularly the composite factor model ascribed to PLS-PM.  Henseler et al. noted that, because 

this model places no restrictions on the covariances among the items assigned to a factor, it will 

generally yield better fit than the common factor model.  Further, they pointed out that PLS-PM 

estimates are only biased and inconsistent if they are viewed as estimates of common rather than 

composite factor model parameters.  Given that the two models are conceptually and statistically 

distinct, the estimates need to be interpreted differently.  Finally, Henseler et al. noted that a 

global overidentification test can be used in PLS-PM to verify the causal specification of the 

model, just as in the SEM context.  

In our view, arguing whether PLS-PM should be called an SEM method obscures the 

primary substance of the debate.  The more important issues concern the type of modeling 

approach represented by PLS-PM and its adequacy for estimating and testing hypothesized 

causal structures, regardless of whether this approach is characterized as SEM.  Therefore, we 

will focus on the methodological specifics of the approach and set aside the controversy 

regarding the labeling of PLS-PM as a SEM method.   

First, we note that Henseler et al.’s formal statistical distinction between the composite 

and common factor models stands in stark contrast to the traditional PLS-PM canon.  PLS-PM 

was originally developed as a less computationally demanding alternative to maximum 

likelihood-based SEM for estimating the associations among latent variables (e.g., Jöreskog & 
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Wold, 1982; Wold, 1982, 1985), not as a method for estimating structural relations among 

composite variables.   Because the composites in PLS-PM contain measurement error, the 

technique has historically been treated as simply a convenient and rough approximation of the 

common factor model, only capable of producing consistent estimates of factor loadings and 

intercorrelations as both the sample size (N) and number of observed indicators (p) increase 

without bound (i.e., consistency at large; Haenlein & Kaplan, 2004).  However, it seems that 

Henseler et al. are aligned with Rigdon’s (2012) recent recommendations to free PLS-PM from 

its original grounding in common factor-based SEM and develop it further as a purely 

composite-based modeling approach, thereby precluding any undue comparisons with true latent 

variable models.   

Although we see some merit in this perspective, Henseler et al.’s presentation of the 

“composite factor model” is problematic in several respects.  In particular, the path diagram that 

Henseler et al. use to illustrate their composite factor model is actually a common factor model 

containing within-factor correlated measurement errors.  As presented, the model is not 

identified, meaning that no unique solution exists for the parameters (Davis, 1993). Although this 

identification problem could be resolved by imposing additional parameter constraints (e.g., 

setting the measurement error correlations to be equal) or using informative Bayesian prior 

distributions (Lee & Song, 2012; McIntosh, 2013; Muthén & Asparouhov, 2012), a more serious 

issue is that the model’s causal structure and parameterization are fundamentally inconsistent 

with the model that PLS-PM (and other component-based approaches) actually estimates.  To 

illustrate, we contrast Henseler et al.’s representation of the composite factor model with a more 

accurate depiction of a composite-based measurement model in Figure 1, where: (a) the 

measurement-level pathways lead from the indicators to the composites, consistent with the 
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manner in which composite variables are formed in PLS-PM models; (b) the indicators are 

specified as having no measurement error; and (c) the composites also have no error, meaning 

that they are exact weighted linear combinations of their indicators (Bollen, 2011; Bollen & 

Bauldry, 2011; Grace & Bollen, 2008; Kline, 2013a).  This composite measurement model can 

be estimated using PLS-PM, other component-based modeling techniques (e.g., Hwang & 

Takane, 2004; Hwang, 2008, 2009; Tenenhaus, 2013; Tenenhaus & Tenenhaus, 2011), or even 

SEM provided that modified parameterizations are used (Bollen, 2011, Bollen & Bauldry, 2011; 

Bollen & Davis, 2009; Dolan, 1996; Dolan, Bechger, & Molenaar, 1999; McDonald, 1996; 

Treiblmaier, Bentler, & Mair, 2011).   

Given these marked differences between the two models, Henseler et al.’s 

characterization of the composite factor model as a more general case of the common factor 

model is not tenable.  In order for this nesting relation to hold, the more restricted model must be 

derivable from the less restricted model by imposing constraints on parameters (e.g., fixing 

parameters to some constant, such as zero, or setting parameters equal to one another; Steiger, 

Shapiro, & Browne, 1985).  In other words, the constraints in the less restricted model must be a 

strict subset of those in the more restricted model.  However, one cannot generate a common 

factor model simply by fixing parameters in the composite factor model displayed in our Figure 

1, as the direction of causality in the measurement model is reversed (i.e., indicator→construct 

rather than construct→indicator), and measurement error variances and covariances do not exist 

in the composite case.  Thus, Henseler et al.’s exposition would have been better served by 

focusing on PLS-PM as a technique for estimating strictly component-based path models 

(Tenenhaus, 2008), rather than trying to recast PLS-PM in terms of the common factor model.    
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Despite Henseler et al.’s critique of the common factor model, a broader survey of the 

literature reveals that PLS-PM proponents have not fully declared independence from the factor-

analytic tradition.  For instance, a method called consistent PLS (PLSc) has been devised that 

allows PLS-PM to recover common factor model parameters in finite samples (Dijkstra, 2010, 

2014; Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press).  Briefly, PLSc 

compensates for the absence of a true measurement model by using a rescaling method to 

disattenuate factor loadings and intercorrelations for measurement error.  Dijkstra (2014) argues 

that PLSc allows PLS-PM to accommodate both composite and common factor models, noting 

that an exclusive focus on composite-based modeling would substantially limit the usefulness of 

the technique.  Although PLSc is an impressive development, it is questionable whether PLSc 

adds any value over common factor-based SEM’s more versatile and powerful estimation and 

testing procedures, an issue we later address in greater detail.   

Turning now to model testing, we agree with Henseler et al. that the recent development 

of a global chi-square fit statistic for PLS-PM represents an important theoretical and empirical 

advance (Dijkstra, 2010, 2014; Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, 

in press). Prior to this development, the evaluation of PLS-PM models consisted of examining 

measures of explained variance, which shed little light on the tenability of a causal model 

(Henseler & Sarstedt, 2013). To be sure, explained variance is an important element of model 

quality, as it quantifies the strength of hypothesized relationships and the potential impact of 

interventions.  However, because the accuracy of parameter estimates hinges on achieving 

acceptable fit, measures of variance explained are subordinate to tests of fit (Antonakis et al., 

2010; Hayduk, Pazderka-Robinson, Cummings, Levers, & Beres, 2005; McIntosh, 2007).  Thus, 
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model fit should be established prior to evaluating model parameters, including measures of 

explained variance.  

 Several additional issues relevant to testing PLS-PM models merit attention.  First, a 

global chi-square
 
statistic merely provides an omnibus test of all constrained parameters (e.g., 

hypothesized null pathways) in the target model (Jöreskog, 1969).  Therefore, a significant chi-

square statistic does not identify which particular aspects of the model are at odds with the 

observed data.  For this reason, omnibus tests of model fit should be supplemented with local 

tests of fit on individual constraints to identify the specific sources of model misspecification 

(Bera & Bilias, 2001; Saris, Satorra, & van der Veld, 2009), as well as an assessment of which 

estimated pathways are most affected by the misspecifications (Kolenikov, 2011; Yuan, Kouros, 

& Kelley, 2008; Yuan, Marshall, & Bentler, 2003).  Such procedures are currently available 

when using maximum likelihood-based techniques.  However, PLS-PM lags far behind in this 

area of model evaluation, thus limiting the extent to which the researcher can verify fit and 

ensure the interpretability of parameter estimates.  Indeed, there are many ways in which a PLS-

PM model could show lack of fit.  For instance, typically not all of the composites in a given 

model will be linked by direct causal pathways, such that some of the inner relations will be 

indirect. Further, because all of the between-block information is assumed to be conveyed by the 

composites, observed variables from one block are assumed to have no direct connections with 

those from other blocks.   

One approach that can be used to conduct local tests of PLS-PM models involves the 

vanishing partial correlations implied by the model (Elwert, 2013; Hayduk et al., 2003; Shipley, 

2000, 2003, Pearl, 2009). To illustrate, consider the basic mediational model: A→B→C, which 

implies that A and C are conditionally independent given B; more formally, A ⊥ C | B.  For this 
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model, a test of the partial correlation rAC.B indicates whether full mediation (i.e., a zero direct 

effect of A on C) holds, a procedure known in econometrics as a Hausman test (Hausman, 1978, 

1983; see also Abrevaya, Hausman, & Khan, 2010; Antonakis et al., 2010; Antonakis, Bendahan, 

Jacquart, & Lalive, 2014).  This method is feasible for PLS-PM models, because it merely 

requires the correlation matrix of the composites and observed variables from an unrestricted 

measurement model and the relevant partial correlations implied by the model, with inferences 

performed using bootstrapping techniques.  Because identifying all implied conditional 

independencies can be tedious and prone to error, software for causal graphs should be used for 

this purpose (Kyono, 2010; Marchetti, Drton, & Sadeghi, 2013; Textor, 2013).  

In addition to fixed zero parameters in PLS-PM models, equality constraints on certain 

free parameters may be required to evaluate hypothesized differences in the magnitudes of 

effects.  For example, a researcher using PLS-PM could have a theory predicting that the 

structural pathways from two explanatory composite variables to a composite outcome variable 

are of different strengths.  In addition, one might want to determine whether the measurement-

level relationships between individual indicators and composite variables are invariant across 

certain types of population sub-groupings (e.g., gender, ethnicity).  If chi-square difference tests 

show that model fit significantly deteriorates following the imposition of an equality constraint, 

then there is evidence that the parameters in question are reliably different from each other 

(Steiger et al., 1985; Yuan & Bentler, 2004). Unfortunately, PLS-PM software does not currently 

allow for the imposition of equality constraints (Tenenhaus, 2008; Tenenhaus, Mauger, & 

Guinot, 2010).  However, an alternative option is to use SEM software to mimic the PLS-PM 

parameterization (e.g., McDonald, 1996), thereby permitting the use of equality constraints 
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within a composite-based path model and conventional chi-square difference tests for evaluating 

the tenability of the constraints.  

Second, Henseler et al.’s response to the Rönkkö and Evermann critique did not 

explicitly address the concerns regarding endogeneity, which refers to a violation of the key 

causal modeling assumption that the independent variables in an equation are uncorrelated with 

the error term, that is, rx,ε = 0 for all x (Antonakis et al., 2010, 2014; Bollen, 2012; McIntosh, 

2012; Semadeni, Withers, & Certo, 2013).  Unfortunately, endogeneity tends to be the rule rather 

than the exception in applications of multiple regression and related methods when using 

observational rather than experimental data.  This problem can stem from various factors, such as 

omitted variables, unmodeled measurement error, selection bias, common method effects, and 

non-recursive pathways among constructs (e.g., feedback loops).  Given that endogeneity causes 

parameter estimates to be inconsistent, corrective procedures are needed.  In econometrics and 

other areas of applied research, the technique of choice for dealing with endogeneity is 

instrumental variable estimation (IVE; Angrist and Krueger 2001; Greenland 2000).  To 

counteract problems created by endogeneity, instrumental variables must be: (1) strongly 

correlated with the independent variables; and (2) independent of the error terms.  IVE is 

typically implemented using two stage least squares (2SLS), with the first stage involving the 

regression of an independent variable x on an instrument z, followed by  computing the predicted 

values from this equation, as follows: 

 
  zx 10   (1) 

 
zx 10

ˆˆˆ    (2) 

In the second stage, the predicted values are substituted for the original independent variable in 

the focal explanatory equation: 
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    xy ˆ
10  (3) 

Because z is exogenous, r x̂ ,ε = 0, and 
1  can be estimated consistently.  Additional tests are then 

conducted to verify that the 2SLS estimates differ from those obtained the conventional OLS 

approach (Abrevaya et al., 2010), and that the instruments are uncorrelated with the error term 

(Baum, Schaffer, & Stillman, 2003, 2007; Semykina 2012).  For the latter type of test to be 

viable, the model must be overidentified, that is, the number of instruments must be greater than 

the number of endogenous predictors. Furthermore, 2SLS is not the only approach for 

implementing IVE, as one can also use simultaneous equation methods such as ML (Antonakis, 

et al., 2010; Baum et al., 2003, 2007) and three-stage least squares (3SLS) regression (Johnson,  

Ayinde, & Oyejola, 2011; Belsley, 1992; Kontoghiorghes & Dinenis, 1997). 

To our knowledge, however, only two studies have explicitly addressed endogeneity in 

composite predictors of PLS-PM models (Lovaglio & Vittadini, 2013; Vittadini, Minotti, 

Fattore, & Lovaglio, 2007).  In these studies, Vittadini and his colleagues pointed out that 

correlations between predictors and outcomes in the explanatory equations of the PLS-PM inner 

model can be influenced by unmodeled components in the predictor blocks, that is, systematic 

variation that is orthogonal to the composites of primary theoretical interest.  By extracting these 

extra components from the predictor blocks and explicitly including them in the model, 

endogeneity bias can be removed (Lovaglio & Vittadini, 2013; Vittadini et al., 2007).  However, 

this approach relies on information that is already available in the predictor blocks and therefore 

cannot adjust for endogeneity stemming from omitted variables or selection bias.  The PLSc 

approach is similarly limited, as it merely applies a rescaling correction for measurement error to 

obtain consistent estimates of common factor model parameters (Dijkstra, 2010, 2014; Dijkstra 

& Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press).  Therefore, the more 
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comprehensive IVE approach is required to cover the potential causes of endogeneity bias in real 

applications.  

It is noteworthy that IVE has been gaining prominence in the SEM domain, due mainly to 

the work of Bollen and his colleagues (Bollen & Bauer 2004; Bollen, Kirby, Curran, Paxton, & 

Chen, 2007; Bollen & Maydeu-Olivares, 2007; Kirby & Bollen, 2009; see also Nestler, 2013a, 

2013b). Given the promising results of this work, the potential transportability of IVE methods to 

the PLS-PM context should be examined in future research.  Indeed, given that a 2SLS approach 

that does not involve instruments is already used in PLSc (Dijkstra, 2010, 2014; Dijkstra & 

Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press), a logical next step is to include 

instruments to counteract the bias created by endogeneity.  

 Third, neither Rönkkö and Evermann nor Henseler et al. addressed the issue of correlated 

errors in the regression equations of the inner model and how these correlations might impact 

parameter estimates and model fit.  In the OLS context, a large body of theoretical and empirical 

work has addressed seemingly unrelated regression equations (SURE; Zellner, 1963), in which a 

set of regression equations estimated separately are interrelated via their error terms (Beasley, 

2008; Foschi, Belsley, & Kontoghiorghes, 2003; Kubáček, 2013). More generally, when using 

system-wide estimators (e.g., ML or 3SLS) with simultaneous equation models, error terms 

should be allowed to correlate given the possibility of omitted causes. To illustrate, assume the 

following true causal model: 

   qxy 210  (4) 

   qzzx 322110  (5) 

Now, suppose that q is omitted, and the model that is actually estimated is:  

                                           xy 10  (6) 
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   22110 zzx
 

(7)                                      

Because omitting q means that equations 6 and 7 are misspecified, the parameters differ from 

those in equations 4 and 5.  The absence of q can be accounted for by including rθ,ψ in the model 

(Antonakis et al., 2010), after which the true parameter values can then be recovered (i.e., δ1 = 

β1, λ1 = γ1, etc.).  Thus, if errors are not permitted to correlate when they should (cf. Cole, Ciesla, 

& Steiger, 2007; Reddy, 1992), overidentification tests will fail and coefficient estimates will be 

inconsistent.  Currently, PLS-PM models do not conventionally allow the error terms of the inner 

model to be intercorrelated, as each equation is estimated independently, typically using the OLS 

procedure. This problem likely gives rise to additional inconsistency in the coefficients and could 

be resolved by estimating the entire set of inner relations using system-wide estimators like ML 

or 3SLS regression (Johnson et al., 2010), which would explicitly take the error correlations into 

account while also allowing the use of instruments.   

2. Can PLS-PM reduce the impact of measurement error? 

 Rönkkö and Evermann questioned the notion that PLS-PM reduces the effects of 

measurement error.  Their arguments focused on the comparison of the weighted composites 

involved in PLS-PM with the unweighted sums of items used in OLS regression, noting that any 

advantage of PLS-PM must derive from the weights assigned to the indicators, which is 

essentially the only feature that sets PLS-PM apart from OLS regression.  Rönkkö and Evermann 

also showed analytically that the relationships between composites estimated in PLS are 

influenced not only by the indicator weights, but also by correlations between the measurement 

errors of the indicators, which are likely to be nonzero in empirical research (see also Rönkkö, in 

press).  They supplemented these analytical results with a small simulation that demonstrated the 

deleterious effects of correlated measurement errors on PLS-PM estimates.  Comparatively, both 
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SEM and path analysis with summed scales provided unbiased estimates in the presence of 

correlated measurement errors. 

 Henseler et al. acknowledged that PLS-PM does not eliminate the effects of measurement 

error.  Nonetheless, they pointed out that forming composites with multiple indicators provides 

some adjustment for unreliability and further argued that PLS further reduces measurement error 

by assigning larger weights to more reliable indicators, which they regarded as indicators that 

enhance the “predictive relevance” of the composite.  Henseler et al. criticized the Rönkkö and 

Evermann simulation due to the small number of conditions it comprised and reported a 

simulation that contained a larger number of conditions deemed to be more representative of 

situations involved in empirical research.  Based on this simulation, Henseler et al. concluded 

that composites derived using PLS mode A generally yield higher reliabilities than unweighted 

composites and the best single indicator used to form a composite (i.e., the indicator with the 

highest loading) and also produced much higher reliabilities than PLS mode B. 

 The apparent disagreements between Rönkkö and Evermann and Henseler et al. arose 

largely because they emphasized different sets of issues.  With regard to the simulations, Rönkkö 

and Evermann focused on the effects of correlated measurement errors on reliabilities and path 

estimates in PLS models.  In contrast, Henseler et al. addressed differences in reliabilities yielded 

by PLS, unweighted composites, and the best single indicator, making no mention of correlated 

measurement errors.  Thus, the Henseler et al. simulation was not equipped to challenge the 

conclusions of Rönkkö and Evermann regarding the effects of correlated measurement errors, 

and the Rönkkö and Evermann simulation did not contradict the results of Henseler et al., given 

that the conditions of the Rönkkö and Evermann simulation that were included in the Henseler et 

al. simulation yielded essentially the same results.  Thus, the conflicting views of Rönkkö and 
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Evermann and Henseler et al. primarily involve the conditions that should be included in their 

respective simulations, as opposed to the conclusions of the simulations themselves. 

 Turning to the results of the simulations, Henseler et al. concluded that “PLS mode A 

clearly outperforms sum scores” (emphasis in original) when indicator loadings vary widely, 

when the composite variables in the model are at least moderately related (i.e., β = 0.5), and 

when sample sizes are relatively large (i.e., 500 vs. 100), representing conditions not included in 

the Rönkkö and Evermann simulation.  However, differences in average reliabilities yielded by 

these conditions were very small in absolute terms, ranging from 0.004 to 0.005.  These 

differences are small enough to question whether the superiority of PLS mode A over summed 

scores is substantively important.  In the remaining conditions, reliabilities were higher for 

summed scores than for PLS mode A, but again the differences were rather small, with values of 

0.004, 0.019, and 0.145.  More to the point, the results of both simulations were evaluated by 

subjectively comparing reliabilities across conditions, which raises questions as to whether the 

observed differences are meaningful.  The results of the simulations would be more conclusive if 

confidence intervals were constructed around the reliabilities to more clearly evaluate their 

differences (Kelley & Cheng, 2012; Maydeu-Olivares, Coffman, García-Forero, & Gallardo-

Pujol, 2010; Padilla, & Divers, 2013), and if the effects of the different reliabilities on model 

parameters were statistically compared (Yetkiner & Thompson, 2010).   

Another limitation of the Rönkkö and Evermann simulation is that the true population 

model used to generate the data did not contain correlated measurement errors. Rather, the 

simulation was only equipped to study the effects of nonzero measurement error correlations that 

arise by chance due to sampling variability (see also Rönkkö, in press). The negative effects of 

these measurement error correlations should vanish as the sample size becomes larger, for both 
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PLS-PM and SEM.  Thus, the results obtained by Rönkkö and Evermann might be attributed 

more to the small sample size (N = 100) used in their simulation rather than the relative ability of 

the different approaches to handle measurement errors that are correlated in the population.  

When correlations among measurement errors exist in the population and are ignored, larger 

sample sizes only magnify the ability of overidentification tests, such as the chi-square,  to detect 

the misspecification, and parameter estimates and standard errors will likely be biased. Indeed, in 

most simulation studies examining the effects of correlated measurement errors, the true 

population model explicitly contains non-zero error correlations (e.g., Cole et al., 2007; Reddy, 

1992; Saris & Aalberts, 2003; Westfall, Henning, & Howell, 2012). Thus, if Rönkkö and 

Evermann had adopted this approach, the results of their simulation would have been more 

informative. 

As a further observation regarding the Henseler et al. simulation, we see little need to 

demonstrate that reliability is generally higher for a composite than for a single indicator.  This 

point is well established in the psychometric literature (e.g., Nunnally, 1978; Nunnally & 

Bernstein, 1994), and it follows from formulas used to compute reliability estimates, such as 

Cronbach’s alpha.  For instance, when indicators are standardized, alpha can be computed as 

follows: 

 ij

ij

rk

rk

)1(1 


 (8) 

where k is the number of items and  ̅   is the average interitem correlation.  Table 1 applies this 

formula with k ranging from 2 to 10 and  ̅   ranging from 0.10 to 0.90 in increments of 0.10.  To 

illustrate the comparison of the reliability of a composite with that of a single indicator, consider 
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a scale with three items and an average interitem correlation of 0.50.  As shown in Table 1, this 

scale has a reliability of 0.75.  If the items had equal loadings, then each loading would equal the 

square root of the average interitem correlation, or 0.50
1/2

 = 0.71, and the reliability of each item 

would equal the square of its loading, or 0.71
2
 = 0.50.  If the items had different loadings, then an 

item with a loading of 0.87 would have a reliability of 0.75, the same as that of the scale, 

although the loadings of the remaining items would have to be lower to maintain the average 

interitem correlation of 0.50 (one possible pattern of loadings is 0.87, 0.62, and 0.62).  Thus, the 

fact that composites tend to have higher reliabilities than individual items can be taken as a 

foregone conclusion. 

We should also note that all of the reliabilities reported in the two simulations are based 

on the common factor model, not composite factor model (Nunnally, 1978; Nunnally & 

Bernstein, 1994).  Elsewhere in their rebuttal, Henseler et al. critiqued Rönkkö and Evermann for 

relying on the common factor model, pointing out that the results of common factor models 

(SEM) and composite factor models (PLS-PM) cannot be directly compared, given that they 

estimate different underlying population parameters. Despite these admonitions, Henseler et al. 

invoked the common factor model to estimate reliability associated with PLS-PM.   Thus, their 

simulation does not address how measurement error is actually represented in the composite 

model of PLS-PM.  

Furthermore, debating whether PLS-PM or summed scales yield higher reliabilities seems 

rather superfluous in the common factor context, because neither of these approaches avoids the 

effects of measurement error.  PLS-PM and summed scales both involve composites containing 

the measurement error carried by the indicators, which is not somehow purged when the 

composite is formed.  Certainly, forming composites provides some relief from the effects of 
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measurement error, given that reliability increases as the number of items in a composite 

increases, as shown in Table 2.  However, this increase in reliability occurs at a decreasing rate, 

and error is never completely eliminated, regardless of the number of items or the magnitude of 

the average interitem correlation. Indeed, Rönkkö and Evermann conclude their discussion of 

reliability by noting that: “The options available for reducing the effect of measurement error 

with composite variables are limited because any linear composite of indicators that contain error 

will also be contaminated with error” (p. 436).  In a similar vein, Henseler et al. acknowledge 

that “PLS does not completely eliminate the effects of measurement error,” and although they 

claim that PLS reduces these effects substantially, these benefits depend entirely on the number 

of indicators and their intercorrelations, as made obvious by Table 2. Thus, we conclude that 

Rönkkö and Evermann and Henseler et al. generally agree that PLS-PM does not eliminate the 

effects of measurement error, a point we think is beyond dispute.  Although the amount of 

measurement error is a matter of degree, it necessarily hampers the ability of PLS-PM to 

accurately estimate the parameters of common factor models.   Moreover, an imperfectly 

measured composite in a model necessarily propagates bias to other composites, even if perfectly 

measured, via the relationships among the composites, thereby undermining all structural model 

estimates (Antonakis et al., 2010). 

Stepping back from the details of the two simulations, we believe the results of both 

simulations would have been more useful if they had explicitly addressed the distinctions 

between the composite and common factor models (Goodhue, Lewis, & Thompson, 2012a; 

Marcoulides & Chin, 2013). Under the common factor model, the best approach is SEM with 

latent variables, which is undeniably superior to PLS-PM and summed scales. This superiority 

arises from the fact that SEM includes parameters that segregate measurement error from the 
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model that relates the latent factors, whereas PLS-PM currently does not have this capability. In 

addition, correlated measurement errors can be incorporated into SEM, thereby allowing 

researchers to explicitly compensate for the types of effects demonstrated in the Rönkkö and 

Evermann simulation (see also Rönkkö, in press).   It must be stressed, however, that the addition 

of correlated errors to common factor models should be accompanied by an explicit theoretical 

and/or methodological rationale, rather than done in an uncritical manner simply to improve 

statistical fit (Boomsma, 2000; Cote, & Greenberg, 1990; Gerbing & Anderson, 1984; Saris & 

Aalberts, 2003).  Although the new PLSc method improves the correspondence between SEM 

and PLS-PM estimates when estimating common factor models (Dijkstra, 2010, 2014; Dijkstra 

& Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press), it cannot accommodate 

correlated measurement errors, which frequently arise in application (Cole et al., 2007; Lee & 

Antonakis, 2012; Reddy, 1992; Saris & Aalberts, 2003; Westfall et al., 2012).  Therefore, there 

seems to be little point in continuing to pit SEM and PLS-PM against each other when evaluating 

common factor models.  Rather, it seems most prudent to just leave common factor model 

territory solely to SEM.  

If the composite factor model is assumed (Bentler & Huang, 2014; Rigdon, 2012), then it 

can indeed be useful to compare PLS-PM, and possibly other component-based modeling 

techniques, to SEMs parameterized to incorporate composite variables (e.g., Dolan, 1996; Dolan 

et al., 1999; McDonald, 1996; Treiblmaier et al., 2011).  In this manner, the underlying model 

would be the same for both methods, which would allow meaningful comparisons of their 

relative performance.  Naturally, when comparing the approaches within a composite-based 

modeling scheme, unreliability and measurement error should not be evaluated and compared 

using procedures rooted in the common factor model (Rigdon, 2012).  Although there is a 
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current paucity of reliability indices appropriate for composite-based modeling, methods have 

recently been devised to adjust for irrelevant variation in composite predictors and thereby 

improve explanatory power in the PLS-PM context.  More specifically, the OnPLS approach 

partitions the total variability into three components: (a) a global component shared among all 

theoretically connected blocks of observed variables, which is essentially the structural model of 

theoretical interest; (b) a locally joint component that represents variability shared between some 

but not all of the blocks; and (c) a unique component that reflects variance specific to a single 

block (Löfstedt, Eriksson, Wormbs, & Trygg, 2012; Löfstedt, Hoffman, & Trygg, 2013; 

Löfstedt, Hanafi, & Trygg, 2013; Löfstedt & Trygg, 2011). Although this approach does not 

completely purge measurement error from each construct, as accomplished with the common 

factor model, it disattenuates the estimates of the core hypothesized relationships by removing all 

variation that is irrelevant to prediction, which is a major advance in the component-based 

modeling domain.  The OnPLS strategy could be further strengthened by using the IVE 

approaches discussed in the previous section, which can improve the consistency of estimation in 

the presence of measurement error (Abarin & Wang, 2012; Hardin & Carroll, 2003).  In addition, 

combining the OnPLS method with existing SEM strategies for incorporating composites (e.g., 

Dolan, 1996; Dolan et al., 1999; McDonald 1996; Treiblmaier et al., 2011) could generate a 

powerful and versatile component-based modeling technique, which would provide the benefits 

of SEM’s more well-developed arsenal of estimation and testing routines. Further empirical 

evaluation and comparison of SEM, PLS-PM and other approaches to estimate component-based 

path models are essential to verify these possibilities.   

3. Is PLS-PM Capable of Validating Measurement Models? 
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 Rönkkö and Evermann questioned the utility of PLS-PM for validating measurement 

models.  Their critique focused on the criteria commonly employed by studies that examine 

measurement models using PLS-PM, such as the composite reliability (CR) and the average 

variance extracted (AVE), as well as other criteria used less frequently, such as the relative  

goodness-of-fit (GoF) index and the standardized root mean square residual (SRMR).  Rönkkö 

and Evermann cited research which they claim debunks the use of the composite reliability (CR), 

average variance extracted (AVE; Aguirre-Urreta, Marakas, & Ellis, 2013) and GoF indices 

(Henseler & Sarstedt, 2013) for PLS-PM models.  To bolster these claims, Rönkkö and 

Evermann conducted a simulation to evaluate the ability of the CR, AVE, AVE-highest squared 

correlation (i.e., the maximum rather than average variance extracted for a set of indicators), the 

relative GoF, and the SRMR to detect various types of model misspecifications.  Rönkkö and 

Evermann found that none of the criteria they examined dependably identified measurement 

models that were incorrectly specified.  From these results, Rönkkö and Evermann concluded 

that “the measurement model should never be evaluated based on the composite loadings 

produced by PLS or any statistic derived from these [sic]” (p. 438), encouraging researchers to 

instead rely on established alternatives, such as chi-square tests of exact fit and common factor 

analysis (e.g., Nunally, 1978), 

 Henseler et al. countered by arguing that the Rönkkö and Evermann simulation was 

replete with errors, ranging from mistakenly equating PLS-PM with the common factor model to 

miscalculating the CR, AVE, and SMSR and misreporting their results.  They also criticized 

Rönkkö and Evermann for not explicitly comparing PLS-PM and covariance-based SEM as 

methods for validating measurement models. Henseler et al. conducted a simulation intended to 

address these errors and omissions and included additional evaluation criteria, such as chi-square 
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tests of exact fit.  From the results of their simulation, Henseler et al. concurred with Rönkkö and 

Evermann regarding the shortcomings of the CR, AVE, and relative GoF for detecting 

measurement model misspecifications.  In contrast, the tests of exact fit and the SRMR 

performed well, with somewhat better performance for covariance-based SEM than for PLS-PM.  

Henseler et al. discounted the apparent superiority of covariance-based SEM because it suffered 

from nonconvergence and improper solutions (i.e., Heywood cases), whereas PLS-PM did not.  

In the end, Henseler et al. recommended the chi-square test of exact fit and SRMR yielded by 

PLS-PM for detecting measurement model misspecification. 

We cannot adjudicate the accuracy of the simulations reported by Rönkkö and Evermann 

and Henseler et al., because doing so would require access to the raw output of the simulations.  

Nevertheless, we can assess what the criteria examined in the simulations are equipped to detect 

and whether they should, in principle, uncover the types of model misspecifications included in  

the simulations.  To frame this assessment, we first distinguish between two distinct properties of 

a measurement model: (1) the magnitudes of the estimated parameters in the model; and (2) the 

degree to which the model fits the data. The first property influences the CR, the AVE, and the 

relative GoF, which are essentially different ways of summarizing explained variation in the 

indicators.  For example, assume a single-factor model with the variance of the factor fixed to 

unity.  With this specification, the formula for the CR is as follows (Jöreskog, 1971): 
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where p is the number of observed indicators (i = 1 though p), the λi are the indicator loadings, 

and the ii are the measurement error variances.  The formula for the AVE draws from the same 

model parameters (Fornell & Larcker, 1981): 
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Application of these formulas for the CR and AVE in PLS-PM requires certain modifications, as 

outlined by Aguirre-Urreta et al. (2013).  The GoF and relative GoF, which were designed 

specifically for PLS-PM, are functions of the item loadings and the variance explained by the 

structural equations in a model (Henseler & Sarstedt, 2013).  Thus, all four of these measures are 

determined by the magnitudes of the parameter estimates for a model and are insensitive to how 

well the model fits the sample data. 

The second property of a measurement model, which concerns model fit, is captured by 

the chi-square test of exact fit and the SRMR.  These and other global fit statistics provide 

summaries of how well the model structure  – that is, the number of constructs and the pattern of 

free and constrained parameters – reproduces the relationships among the observed variables, 

irrespective of the strength of those relationships (Marsh, Hau, & Grayson, 2005). To illustrate 

further, the conventional ML chi-square statistic in SEM is computed as (N – 1)FML, where FML is 

the minimum value of the following discrepancy function that is used to guide the estimation of 

model parameters (Bollen, 1989; Hayduk, 1987):     

 pStraceSFML   )(||log||log 1
. (10) 

In this equation, S and Σ are, respectively, the observed and model-implied covariance 

matrices of the observed variables, | . | denotes the matrix determinant, trace is an operator that 
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sums the diagonal elements of a matrix, and p is the number of observed variables.  If the model 

is properly specified and additional supporting assumptions are met (i.e., a large sample size and 

multivariate normality), then S and Σ will be equivalent (within sampling variability), the log|S| 

and log|Σ| terms will cancel each other out, and the product of SΣ
-1

 will be an identity matrix 

with trace = p; the quantity (N – 1)FML will be distributed as a central χ
2
 variate on p – q degrees 

of freedom, where q is the number of estimated parameters in the model.  Therefore, the chi-

square statistic provides a sharp test of whether the data conform to the structure of the 

hypothesized model (a comparable chi-square
 
statistic has been developed for PLS-PM; see 

Dijkstra, 2010, 2014; Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press).   

 Like the chi-square, the SRMR provides an overall summary of the discrepancies 

between S and Σ (in standardized form), as follows (Wang & Wang, 2012):  

 
2/12 *)/)((

j k

jk prSRMR , (11) 

where rjk is the difference in the corresponding elements of the sample and model-implied 

correlation matrices, and p* is the number of non-redundant elements in each matrix (p* = p(p + 

1)/2). Note, however, that the SRMR is only a descriptive goodness-of-fit index rather than a test 

of causal specification (Schermelleh-Engel, Moosbrugger, & Müller, 2003).   

Unfortunately, the simulations conducted by Rönkkö and Evermann and Henseler et al. 

did not respect the distinction between the magnitudes of model parameters and the overall 

model.  Rathre, both simulations manipulated only the model structure, not the sizes of the 

parameters in the model , such that a population measurement model was estimated as specified 

and with various types of misspecifications (i.e., modifying the numbers of constructs and/or the 

pattern of free and constrained parameters).  As such, it can be assumed a priori that the 

simulation results would point to the test of exact fit and the SRMR as the optimal indicators of 
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specification error, given that these criteria are designed to detect precisely what the simulations 

manipulated.  Measures that reflect the magnitudes of model parameters, such as the CR, AVE, 

GoF and relative GoF, are incapable of reflecting how well the model reproduces the data.  To be 

sure, parameter estimates can be indirectly affected by whether a model is correctly specified, 

given that parameter estimates in misspecified models are often distorted (Hayduk et al., 2005; 

Kolenikov, 2011; McIntosh, 2007; Saris, Satorra, & van der Veld, 2009; Yuan, Marshall, & 

Bentler, 2003), but the direction of this distortion can be either upward or downward.  Therefore, 

researchers should not interpret measures based on parameter magnitude as indicating model fit, 

which is the province of the chi-square test and SRMR.  Similarly, parameter magnitude should 

not be taken as implying model misspecification, as a measurement model could adequately 

reproduce the observed covariances, yielding a non-significant chi-square statistic, but have 

parameters that are large or small in magnitude.  This point is illustrated by a single-factor model 

with three indicators, which is saturated (i.e., has zero degrees of freedom) and therefore fits any 

covariance matrix perfectly, regardless of the magnitudes of the covariances and the associated 

item loadings and measurement error variances.In sum, global fit statistics and measures that 

reflect the magnitudes of loadings and other model parameters should always be employed in a 

complementary fashion when assessing measurement models, and only for their intended 

purposes.   

With respect to using PLS-PM or covariance-based SEM to detect model 

misspecification, Henseler et al. argued in favor of PLS-PM due to the high proportion of 

nonconvergent runs and improper solutions (i.e., Heywood cases) obtained when SEM was used.  

However, Henseler et al. set the sample size for their simulations at 100 cases.  Previous research 

has shown that nonconvergence and improper solutions are more common when SEM is applied 
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to small samples, such as those analyzed by Henseler et al., due to the effects of sampling error 

(Dillon, Kumar, & Mulani, 1987; Fan, Thompson, & Wang, 1999; MacCallum, Widaman, 

Zhang, & Hong, 1999).  These problems tend to decrease as sample size increases, which would 

likely eliminate any apparent benefit of PLS-PM over SEM.  Indeed, it strikes us as odd that 

Henseler et al. did not vary sample size in their simulations that addressed measurement model 

validation, given that they emphasized sample size as “one of the most important variables in a 

simulation” (Paxton et al., 2001, p. 294) in their discussion of the reliability of PLS-PM 

composites relative to summed scores. 

It is also possible to interpret Henseler et al.’s comparative results on convergence 

behavior and solution propriety as more strongly supporting the ability of ML-based SEM to 

detect model misspecifications. In the SEM context, nonconvergence of the ML estimator is 

viewed as a first sign of model misspecification (Boomsma & Hoogland, 2001), as are Heywood 

cases (Chen, Bollen, Paxton, Curran, & Kirby, 2001; Kolenikov & Bollen, 2012).   To be sure, 

nonconvergence and improper solutions can arise even for properly specified models, but the 

Henseler et al. simulation clearly demonstrates the combined effects of misspecification and 

small sample size. In particular, the number of nonconvergent runs increased from 3.6% for the 

true model (Model 1, Figure 4) to 11.4% (Model 2, Figure 4), 13.6% (Model 3, Figure 4) and 

16.8% (Model 4, Figure 4) when various misspecifications were introduced. Furthermore, when 

considering only the convergent runs, no inadmissible ML solutions were reported under the true 

model or Model 2, whereas Heywood cases occurred in more than 60% of the solutions obtained 

for Model 3; for Model 4, up to 100% depending on the particular statistical package used.  In 

addition, the Type II error rates for the SEM vs. PLS-PM χ
2
 statistics were: 93.2% vs. 99.8% 

(Model 2); 0.0% vs. 19.9% (Model 3); and 0.0% vs. 4.1 (Model 4).  Altogether, these findings 
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demonstrate that ML-based SEM did a better job of signaling model misspecification than PLS-

PM, which “always converged” and yielded proper solutions, as well as more frequently 

accepted the misspecified models.      

Stepping back from the particular evaluation criteria considered by Rönkkö and 

Evermann and Henseler et al., we have some reservations about the meaning and interpretation 

of measurement models in PLS-PM, particularly given the frequent and inappropriate borrowing 

of concepts from the common factor analysis framework.  Composite-based models do not 

address the relationships between measures and constructs as these terms are usually conceived 

(Bentler, 1982; Borsboom, Mellenbergh, & Van Heerden, 2003; Edwards & Bagozzi, 2000), 

because the “latent” variables in PLS-PM are not latent in the sense of being unobserved, but 

instead are weighted composites of observed indicators.  Note that this operational definition of 

the constructs in PLS-PM holds even when using Mode A estimation (i.e., “reflective 

measurement”), which is an attempt to more closely mimic the common factor model (cf. 

Fattore, Pelagatti, & Vittadini, 2012; Rigdon, 2012).  Therefore, each indicator “loading” in a 

PLS-PM measurement model represents a part-whole relationship, because the indicator is part 

of the composite itself.  More specifically, when using Mode A estimation, the loadings are akin 

to item-total correlations (Nunnally, 1978); under Mode B estimation (i.e., “formative 

measurement”), the loadings are based on the multiple regression of the composite variables on 

their indicators (Hanafi, 2007; Tenenhaus, Esposito, Chatelin, & Lauro, 2005; Esposito Vinzi, 

Trinchera, & Amato, 2010).  As such, measurement models in PLS-PM essentially involve 

relationships between one type of manifest variable (i.e., individual indicators) and another type 

of manifest variable (i.e., weighted composites of indicators).  Researchers interested in 

examining relationships between measures and unobserved constructs are better served by SEM, 
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in which latent variables cannot be reduced to weighted composites of observed variables 

(Bentler, 1982).  Thus, it seems misguided to view composite-based models through a common 

factor lens, a problem which characterizes the bulk of the methodological and applied literature 

on PLS-PM.  In order for PLS-PM to serve the purposes of composite-based modeling, an 

essential requirement is “a complete and consistent approach to measurement which is factor-

free” (Rigdon, 2012, p. 355),  

Finally, when validating measurement models, researchers should consider evidence that 

goes beyond the general assessment criteria considered by Rönkkö and Evermann and Henseler 

et al.  For example, in both PLS-PM and SEM applications, global fit tests should always be 

accompanied by local tests (Bera & Bilias, 2001; Grace et al., 2012; Saris, Satorra, & van der 

Veld, 2009; Yuan, Kouros, & Kelley, 2008) and additional diagnostics such as fitted residuals 

(i.e., the differences between the elements of the sample and model-reproduced covariance 

matrices).  Other essential features of measurement models include the validity of individual 

items and the convergent and discriminant validity of the factors that constitute measurement 

models.   Under the common factor model, this information can be obtained by thoroughly 

examining item loadings, measurement error variances, and factor correlations, which should all 

be routinely considered in studies intended to validate measures (Jackson, Gillaspy, & Purc-

Stephenson, 2009).  Further recommendations for evaluating common factor models are 

available elsewhere (Bagozzi & Phillips, 1991; Bollen, 1989; Brown, 2006; Harrington, 2009; 

Klineb, 2013; Raykov & Marcoulides, 2010; Schumacker & Lomax, 2010).  For composite 

factor models, corresponding guidelines are in short supply due to the fundamental differences 

between the two measurement frameworks.  In fact, it has been suggested that conventional 

notions of validity might not even be relevant for composite constructs, because composite 
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indicators need not always have “conceptual unity” (Bollen, 2011, p. 372; see also Bollen & 

Bauldry, 2011).  As a recourse, PLS-PM practitioners could recast the assessment of 

measurement quality in terms of the model’s predictive ability, concentrating on examining the 

predictive utility of the composite variables (cf. Rigdon, 2012).  However, the interpretation of 

the composites themselves would remain problematic, particularly when they combine indicators 

that are conceptually heterogeneous (Edwards, 2011; Hardin & Chang, 2013; Hattie, 1985; 

Howell, Breivik, & Wilcox, 2013). 

Shifting focus to prediction comes with its own challenges.  First, the specification of the 

model (i.e., the number of constructs and the pattern of free and fixed parameters) would still 

need to be verified through global and local fit tests before any predictions can be trusted 

(Antonakis et al., 2010; Grace et al., 2012; Hayduk et al., 2005, 2007; McIntosh, 2007). Second, 

composite-based models will be particularly susceptible to overfitting (Hawkins, 2004; Hegdé, 

2010; Marewski & Olsson, 2007).  Because the estimates of structural parameters in these 

models capture both the theoretical process of interest and sampling variability in the particular 

data used for analysis, the model will generally achieve better within-sample prediction (i.e., 

predictive ability within the data set used to estimate the parameters) than out-of-sample 

prediction (i.e., predictive ability in data not used in estimation).  Given that the latter is the most 

important indicator of a models’ predictive utility (Meese & Rogoff, 1983), cross-validation 

should be used to assess the extent to which modeling results generalize to independent data sets 

(cf. Chin, 2010; Arlot & Celisse, 2010).  In addition, the OnPLS (Löfstedt et al., 2013) and IVE 

methods (Abarin & Wang, 2012; Hardin & Carroll, 2003) can be used to help compensate for the 

impacts of measurement error on overfitting.  Such approaches are particularly important given 

that high-dimensional, low sample size data sets often used to justify PLS-PM are particularly 
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prone to overfitting and accompanying Type I error inflation (Fan, Guo, & Hao, 2012; 

Forstmeier & Schielzeth, 2011; Subramanian & Simon, 2013).   

4. Does PLS-PM Provide Valid Inference on Path Coefficients? 

Rönkkö and Evermann critiqued the use of bootstrapped tests of significance for PLS-PM 

path coefficients on two grounds: (1) the critical ratios (i.e., parameter estimates divided by their 

bootstrap standard errors) are referred to the t distribution even when parameter estimates are not 

normally distributed; and (2) the bootstrap distribution of the parameter estimates deviates from 

the corresponding analytical sampling distribution.  Rönkkö and Evermann conducted a 

simulation revealing that the accuracy of inferences in PLS-PM may be compromised in certain 

situations. Using a two-construct population model with no structural relationship (i.e., β = 0.0), 

Rönkkö and Evermann found a bimodal (i.e., two-peaked) distribution for the path coefficient at 

a sample size of 100.  Moreover, the bootstrapped distribution of the PLS-PM path coefficient 

was markedly different from the original sampling distribution obtained from the Monte Carlo 

replications. These demonstrations suggested that PLS tests of inference can be biased and 

inconsistent.  

Henseler et al. responded by replicating and extending the simulations conducted by 

Rönkkö and Evermann.  As before, the sampling distributions of path coefficients of both β = 0.0 

and β = 0.3 in the same two-construct path model were bimodal at a sample size of 100.  

However, modifying certain aspects of the simulation design used by Rönkkö and Evermann 

produced sampling distributions that were unimodal.  Specifically, when holding the effect size 

constant at β = 0.3, unimodality was achieved by either: (a) increasing the sample size to 500; (b) 

making the loadings more heterogeneous; or (c) adding two constructs to the model.  In addition, 

altering the original simulation by simply increasing the effect size to β = 0.5 also yielded a 
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unimodal distribution. Furthermore, Henseler et al. found that three different strategies for 

constructing bootstrap-based confidence intervals (i.e., normal bootstrap, percentile confidence 

intervals, and bias-corrected and accelerated confidence intervals) provided impressive overall 

Type I and Type II error control, even at N = 100. 

We agree with Henseler et al. that coefficient distributions for PLS-PM are not 

necessarily bimodal.  However, because parameter distributions can deviate from normality 

under certain conditions, the routine use of the t distribution to test parameters is questionable. 

Furthermore, the Henseler et al. simulation did not disprove Rönkkö and Evermann’s core 

finding, which is that parameter distributions are bimodal under the null hypothesis, such that β = 

0.0.  Under this condition, the Henseler et al. simulation replicated the results of Rönkkö and 

Evermann.  The remaining conditions examined by Henseler et al. specified nonzero effect sizes 

in the population, which consistently generated parameter distributions that were unimodal.  

These results suggest that PLS-PM inference might be well served by adopting an alternative 

hypothesis significance testing (AHST) framework, in which bootstrap resampling would be 

performed with respect to values other than the conventional null hypothesis (cf. Rodgers & 

Beasley, 2013). However, in cases where the researcher lacks the requisite theory or prior 

empirical evidence to postulate nonnull hypotheses, it may be most prudent to invoke the null.  

Therefore, additional work is needed to more fully determine the behaviour of PLS-PM path 

coefficients under the null in order to delineate the specific conditions for which inference using 

the usual null hypothesis-based t-distribution can be justified.   

If the researcher does not wish to presume normality in a given application, non-

parametric methods of hypothesis testing are available that make no distributional assumptions. 

For instance, permutation (or randomization) tests have already been introduced into PLS-PM to 
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compare parameter estimates across multiple groups (e.g., Chin & Dibbern, 2010; Crisci & 

D'Ambra, 2012).  This approach is a promising alternative to the usual bootstrap procedure. 

Nonetheless, the bootstrapped confidence intervals demonstrated by Henseler et al. appear 

reasonably robust to violations of normality and divergence between analytical and bootstrap 

sampling distributions, at least for the relatively simple models examined by Henseler et al.  

Future simulation work is needed that considers more complex models, different sample sizes, 

and additional violations of assumptions to determine when this approach might break down.  

Moreover, significance tests are only meaningful if the estimates can be trusted to be 

consistent, regardless of the robustness of the inference procedure (Freedman, 2006; King & 

Roberts, 2012). As discussed earlier, the consistency of parameter estimates depends on whether 

a model is correctly specified, as evidenced by passing global and local tests of parameter 

constraints, as well as adjusting for endogeneity of predictors.  Clearly, bootstrapping an 

inconsistent estimate will not make inferential tests consistent.   

Beyond these issues, it is important to point out another common modeling situation in 

which bootstrapped (and permutation-based) inference in PLS-PM is likely to deteriorate, and 

for which no remedy has yet been devised in the PLS-PM context: analysis of data from a 

complex survey designs.   Complex survey designs are used to collect data in situations where 

simple random sampling, which is the ideal for conventional statistical inference, is not feasible 

for practical or ethical reasons (de Leeuw, Hox, & Dillman, 2008; Heeringa, West, & Berglund, 

2010; Lehtonen & Pahkinen, 2004).  Complex survey designs typically have two main features: 

stratification and clustering.  Stratification involves partitioning the sample into independent 

groups and then sampling within each group. This strategy helps ensure that groups on which 

information is desired are adequately sampled. For instance, if a survey focuses on the attitudes 
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and perceptions of managers at different levels of an organization, managers could be grouped 

according to level prior to drawing the sample.  Whereas this procedure renders the sampling 

process more efficient than simple random sampling, not every member of the population has an 

equal chance of being sampled, thereby violating the assumption that observations are identically 

distributed and leading to biased parameter estimates (Raghav & Barreto, 2011).  In contrast to 

stratification, clustering refers to naturally-occurring groupings of lower-order sampling units 

within higher-order units (e.g., employees within organizations, students within schools, patients 

within hospitals).  Given that responses within clusters tend to be intercorrelated, the assumption 

that observations are independent is compromised, resulting in underestimation of standard 

errors and inflated Type I error rates (Barreto & Raghav, 2013; McCoach & Adelson, 2010).     

The problems arising from stratification and clustering can be addressed in various ways 

(Hahs-Vaughn, McWayne, Bulotsky-Shearer, Wen, & Faria, 2011; Lumley, 2011; Osbourne, 

2011).  For instance, observations can be weighted according to their selection probabilities to 

obtain accurate parameter estimates (Pfeffermann, 1993, 1996).  The calculation of sampling 

weights need not fall on the analyst, because these weights are typically computed by survey 

methodologists and supplied with the data set.  Furthermore, appropriate standard errors can be 

derived using resampling techniques, such as the bootstrap or jackknife (Kolenikov, 2010), or by 

applying post-estimation corrections (Cameron, Gelbach, & Miller, 2011; Hedges, 2007, 2009; 

Thompson, 2011).  Alternatively, researchers can use statistical modeling techniques that directly 

incorporate features of the survey design as components of the analysis (i.e., strata, clusters), in 

order to ensure that estimation and inference are not compromised. For example, multilevel 

modeling (MLM) allows coefficients to potentially vary randomly across the clusters (Goldstein, 

2011; Hox, 2010; Snijders & Bosker, 2012) and can also compute standard errors that are robust 
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to common violations of modeling assumptions (e.g., normality of level 2 errors and 

homogeneity of variance across clusters; Hox, 2010; Maas & Hox, 2004a, 2004b). Combining 

MLM with bootstrap resampling has been shown to further improve the accuracy of inference 

(Kovacevic, Rong, & You, 2006; Pierre & Saidi, 2008; Roberts & Fan, 2004; Seco, García, 

García, & Rojas, 2013; van der Leeden, Meijer, & Busing, 2008).  

Implementing these methods would address some of the shortcomings of current 

applications of PLS-PM.  The fact that resampling is already the method of choice for PLS 

inference should facilitate the use of the adjustments described here. However, the resampling 

procedures available in PLS-PM software assume that the data are collected via simple random 

sampling, such that observations are both independent and identically distributed (e.g., Kock, 

2013; Ringle, Wende, & Will, 2005; Sanchez & Trinchera, 2013).  When complex survey data is 

involved, the resampling strategy must mimic the original sampling scheme (Aidara, 2013; Antal 

& Tillé, 2011; Pal, 2009; Preston, 2009), and PLS resampling routines should be modified 

accordingly.  Similarly, the new permutation approach to PLS-PM inference (cf. Chin & 

Dibbern, 2010; Crisci & D'Ambra, 2012) would also need to be adjusted for complex survey data 

(Pesarin & Salmaso, 2010).  Guidance for incorporating MLM and design-based resampling 

techniques into PLS-PM can be found in the SEM field, which has made considerable advances 

in both of these areas (e.g., Bai & Poon, 2010; Hox, 2013; Kaplan, Kim, & Kim, 2009; Oberski, 

2013; Rabe-Hesketh, Skrondal, & Zheng, 2007; Stapleton, 2008; Wu & Kwok, 2012).   

5. Is PLS-PM Advantageous at Small Sample Sizes? 

Rönkkö and Evermann reviewed and evaluated previous studies addressing the 

performance of PLS-PM with small sample sizes on various criteria (e.g., convergence, bias, 

efficiency, and power).  They argued that the apparent advantages of PLS-PM with small sample 
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sizes can be attributed to: (1) ignoring the effects of chance correlations among measurement 

errors, which inflates parameter estimates; and (2) the use of a t distribution for NHST when the 

coefficient distributions are not normal, which leads to increased Type I error rates.  To bolster 

this argument, Rönkkö and Evermann reported a small simulation that compared the 

performance of PLS-PM, SEM, and path analysis with summed scales across sample sizes of 25, 

50, and 100.  They found that, when the population effect size was zero, PLS-PM produced 

bimodal parameter estimates with modes that were positive and negative, whereas SEM and the 

summed scale approach yielded estimates centered at zero.  When the population effect was 

positive, PLS-PM generated estimates that progressively exceeded the population effect as 

sample size decreased, whereas SEM produced estimates centered at the population value, and 

summed scales yielded estimates slightly below the population value.  Based on these results and 

related empirical evidence from the literature (Chin & Newstead, 1999), Rönkkö and Evermann 

concluded that PLS-PM has no advantages when applied to small samples and recommend that 

researchers should maximize sample size.  If this is not possible, they suggested making use of 

specialized small sample estimation techniques developed in the SEM context or parceling 

indicators to reduce the overall number of observed variables in the model. 

Henseler et al. agreed with Rönkkö and Evermann’s observation that many researchers 

apparently assume that PLS-PM is amenable to small sample sizes.  They then compared PLS-

PM to SEM with regard to both statistical power and convergence.  They cited evidence from the 

literature indicating that, in small samples, SEM tends to produce smaller standard errors than 

those yielded by PLS-PM and argued that any conflicting findings in this regard are statistical 

artifacts stemming from fundamental differences between composite and common factor model 

parameters.  Furthermore, Henseler et al. reiterated their earlier simulation findings on the high 
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frequency of nonconvergence and improper solutions in SEM under misspecified measurement 

models and a sample size of 100. From these observations, Henseler et al. concluded that, with 

small samples, PLS-PM can be successfully applied when other methods fail, referring 

particularly to SEM.   

The different conclusions drawn by Rönkkö and Evermann and Henseler et al. seem to 

result from the different weights they place on the criteria typically used to evaluate the 

performance of analytical techniques with small samples.  Foremost among these criteria are 

convergence, bias, efficiency, and statistical power.  Certainly, an analytical approach that 

frequently fails to converge to a solution is problematic.  However, as we previously discussed, 

Henseler et al.’s particular results on the small-sample convergence behavior of ML-based SEM 

actually demonstrated its superiority over PLS-PM in signaling misspecified measurement 

models.  Furthermore, there are various ways to address convergence issues in SEM, such as 

choosing better starting values, increasing the number of iterations, and modifying convergence 

criteria (defaults for these factors differ across packages and need not be accepted without 

question).  For example, the Stata program has recently introduced an advanced SEM module 

which has various maximization options to help increase convergence rates when using ML 

(StataCorp, 2013).  In addition, the Mplus package for SEM offers sophisticated optimization 

routines for ML such as numerical and Monte Carlo integration (Muthén & Muthén, 1998-2013), 

which facilitate the estimation of complex models.  Future comparisons between PLS-PM and 

SEM should consider these newly developed algorithms, as past reliance on software defaults 

may have painted an overly negative picture of ML’s small sample convergence behaviour with 

properly specified models.  Although one could argue that the various convergence 
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enhancements might potentially reduce ML’s first line of defense against misspecified models, 

the judicious use of global and local fit tests should help offset this problem.  

Regarding the effects of sample size on bias, efficiency, and power, existing simulation 

studies have not yielded consistent results.  Some studies suggest few appreciable differences 

between SEM and PLS-PM (e.g., Goodhue et al., 2012), whereas other studies indicate that SEM 

outperforms PLS-PM (Chumney, 2013; Hulland, Ryan, & Rayner, 2010).  Further evidence 

suggests that the small sample performance of both SEM and PLS-PMdepends on which specific 

aspects of the model are considered.  For example, some findings indicate that PLS-PM 

surpasses SEM at recovering estimates and standard errors within the structural (inner) portion of 

the model, whereas ML performs better in this regard within the measurement (outer) aspect of 

the model (Sharma & Kim, 2013; Vilares, Almeida, & Coelho, 2010; Vilares & Coelho, 2013). 

We agree with Henseler et al. that much of the relevant literature comparing the finite sample 

behaviour of PLS-PM and SEM is inconclusive due to naïve comparisons of composite and 

common factor models (see also Marcoulides & Chin, 2013; Marcoulides, Chin, & Saunders, 

2012; Rai, Goodhue, Henseler, & Thompson, 2013).  Treiblmaier et al. (2011) show how to 

properly parameterize SEM approaches to allow unconfounded head-to-head comparisons with 

PLS-PM in the composite-based structural model case.  

Another major limitation of existing studies comparing PLS-PM and SEM is that they 

have not considered advances in SEM estimation and testing procedures designed to compensate 

for small sample size.  As Rönkkö and Evermann note, this is an active area of research.  For 

example, several Bartlett-type (1954) corrections to the conventional ML chi-square statistic 

have been developed to control Type I error rates when the sample size is low relative to the 

number of parameters in the model (Herzog, & Boomsma, 2009; Herzog, Boomsma, & 
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Reinecke, 2007).  Among these procedures, the Swain (1975) correction has been shown to 

perform particularly well (Antonakis & Bastardoz, 2013; Bastardoz & Antonakis, 2013; Herzog 

& Boomsma, 2009; Herzog et al., 2007; Jackson, Voth, & Frey, 2013; Wolf, Harrington, Clark, 

& Miller, 2013).  In addition, ridge-type corrections for SEM yield consistent estimates, accurate 

tests of model fit, and high convergence rates in small samples (Bentler & Yuan, 2011; Jung, 

2013; Yuan & Chan, 2008; Yuan, Wu, & Bentler, 2011).  Futhermore, robust approaches have 

been developed for dealing with other suboptimal data conditions that tend to exacerbate the 

impact of small sample size on SEM, such as missing data (Enders, 2006, 2011; Raykov, 2012; 

Savalei, 2010; Savalei & Yuan, 2009; Yuan & Zhang, 2012) and non-normality (Lei & Wu, 

2012; Savalei, 2010, in press; Savalei & Falk, in press).  Despite the availability of these 

advancements, the standard practice in comparisons of PLS-PM and SEM is to implement the 

latter using classical ML estimation, which does not reflect SEM’s current capabilities.  

Therefore, future comparative studies on PLS-PM and SEM should be expanded to include the 

above-mentioned innovations to obtain more current and conclusive results about small sample 

performance.   

One of Rönkkö and Evermann’s suggestions for handling small sample size in SEM that 

warrants further comment involves the use of parcels.  Briefly, parceling involves reducing the 

size of a model by aggregating (i.e., summing or averaging) subsets of observed variables and 

then using the aggregates as indicators.  Research on the advantages and disadvantages of 

parceling is ongoing (e.g., Little, Rhemtulla, Gibson, & Schoemann, 2013; Marsh, Lüdtke, 

Nagengast, Morin, & Von Davier, 2013; Rocha & Chelladurai, 2012).  One of the primary 

concerns with parceling is that collapsing indicators into aggregates can conceal misspecification 

in the measurement portion of the model, leading to overly optimistic fit statistics and inflated 
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estimates of structural parameters.  Even in the ideal case where the scales are undimensional 

(i.e., no correlated measurement errors or cross-loadings), the model is correctly specified, and 

the observed variables are multivariate normally distributed, SEM fit statistics and parameter 

estimates have been shown to be vary depending on how indicators are allocated to parcels 

(Sterba, 2011; Sterba & MacCallum, 2010).  Therefore, parceling should used cautiously, and 

researchers should report the variability of fit statistics and parameter estimates across different 

allocations of indicators to parcels.   Software modules are available to facilitate the construction 

and display of parcel-allocation distributions (Sterba, 2011; Sterba & MacCallum, 2010).   

6. Can PLS-PM be Used for Exploratory Modeling?   

Rönkkö and Evermann pointed out that, despite the frequent descriptions of PLS-PM as 

an exploratory approach to model building, most applications are actually just as confirmatory as 

SEM studies, such that researchers use theory to specify both the constructs and system of causal 

pathways a priori, followed by parameter estimation and model evaluation.  Rönkkö and 

Evermann claimed that the seminal work on PLS-PM did not emphasize its exploratory potential, 

deeming it unsuitable for both model discovery (i.e., learning a model in a data-driven fashion 

when the lack of a guiding theory prevents a complete a priori specification of relationships) and 

model modification (i.e., revising an initially postulated model a posteriori in order to achieve 

better representation of the sample data).  Regarding model discovery, Rönkkö and Evermann 

asserted that PLS-PM cannot extract patterns from data because the model must be fully 

specified for analysis, with each indicator assigned to one and only composite variable in the 

outer aspect of the model and the relations among the composites posited for the inner aspect of 

the model.  Concerning model modification, Rönkkö and Evermann voiced concerns over PLS-

PM because it does not provide overidentification tests and modification indices to detect 
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incorrect parameter restrictions.  They also pointed out that both model discovery and model 

modification techniques already exist in SEM, and if an hypothesized model is in doubt, limited 

information estimators for SEM (e.g., 2SLS) are available that are less prone to propagating the 

impact of specification errors throughout the model.  

Henseler et al. responded by criticizing Rönkkö and Evermann’s representation of the 

early literature on PLS-PM, citing quotes from Wold that explicitly promoted an exploratory 

paradigm for the method.  However, Henseler et al. noted that very few researchers (about 14%) 

who use PLS-PM have adopted an exploratory perspective. Nevertheless, Henseler et al. asserted 

that applications of SEM – ubiquitously touted as a confirmatory technique – also frequently 

involve a substantial dose of exploration to improve model fit. Further, they claimed that PLS-

PM still enables exploratory modeling because: (1) the researcher can always start with a 

saturated inner model (i.e., all possible composite-level paths are included a priori) and then 

remove any non-significant relationships a posteriori); (2) chi-square tests and other fit indices 

(e.g., SRMR) can be used to assess whether the model is underparameterized; and (3) cases 

where the common factor model does not hold support the use of PLS-PM to explore whether the 

composite factor model is more appropriate. Henseler et al. also countered Rönkkö and 

Evermann’s support of SEM-based modification indices and limited information estimators (e.g., 

2SLS) by noting that the former have proven unreliable, and that PLS-PM is similar to limited 

information estimators in terms of dampening the impact of specification errors, given that the 

regression equations in PLS-PM are estimated separately.        

 Our reflections on this exchange concentrate on the fundamental methodological issue 

raised, i.e., the current and potential capabilities of PLS-PM for exploratory model building.  

First, as to modifying an hypothesized model that does not adequately fit to the data, we concur 
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with Henseler et al. that many SEM applications end up being partially exploratory, and that 

conventional SEM modification indices (MIs) show suboptimal performance.  More specifically, 

MIs: (1) assume that the rest of the model is fully correct when considering the tenability of 

freeing a specific restriction (i.e., estimating the expected change in both the global chi-square 

statistic and parameter estimates); and (2) are prone to capitalization on chance if corrective 

procedures are not used (Green, Thompson, & Babyak, 1998; Green, Thompson, & Poirer, 1999, 

2001; Hancock, 1999).  Therefore, post-hoc model modification can actually increase rather than 

reduce specification errors (Fan, 2010).  However, local specification checks (e.g., tests of 

vanishing partial correlations, IVE) can help overcome some of these limitations in both SEM 

and PLS-PM applications, as they evaluate each constraint independently without assuming the 

remaining constraints are correct (Shipley, 2000, 2003, Bollen et al., 2009).   

Concerning Henseler et al.’s claim that PLS-PM is an exploratory alternative to SEM 

when the common factor model is untenable, we maintain that researchers need to make an a 

priori choice between the common factor and composite factor model.  This decision should be 

based on careful consideration of whether the observed variables are reflective or formative 

indicators of the theoretical constructs (Bollen & Lennox, 1991; Edwards & Bagozzi, 2000; 

MacKenzie, Podsakoff, & Jarvis, 2005).  If the theoretical constructs can be viewed as common 

underlying causes of their respective indicators, then a reflective (i.e., common factor) 

measurement model is the obvious choice.  Reflective measurement models are particularly well-

suited to multi-item instruments that assess unobservable psychological constructs (e.g., anxiety, 

self-esteem, affect, quality of life, etc.) (Fayers & Hand, 1997, 2002; Nunnally & Bernstein, 

1994; Raykov & Marcoulides, 2010).  In cases where the indicators do not reflect the theoretical 

constructs but rather combine to produce them, a formative (i.e., composite) measurement model 
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is appropriate (Diamantopoulos & Temme, 2013; Kline, 2013a). For instance, socio-economic 

status is typically conceived of as a formative construct, generated by a weighted linear 

combination of indicators such as income, educational attainment, occupational prestige, and 

neighborhood (Bollen & Lennox, 1991; National Center for Education Statistics, 2012).  

Formative models can be implemented using PLS-PM, other varieties of composite-based path 

modeling (Hwang & Takane, 2004; Hwang, 2008, 2009; Tenenhaus, 2013; Tenenhaus & 

Tenenhaus, 2011), reparameterizations of SEM for handling composites (Dolan, 1996; Dolan et 

al., 1999; McDonald, 1996), or modified versions of reflective factor models (e.g., Edwards, 

2011; Treiblmaier et al., 2011).   The latter two options are the most advantageous, as they allow 

the use of: (a) established methods of parameter estimation and fit assessment; and (b) a 

combination of common factors and composites within the same path model, if required.   

We should add that applying limited information estimators, as recommended by both 

Rönkkö and Evermann and Henseler et al., could lull practitioners into a false sense of security 

regarding the usefulness of their models, particularly when the model is grossly misspecified.  In 

such cases, there is little point in interpreting parameter estimates, particularly when the 

researcher does not know the location and magnitude of the specification errors. Again, we 

emphasize that local tests should be used to help ferret out the specific sources of 

misspecification in a model.    

When a researcher has no guiding theory, such that the goal is model discovery, we 

concur with Rönkkö and Evermann that exploratory methods with strong analytical foundations 

are more widely available in SEM than in PLS-PM.  The particular brand of exploratory SEM 

(Asparouhov & Muthén, 2009) referenced by Rönkkö and Evermann is rather limited, however, 

as it focuses specifically on adding cross-loadings into CFA and SEM measurement models.  
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Beyond this procedure, there are numerous automated search algorithms that can determine the 

optimal number of latent variables and system of relations between them (e.g., Landsheer, 2010; 

Marcoulides & Ing, 2012; Shimizu et al., 2011; Spirtes, Glymour, Scheines, & Tillman, 2010; Tu 

& Xu, 2011; Xu, 2010, 2012; Zheng & Pavlou, 2010).  These techniques will almost invariably 

return several models that provide a good fit to the data.  Subject matter expertise can then be 

used to help select the most plausible of the discovered models, which can be subjected to cross-

validation using independent data.  Although certainly not guaranteed to reveal the “truth” about 

the causal data-generating process in any given application, these exploratory SEM procedures 

can potentially discover meaningful and useful models that might not have been conceived in 

advance.   

Concerning model discovery strategies for PLS-PM, we disagree with Henseler et al.’s 

suggestion to begin with a fully saturated inner model and then delete non-significant paths.   

This approach is suboptimal, as it fails to recognize that the correct model might not result by 

simply restricting non-significant pathways in the estimated model.  Rather, the true model could 

differ markedly from the estimated model in terms of the number of composite variables, the 

pattern of free and fixed parameters, and the causal flow of the model.  Therefore, when PLS-PM 

practitioners do not have a guiding theory, a more rigorous and sophisticated approach is needed 

to reveal plausible model structures  

Presently, we are aware of only one technique for model discovery in the PLS-PM 

context, namely universal structure modeling (USM; Buckler & Hennig-Thurau, 2008; 

Turkyilmaz, Oztekin, Zaim, & Demirel, 2013), which is implemented in the Neusrel software 

package (http://www.neusrel.com/welcome/). Briefly, USM proceeds in two steps: (1) the use of 

PLS-based exploratory algorithms to assign observed variables to a user-specified number of 

http://www.neusrel.com/welcome/
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composites; and (2) application of neural networks to discover the optimal system of linear, non-

linear, and interactive pathways among the composites.  Unfortunately, there is a dearth of 

published empirical research comparing USM to extant SEM and PLS-PM exploratory modeling 

procedures.  Further work should be aimed at filling this gap, as well drawing from the vast data 

mining literature to construct automated model search algorithms suitable for PLS-PM (Gaber, 

2010; Chakrabarti et al., 2009; Kargupta, Han, Yu, Motwani, & Kuma, 2009; Lin, Xie, 

Wasilewska, & Liau, 2008; Ratner, 2012).  Indeed, PLS regression is often used for data mining 

(Allen, Peterson, Vannucci, & Maletić-Savatić, 2013; Vidaurre, van Gerven, Bielza, Larrañaga, 

& Heskes, 2013; Wold, Eriksson, & Kettaneh, 2010), and potential extensions of this approach 

should be examined. Given that sharply-defined, a priori conceptual frameworks are often 

lacking in applied research, such as when data are collected to simply describe populations or 

meet program reporting requirements (Boslaugh, 2007; Brady, Grand, & Powell, 2001; 

Trzesniewski, Donnellan, & Lucas, 2011; Vartanian, 2011), it is crucial that the methodological 

toolboxes of both PLS-PM and SEM practitioners contain viable approaches for exploratory 

modeling.  

Conclusion 

The present commentary has taken stock of the recent exchange between Rönkkö and 

Evermann and Henseler et al. on the properties and capabilities of PLS-PM.  For each point of 

the exchange, we have summarized and critically evaluated the core arguments in light of the 

broader methodological and statistical literature (e.g., psychometrics, econometrics, SEM, and 

causal analysis). At the same time, we also offered specific recommendations for improving the 

ability of PLS-PM to estimate and test theoretical models. Many of these recommendations 

extend to other approaches for path modeling with composite variables (Hwang & Takane, 2004; 

Hwang, 2008, 2009; Tenenhaus, 2013; Tenenhaus & Tenenhaus, 2011), which have limitations 
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similar to those of PLS-PM in terms of their ability to validate causal structures. Therefore, it is 

our hope that PLS-PM specialists and other methodologists will take the initiative to further 

develop and examine the viability of our ideas in future theoretical and empirical work, which 

may help to ultimately resolve the growing impasse between proponents and critics of PLS-PM.  

It should become increasingly feasible to implement and test our suggestions, given the ongoing 

development of open source software for custom statistical programming (e.g., R Core Team, 

2013), including modules for conducting PLS-PM (Monecke, 2013; Rönkkö, 2013; Sanchez & 

Trinchera, 2013) and similar composite-based modeling approaches (Tenenhaus, 2013).  

Looking ahead, we maintain that PLS-PM developers and practitioners should take heed 

of two key considerations that arose from our coverage of the two target articles and other 

relevant literature.  First, we believe that much of the controversy surrounding the viability of 

PLS-PM as a statistical method can be attributed to its original development and ongoing 

application as a technique that attempts to imitate common factor-based SEM.  As Rigdon 

(2012) aptly points out, “Both the method’s originators and its critics have tended to evaluate 

PLS path modeling in terms of what it is not” (p. 342). Moreover, the purported advantages of 

PLS-PM relative to SEM (e.g., reduced computational demands and superior convergence 

behavior, robustness to small sample size, tolerance of badly behaved distributions, exploratory 

capabilities in the absence of theory, etc.) also exist in the SEM domain, owing to recent 

theoretical and technical innovations (see Hoyle, 2012; Kaplan, 2009; Kline, 2013b; Skrondal & 

Rabe-Hesketh, 2004).  Even the new PLSc technique does not seem capable of completely 

matching SEM’s estimation and testing capabilities for common factor-based modeling (e.g., 

Dijkstra, 2010, 2014; Dijkstra & Henseler, 2012, 2013; Dijkstra & Schermelleh-Engel, in press), 

because it is not equipped to deal with the ubiquitous problem of correlated measurement errors 
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(e.g., Cole et al., 2007; Reddy, 1992; Rönkkö, in press; Saris & Aalberts, 2003; Westfall et al., 

2012).  Therefore, we fully support Rigdon’s (2012) recommendation for PLS-PM to divorce 

itself completely from the factor-analytic tradition and concentrate on developing itself further as 

a purely composite-based statistical methodology.  We also contend that this paradigm shift 

should be respected when using other strategies for composite-based structural modeling (Hwang 

& Takane, 2004; Hwang, 2008, 2009; Tenenhaus, 2013; Tenenhaus & Tenenhaus, 2011).  

Anything else would appear to invite stalemate and stagnation, outcomes that we would certainly 

like to see avoided.  

Second, even within a solely composite-focused modeling league, PLS-PM and related 

methods will still face tough competition from SEM, which can be reparameterized in different 

ways to handle composite variables (Bollen, 2011, Bollen & Bauldry, 2011; Bollen & Davis, 

2009; Dolan, 1996; Dolan et al., 1999; McDonald, 1996; Treiblmaier et al., 2011).  Given the 

versatile and powerful array of model estimation and testing routines available in SEM, we are 

frankly skeptical at this time that either PLS-PM or any of its sister techniques could be shown to 

be superior in the composite case.  If not, the recent calls for discontinuing the use of PLS-PM 

might be justified (Antonakis et al., 2010; Rönkkö, in press; Ronkko & Everman, 2013; Rönkkö 

& Ylitalo, 2010.  However, any firm judgments in this regard should rest on a comprehensive, 

rigorous program of comparative research incorporating our recommendations for improving 

PLS-PM and similar approaches to path modeling with composite variables.   
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Table 1. Summary of positions on key issues related to application of PLS-PM 

Issue Rönkkö and Evermann’s 

critique 

Henseler et al.’s response McIntosh et al.’s reflection 

 

1. Can PLS-PM be 

characterized as an 

SEM method? 

No. PLS-PM yields biased 

parameter estimates, offers no 

model overidentification tests, 

and cannot correct for 

endogeneity in predictors.  

Yes. PLS-PM is a version of SEM 

designed to analyze relationships 

among composite rather than 

common factors.  Bias is only an 

artifact arising from incorrect 

interpretation of PLS-PM 

estimates as common factor 

model estimates.  Global 

overidentification tests and 

supplemental indices are available 

to evaluate model fit.   

No. PLS-PM is not currently able to adequately estimate and 

test causal structures. Local tests of constrained parameters are 

needed to supplement global fit assessments in PLS-PM.  

Whereas tests of hypothesized null relationships are possible 

in PLS-PM, current software limitations prevent the use of 

equality constraints, which must instead be implemented using 

SEM methods for composite variables. Instrumental variable 

methods are required for removing endogeneity bias. 

Correlations between endogenous disturbances must also be 

taken into account.   

2. Can PLS-PM reduce 

the impact of 

measurement error? 

No. PLS-PM cannot 

accommodate measurement 

error and is particularly 

sensitive to unmodeled 

correlated errors, which result in 

biased estimates.   

Yes. PLS-PM capitalizes on 

correlations among composite 

factor indicators in order to 

produce more reliable constructs.  

A weighted PLS-PM composite 

will be more reliable than an 

unweighted sum, provided that 

item reliabilities are 

heterogeneous, sample size is 

sufficiently large, and the 

composites are moderately 

correlated.  

No.  Under the common factor model, SEM is clearly superior 

to PLS-PM, because it purges measurement error from the 

indicators, and correlated errors can be modeled. Under the 

composite factor model, both PLS-PM and reparameterized 

versions of SEM are appropriate, but measurement error will 

always be an inherent part of the composites, even with large 

numbers of highly correlated indicators. The instrumental 

variables approach is needed to help achieve consistent 

estimation in the presence of measurement error.  

3. Is PLS-PM capable 

of validating 

measurement models? 

No. PLS-PM cannot validate 

measurement models, as the 

various indices available for 

evaluating model fit (e.g., 

composite reliability, average 

Yes. Rönkkö and Evermann relied 

on the common rather than 

composite factor model, made 

several mistakes in computing 

and reporting the various fit 

Yes, in the composite factor case.  Given that measurement 

error can never be completely eliminated from composite 

variables, PLS-PM is unsuitable for validating common factor-

based measurement models, and is limited to the composite 

case. Researchers need to maintain a distinction between two 
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variance extracted, relative 

goodness-of-fit index) cannot 

reliably detect different types of 

misspecifications.    

measures, and did not explicitly 

compare PLS-PM with SEM. A 

revised version of the analysis 

demonstrated that the chi-square 

test and the standardized root 

mean squared residual are able to 

consistently detect different type 

of misspecifications, and 

performed better when using 

SEM.  However, high rates of 

non-convergence and improper 

solutions in SEM demonstrated 

the overall superiority of PLS-

PM, which always converged.    

types of overall model assessment criteria: (1) measures of 

explained variance (e.g., CR, AVE); and (2) model fit statistics 

(e.g., chi-square, SRMR).  Under the common factor model, 

other, more detailed evaluation criteria include item loadings, 

measurement errors, and fitted residuals. Under the composite 

factor model, researchers should recast the detailed assessment 

of measurement quality in terms of the predictive ability of the 

composites, which should be further verified by cross-

validation.  Increased rates of non-convergence and improper 

solutions in SEM are typically observed under model 

misspecification, which supports rather than refutes the ability 

of SEM to detect incorrect models.  PLS-PM’s unfailing 

convergence may result in increased acceptance of bad 

models.  

4. Does PLS-PM 

provide valid inference 

on path coefficients? 

No. PLS-PM’s reliance on t-

tests for coefficient inference is 

compromised by: (1) bimodal 

distributions for parameter 

estimates under the null 

hypothesis; and (2) 

discrepancies between 

analytical and bootstrap 

sampling distributions.  

Yes. PLS-PM path coefficients 

will not be bimodally distributed 

in all situations. Unimodality can 

be achieved with larger sample 

sizes and stronger effect sizes. A 

variety of bootstrapped-based 

approaches for building 

confidence intervals can offset the 

impact of unimodality and 

discrepancies between analytical 

and bootstrap sampling 

distributions.   

Inconclusive.  Further research is required to determine the 

behavior of PLS-PM path coefficients under the null. 

Researchers can also bypass rigid distributional assumptions 

by using permutation (randomization) tests, which have yet to 

be adopted for regular use in PLS-PM.  

5. Is PLS-PM more 

advantageous than 

SEM at small sample 

sizes? 

No. Any apparent advantages of 

PLS-PM over SEM at small 

sample sizes can be attributed 

to: (1) ignoring the effects of 

chance correlations among 

measurement errors, which 

inflates parameter estimates; 

Yes. Interpretation of the small 

sample performance of PLS-PM 

relative to SEM is often 

confounded by the differences 

between composite and common 

factor models.  However, the 

unfailing convergence of PLS-PM 

Inconclusive.  Extant simulation research comparing PLS-PM 

and SEM has neglected several methodological innovations 

designed to improve SEM’s performance in the small sample 

case (e.g., Swain corrections, ridge regressions adjustments, 

new ML search algorithms). Future comparative work needs to 

incorporate these advances in order to better determine the 
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and (2) the use of a t distribution 

for NHST when the coefficient 

distributions are not normal, 

which leads to increased Type I 

error rates.   

at small samples is a definite 

advantage over SEM.   

 

 

relative small sample performance of PLS-PM and SEM.  

 

6. Can PLS-PM be 

used for exploratory 

modeling? 

No. PLS-PM is incapable of 

“discovering” causal models, as 

it requires researchers to 

provide a complete model 

specification based on theory.  It 

also does not offer the same 

model modification and 

exploration capabilities as SEM.  

Yes. PLS-PM can be seen as 

exploratory alternative to SEM 

when the common factor model 

does not fit well. One can also 

start with a fully saturated PLS-

PM model and remove the non-

significant pathways in a second 

step.  SEM modification indices 

are not reliable and often 

capitalize on chance.  

Yes, but options are currently limited. Researchers should 

decide a priori whether the common or composite factor 

model is more appropriate based on careful consideration of 

the nature of the observed indicators and their most likely 

relationship with the construct (i.e., formative versus 

reflective).  The strategy of specifying a saturated PLS-PM 

model and then removing non-significant paths cannot be 

routinely trusted to lead to the correct model. A principled 

exploratory approach called universal structure modeling is 

available in PLS-PM. Future work should focus on developing 

additional automated model search procedures appropriate for 

the composite factor situation. Ideas could be taken from the 

SEM field, which offers a number of exploratory model search 

algorithms. 

7. Conclusion: Should 

PLS-PM be 

abandoned? 

Yes. PLS-PM should be 

abandoned in favor of SEM, 

which has more powerful, 

versatile, tried-and-true methods 

of parameter estimation and 

model testing.  Even regression 

with either summed scales or 

factor scores is preferable to 

PLS-PM.  PLS-PM is perhaps 

appropriate when the only 

research goal is prediction, but 

there is a lack of supporting 

evidence.   

No. PLS-PM has survived 

Rönkkö and Evermann’s 

critiques.  PLS-PM should remain 

in the statistical toolkits of applied 

researchers. Future research 

should focus on the performance 

of PLS-PM in estimating 

composite factor models and 

predicting outcomes.   

Yes, in all models involving common factors. PLS-PM should 

be completely abandoned for use in both common factor 

measurement models and path models with common factors, 

as it cannot compete with SEM's capabilities in this area.  

PLS-PM could still be used with composite factor 

measurement models and path models with composite 

variables, but several recommendations for improvement in 

model estimation and testing need to be incorporated (e.g., 

localized model fit testing, instrumental variables estimation, 

and techniques for dealing with correlated prediction errors). 

In future work, PLS-PM and SEM should be more thoroughly 

compared in terms of their ability to analyze composite factor 

models and predict outcomes.   
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Table 2.  Reliability as a function of the average interitem correlation and the number of 

items that constitute a scale. 

 

 

                                           Average Interitem Correlation 

# of Items .10 .20 .30 .40 .50 .60 .70 .80 .90 

_______________________________________________________________ 

   2 .18 .33 .46 .57 .67 .75 .82 .89 .95 

   3 .25 .43 .56 .67 .75 .82 .88 .92 .96 

   4 .31 .50 .63 .73 .80 .86 .90 .94 .97 

   5 .36 .56 .68 .77 .83 .88 .92 .95 .98 

   6 .40 .60 .72 .80 .86 .90 .93 .96 .98 

   7 .44 .64 .75 .82 .88 .91 .94 .97 .98 

   8 .47 .67 .77 .84 .89 .92 .95 .97 .99 

   9 .50 .69 .79 .86 .90 .93 .96 .97 .99 

  10 .53 .71 .81 .87 .91 .94 .96 .98 .99 

_______________________________________________________________ 

Note. Table entries are Cronbach’s alpha for standardized items. 
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Figure 1: Composite Factor Model 

 

 

 

 

 


