
Estimation, Planning and Mapping for
Autonomous Flight Using an RGB-D Camera in
GPS-denied Environments

Abraham Bachrach*, Samuel Prentice*, Ruijie He, Peter Henry, Albert S. Huang,
Michael Krainin, Daniel Maturana, Dieter Fox and Nicholas Roy

Abstract RGB-D cameras provide both color images and per-pixel depthestimates.
The richness of this data and the recent development of low-cost sensors have com-
bined to present an attractive opportunity for mobile robotics research. In this paper,
we describe a system for visual odometry and mapping using anRGB-D camera,
and its application to autonomous flight. By leveraging results from recent state-
of-the-art algorithms and hardware, our system enables 3D flight in cluttered envi-
ronments using only onboard sensor data. All computation and sensing required for
local position control are performed onboard the vehicle, reducing the dependence
on unreliable wireless links. However, even with accurate 3D sensing and position
estimation, some parts of the environment have more perceptual structure than oth-
ers, leading to state estimates that vary in accuracy acrossthe environment. If the
vehicle plans a path without regard to how well it can localize itself along that path, it
runs the risk of becoming lost or worse. We show how the BeliefRoadmap (BRM)
algorithm (Prentice and Roy, 2009), a belief space extension of the Probabilistic
Roadmap algorithm, can be used to plan vehicle trajectoriesthat incorporate the
sensing model of the RGB-D camera. We evaluate the effectiveness of our system
for controlling a quadrotor micro air vehicle, demonstrateits use for constructing
detailed 3D maps of an indoor environment, and discuss its limitations.

Abraham Bachrach and Samuel Prentice contributed equally tothis work.

Abraham Bachrach, Samuel Prentice, Ruijie He, Albert Huang and Nicholas Roy
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139.
e-mail: abachrac, ruijie, albert, prentice, nickroy@mit.edu

Peter Henry, Michael Krainin and Dieter Fox
University of Washington, Department of Computer Science & Engineering, Seattle, WA.
e-mail: peter, mkrainin, fox@cs.washington.edu.

Daniel Maturana
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. e-mail: dimatura@cmu.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/18320649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Bachrach et. al.

1 Introduction

Unmanned air vehicles (UAVs) rely on accurate knowledge of their position for
decision-making and control. As a result, considerable investment has been made
towards improving the availability of global positioning infrastructure, including
utilizing satellite-based GPS systems and developing algorithms to use existing RF
signals such as WiFi. However, most indoor environments andmany parts of the
urban canyon remain without access to external positioningsystems, limiting the
ability of current autonomous UAVs to fly through these areas.

Localization using sonar ranging (Leonard and Durrant-Whyte, 1991), laser
ranging (Thrun et al., 2000) or camera sensing (Se et al., 2002) has been used ex-
tremely successfully on a number of ground robots and is now essentially a com-
modity technology. Previously, we have developed algorithms for MAV flight in
cluttered environments using laser range finders (Bachrachet al., 2009a) and stereo
cameras (Achtelik et al., 2009). Laser range finders that arecurrently available in
form factors appropriate for use on a MAV are very high precision, but only provide
range measurements along a plane around the sensor. Since these sensors can only
detect objects that intersect the sensing plane, they are most useful in environments
characterized by vertical structures, and less so in more complex scenes.

Fig. 1 Our quadrotor micro air vehicle (MAV). The RGB-D camera is mounted at the base of the
vehicle, tilted slightly down.

Structured light RGB-D cameras are based upon stereo techniques, and thus
share many properties with stereo cameras. The primary differences lie in the range
and spatial density of depth data. Since RGB-D cameras illuminate a scene with a
structured light pattern, they can estimate depth in areas with poor visual texture
but are range-limited by their projectors. This paper presents our approach to pro-
viding an autonomous micro air vehicle with fast and reliable state estimates and
a 3D map of its environment by using an on-board RGB-D camera and inertial
measurement unit (IMU). Together, these allow the MAV to safely operate in clut-
tered, GPS-denied indoor environments. The control of a micro air vehicle requires
accurate estimation of not only the position of the vehicle but also the velocity –
estimates that our algorithms are able to provide. Estimating a vehicle’s 3D motion
from sensor data typically consists of estimating its relative motion at each time step

Autonomous Flight Using an RGB-D Camera 3

by aligning successive sensor measurements such as laser scans or RGB-D frames, a
process most often known as “visual odometry” when comparing camera or RGB-D
images.

Given knowledge of the relative motion of the vehicle from sensor frame to sen-
sor frame, the 3D trajectory of the vehicle in the environment can be estimated by
integrating the relative motion estimates over time. Givenknowledge of the vehicle
position in the environment, the locations of obstacles in each sensor frame can also
be used to construct a global map. While often useful for localposition control and
stability, visual odometry methods suffer from long-term drift and are not suitable
for building large-scale maps. To solve this problem, we also demonstrate how our
previous work on RGB-D Mapping (Henry et al., 2010) can be incorporated to de-
tect loop closures, correct for accumulated drift and maintain a representation of
consistent pose estimates over the history of previous frames.

However, the fast dynamics of UAVs have stringent requirements in terms of
state estimation accuracy. The RGB-D sensor has a limited range and field of view,
which strongly affects its reliability for state estimation on UAVs. When position
information is temporarily not available from the onboard sensors, the state estimate
will diverge from the true state much faster than on a ground vehicle, giving the
UAV greater sensitivity to sensor limitations as it moves through the environment.
Our approach to addressing this sensitivity is based on the Belief Roadmap (BRM)
algorithm (Prentice and Roy, 2007; He et al., 2008a; Prentice and Roy, 2009). The
BRM is a generalization of the Probabilistic Roadmap (PRM) algorithm (Kavraki
et al., 1996), performing searches in the belief space of thevehicle efficiently by
using the symplectic form of the Kalman Filter (KF) (Abou-Kandil, 2003) to find
the minimum expected cost path for the vehicle.

In this paper, we provide two primary contributions. Firstly, we provide a sys-
tematic experimental analysis of how the best practices in visual odometry using
an RGB-D camera enable the control of a micro air vehicle. Secondly, we give an
extension of the BRM planning algorithm for a quadrotor helicopter (Figure 1). We
describe our overall system, justify the design decisions made, provide a ground-
truth evaluation, and discuss its capabilities and limitations. We conclude the paper
with a demonstration of the quadrotor helicopter using the BRM algorithm to navi-
gate autonomously in indoor environments.

This paper extends preliminary results given by Huang et al.(2011) and by He
et al. (2008a), demonstrating the RGB-D mapping algorithm and the BRM algo-
rithm. We give additional algorithmic details regarding estimation and mapping,
provide the extension of the BRM to other sensor modalities such as the RGB-D
camera, and give a more thorough experimental analysis in real-world environments.

2 Vehicle Position Estimation

The problem we address is that of quadrotor helicopter navigation. The quadrotor
must use the onboard RGB-D sensor to estimate its own position (local estimation),

4 Bachrach et. al.

build a dense 3D model of the environment (global simultaneous localization and
mapping) and use this model to plan trajectories through theenvironment.

Our algorithms are implemented on the vehicle shown in Figure 1. The vehicle is
a Pelican quadrotor manufactured by Ascending Technologies GmbH. The vehicle
has a maximal dimension of70cm, and a payload of up to1000g. We have mounted
a stripped down Microsoft Kinect sensor and connected it to the onboard flight com-
puter. The flight computer, developed by the Pixhawk projectat ETH Zurich (Meier
et al., 2011), is a 1.86 GHz Core2Duo processor with 4 GB of RAM. The computer
is powerful enough to allow all of the real-time estimation and control algorithms to
run onboard the vehicle.

Following our previous work, we developed a system that decouples the real-
time local state estimation from the global simultaneous localization and mapping
(SLAM). The local state estimates are computed from visual odometry (section 2.1),
and to correct for drift in these local estimates the estimator periodically incorpo-
rates position corrections provided by the SLAM algorithm (section 2.2). This archi-
tecture allows the SLAM algorithm to use much more processing time than would
be possible if the state estimates from the SLAM algorithm were directly used to
control the vehicle.

If the UAV does not have access to perfect state knowledge, such as from external
sources (e.g., motion capture, GPS, etc.), it can localize itself by first using sensors
to measure environmental features and then by registering the measurements against
a pre-existing map. To control the quadrotor, we integratedthe new visual odome-
try and RGB-D Mapping algorithms into our system previouslydeveloped around
2D laser scan-matching and SLAM (Bachrach et al., 2009a). The motion estimates
computed by the visual odometry are fused with measurementsfrom the onboard
IMU in an Extended Kalman Filter, described in Appendix A. The filter computes
estimates of both the position and velocity which are used bythe PID position con-
troller to stabilize the position of the vehicle.

We keep the SLAM process separate from the real-time controlloop, instead
having it provide corrections for the real-time position estimates. Since these posi-
tion corrections are delayed significantly from when the measurement upon which
they were based was taken, we must account for this delay whenwe incorporate
the correction by retroactively modifying the appropriateposition estimate in the
state history. All future state estimates are then recomputed from this corrected po-
sition, resulting in globally consistent real-time state estimates. By incorporating
the SLAM corrections after the fact, we allow the real-time state estimates to be
processed with low enough delay to control the MAV, while still incorporating the
information from SLAM to ensure drift free position estimation.

2.1 Visual Odometry

The visual odometry algorithm that we have developed is based around a standard
stereo visual odometry pipeline, with components adapted from existing algorithms.

Autonomous Flight Using an RGB-D Camera 5

Fig. 2 The input RGB-D data to the visual odometry algorithm alongsidethe detected feature
matches. The top row images are from timet, the bottom row images are from timet + 1. The
left column is the depth image, and the middle column is the corresponding RGB image. The right
hand column shows the pixels that are matched between frames, where inlier feature matches are
drawn in blue and outliers are drawn in red.

While most visual odometry algorithms follow a common architecture, a large num-
ber of variations and specific approaches exist, each with its own attributes. A con-
tribution of this paper is to specify the steps of our visual odometry algorithm and
compare the alternatives for each step. In this section we specify these steps and we
provide the experimental comparison of each step in the visual odometry pipeline.
Our overall algorithm is most closely related to the approaches taken by Mei et al.
(2009) and Howard (2008), and consists of the following sequence of operations:

1. Image Preprocessing:An RGB-D image is first acquired from the RGB-D cam-
era (Fig. 2). The RGB component of the image is converted to grayscale and
smoothed with a Gaussian kernel ofσ = 0.85, and a Gaussian pyramid is con-
structed to enable more robust feature detection at different scales. Each level
of the pyramid corresponds to one octave in scale space. Features at the higher
scales generally correspond to larger image structures in the scene, which gener-
ally makes them more repeatable and robust to motion blur.

2. Feature Extraction: Features are extracted at each level of the Gaussian pyramid
using the FAST feature detector (Rosten and Drummond, 2006). The threshold
for the FAST detector is adaptively chosen using a simple proportional controller
to ensure a sufficient number of features are detected in eachframe. The depth
corresponding to each feature is also extracted from the depth image. Features
that do not have an associated depth are discarded. To maintain a more uniform
distribution of features, each pyramid level is discretized into 80×80 pixel buck-
ets, and the 25 features in each bucket with the strongest FAST corner score are
retained.

6 Bachrach et. al.

3. Initial Rotation Estimation: For small motions such as those encountered in
successive image frames, the majority of a feature’s apparent motion in the image
plane is caused by 3D rotation. Estimating this rotation allows us to constrain the
search window when matching features between frames. We usethe technique
proposed by Mei et al. (2009) to compute an initial rotation by directly minimiz-
ing the sum of squared pixel errors between downsampled versions of the current
and previous frames.
One could also use an IMU or a dynamics model of the vehicle to compute this
initial motion estimate, however the increased generalityof the image based es-
timate is preferable, while providing sufficient performance. An alternative ap-
proach would be to use a coarse-to-fine motion estimation that iteratively esti-
mates motion from each level of the Gaussian pyramid, as proposed by Johnson
et al. (2008).

4. Feature Matching: Each feature is assigned an 80-byte descriptor consisting
of the brightness values of the9 × 9 pixel patch around the feature, normalized
to zero mean and omitting the bottom right pixel. The omission of one pixel
results in a descriptor length more suitable for vectorizedinstructions. Features
are then matched across frames by comparing their feature descriptor values us-
ing a mutual-consistency check (Nistér et al., 2004). The match score between
two features is the sum-of-absolute differences (SAD) of their feature descrip-
tors (Howard, 2008), which can be quickly computed using SIMD instructions
such as Intel SSE2. A feature match is declared when two features have the low-
est scoring SAD with each other, and they lie within the search window defined
by the initial rotation estimation.
Once an initial match is found, the feature location in the newest frame is refined
to obtain a sub-pixel match. Refinement is computed by minimizing the sum-of-
square errors of the descriptors, using ESM to solve the iterative nonlinear least
squares problem (Benhimane and Malis, 2004). We also use SIMD instructions
to speed up this process.

5. Inlier Detection: Although the constraints imposed by the initial rotation esti-
mation substantially reduce the rate of incorrect feature matches between frames,
an additional step is necessary to further prune away bad matches. We fol-
low Howard’s approach of computing a graph of consistent feature matches,
and then using a greedy algorithm to approximate the maximalclique in the
graph (Howard, 2008; Hirschmuller et al., 2002).
The graph is constructed according to the fact that rigid body motions are
distance-preserving operations – the Euclidean distance between two features at
one time should match their distance at another time. Thus, each pair of matched
features across frames is a vertex in the graph, and an edge isformed between
two such pairs of matched feature if the 3D distance between the features does
not change substantially from the prior frame to the subsequent frame. For a
static scene, the set of inliers make up the maximal clique ofconsistent matches.
The max-clique search is approximated by starting with an empty set of matched
feature pairs and iteratively adding matched feature pairswith greatest degree
that is consistent with all matched feature pairs in the clique (Fig. 2). Overall,

Autonomous Flight Using an RGB-D Camera 7

Fig. 3 Panorama photograph of the motion capture room used to conduct our ground-truth exper-
iments. Visual feature density varies substantially throughout this room.

this algorithm has a runtime quadratic in the number of matched feature pairs,
but runs very quickly due to the speed of the consistency checking. In our exper-
imental analysis, we compare this approach to RANSAC-basedmethods (Nist́er
et al., 2004; Konolige et al., 2007).

6. Motion estimation: The final motion estimate is computed from the matched
features in three steps. First, Horn’s absolute orientation method provides an ini-
tial estimate by minimizing the Euclidean distances between the inlier feature
matches (Horn, 1987). Second, the motion estimate is refinedby minimizing
feature reprojection error using a nonlinear least-squares solver (Benhimane and
Malis, 2004). This refinement step implicitly accounts for the increase in depth
uncertainty with range due to the fact that the depth estimates are computed by
stereo matching in image space. Finally, feature matches exceeding a fixed repro-
jection error threshold are discarded from the inlier set and the motion estimate
is refined once again.
To reduce short-scale drift, we additionally use a keyframetechnique. Motion is
estimated by comparing the newest frame against a referenceframe. If the camera
motion relative to the reference frame is successfully computed with a sufficient
number of inlier features, then the reference frame is not changed. Otherwise,
the newest frame replaces the reference frame after the estimation is finished. If
motion estimation against the reference frame fails, then the motion estimation
is tried again with the second most recent frame. This simpleheuristic serves to
eliminate drift in situations where the camera viewpoint does not vary signifi-
cantly, a technique especially useful when hovering.

2.1.1 Visual Odometry Performance

There are a variety of visual odometry methods, and the existing literature is often
unclear about the advantages and limitations of each. We present results comparing
a number of these approaches and analyze their performance.As is true in many
domains, the tradeoffs can often be characterized as increased accuracy at the ex-
pense of additional computational requirements. In some cases, the additional cost
is greatly offset by the improved accuracy.

We conducted a number of experiments using a motion capture system that pro-
vides 120 Hz ground truth measurements of the MAV’s positionand attitude. The

8 Bachrach et. al.

motion capture environment can be characterized as a singleroom approximately
11m× 7m× 4m in size, lit by overhead fluorescent lights and with a wide variation
of visual clutter – one wall is blank and featureless, and theothers have a varying
number of objects and visual features (see Fig. 3). While thisis not a large volume,
it is representative of many confined, indoor spaces, and provides the opportunity to
directly compare against ground truth.

We recorded a dataset of the MAV flying various patterns through the motion
capture environment, designed to challenge vision-based approaches to the point of
failure, and includes motion blur and feature-poor images,as would commonly be
encountered indoors and under moderate lighting conditions. Substantial movement
in X, Y, Z, and yaw were all recorded, with small deviations inroll and pitch. We
numerically differentiated the motion capture measurements to obtain the vehicle’s
ground truth 3D velocities, and compared them to the velocities and trajectories es-
timated by the visual odometry and mapping algorithms. Table 1 shows the perfor-
mance of our integrated approach, and its behavior when adjusting different aspects
of the algorithm. Each experiment varied a single aspect from our approach. We
present the mean velocity error magnitude, the overall computation time per RGB-
D frame, and thegross failure rate. We define a gross failure to be any instance
where the visual odometry algorithm was either unable to produce a motion esti-
mate (e.g., due to insufficient feature matches) or where theerror in the estimated
3D velocities exceeded a fixed threshold of 1 m/s. Timing results were computed on
a 2.67 GHz laptop computer.

Visual Odometry Variations

In developing our overall approach to visual odometry, we assessed different vari-
ants of the following steps of the process:

Inlier detection RANSAC based methods (Nistér et al., 2004) are more com-
monly used than the greedy max-clique approach. We tested against two RANSAC
schemes, traditional RANSAC and Preemptive RANSAC (Nistér, 2005). The latter
attempts to speed up RANSAC by avoiding excessive scoring ofwrong motion hy-
potheses. In our experiments, when allocated a comparable amount of computation
time (by using 500 hypotheses), greedy max-clique outperformed both.

Initial rotation estimation A good initial rotation estimate can help constrain
the feature matching process and reduce the number of incorrect feature matches.
Disabling the rotation estimate results in slightly fasterruntime, but more frequent
estimation failures.

Gaussian pyramid levels Detecting and matching features on different levels of
a Gaussian pyramid provides provides resilience against motion blur and helps track
larger features.

Reprojection error We compared unidirectional motion refinement, which min-
imizes the reprojection error of newly detected features onto the reference frame,

Autonomous Flight Using an RGB-D Camera 9

Velocity error % gross total time
in m/s failures in ms

Our approach 0.387± 0.004 3.39 14.7
Inlier detection
RANSAC 0.412± 0.005 6.05 15.3
Preemptive RANSAC 0.414± 0.005 5.91 14.9
Greedy max-clique –our approach 0.387± 0.004 3.39 14.7
Initial rotation estimate
None 0.388± 0.004 4.22 13.6
Gaussian pyramid levels
1 0.387± 0.004 5.17 17.0
2 0.385± 0.004 3.52 15.1
3 –our approach 0.387± 0.004 3.39 14.7
4 0.387± 0.004 3.50 14.5
Reprojection error minimization
Bidir. Gauss-Newton 0.387± 0.004 3.24 14.7
Bidir. ESM –our approach 0.387± 0.004 3.39 14.7
Unidir. Gauss-Newton 0.391± 0.004 3.45 14.6
Unidir. ESM 0.391± 0.004 3.47 14.6
Absolute orientation only 0.467± 0.005 10.97 14.4
Feature window size
3 0.391± 0.004 5.96 12.8
5 0.388± 0.004 4.24 13.7
7 0.388± 0.004 3.72 14.2
9 –our approach 0.387± 0.004 3.39 14.7
11 0.388± 0.004 3.42 15.7
Subpixel feature refinement
No refinement 0.404± 0.004 5.13 13.1
Adaptive FAST threshold
Fixed threshold (10) 0.385± 0.004 3.12 15.3
Feature grid/bucketing
No grid 0.398± 0.004 4.02 24.6

Table 1 Comparison of various approaches on a challenging dataset. Error computed using a high
resolution motion capture system for ground truth.

with bidirectional refinement, which additionally minimizes the reprojection error
of reference features projected onto the new frame. We additionally compared a
standard Gauss-Newton optimization technique with ESM. Bidirectional refinement
does provide slightly more accuracy without substantiallygreater cost, and we found
no significant difference between Gauss-Newton and ESM.

Feature window size As expected, larger feature windows result in more suc-
cessful motion estimation at the cost of additional computation time. Interestingly,

10 Bachrach et. al.

a very small window size of 3×3 yielded reasonable performance, a behavior we
attribute to the constraints provided by the initial rotation estimate.

Subpixel refinement, adaptive thresholding, and feature bucketing We found
the accuracy improvements afforded by subpixel feature refinement outweighed its
additional computational cost. While the lighting in the motion capture experiments
did not substantially change, adaptive thresholding stillyielded a lower failure rate.
We would expect the accuracy difference to be greater when flying through more
varied lighting conditions. Finally, without feature bucketing, the feature detector
often detected clusters of closely spaced features, which in turn confused the match-
ing process and resulted in both slower speeds and decreasedaccuracy.

Taking the best performing version of each of the above variations, our algorithm
had a mean velocity error of 0.387 m/s and a 3.39% gross failure rate, and is unlikely
to have been capable of autonomously flying the MAV through the entire recorded
trajectory. In contrast, in environments with richer visual features, we have observed
mean velocity errors of 0.08 m/s, with no gross failures, significantly lower than the
values reported in table 1. Many of the gross failures are dueto the blank wall
on one side of the room — no state estimation process based on visual features can
overcome this problem. To specifically address this problemand to ensure the safety
of the vehicle, we will turn to planning algorithms presented in section 3.

2.2 Mapping

Visual odometry provides locally accurate pose estimates;however global consis-
tency is needed for metric map generation and navigation over long time-scales. We
therefore integrate our visual odometry system with our previous work in RGBD-
Mapping (Henry et al., 2010). This section focuses on the keydecisions required for
real-time operation; we refer readers to our previous publication for details on the
original algorithm that emphasizes mapping accuracy (Henry et al., 2010).

Unlike the local pose estimates needed for maintaining stable flight, map updates
and global pose updates are not required at a high frequency and can therefore be
processed on an offboard computer. The MAV transmits RGB-D data to an offboard
laptop, which detects loop closures, computes global pose corrections, and con-
structs a 3D log-likelihood occupancy grid map. For coarse navigation, we found
that a grid map with10cm resolution provided a useful balance between map size
and precision. Depth data is downsampled to 128×96 prior to a voxel map update
to increase the update speed, resulting in spacing between depth pixels of approx-
imately 5cm at a range of6m. Incorporating a single frame into the voxel map
currently takes approximately1.5ms.

As before, we adopt a keyframe approach to loop closure – new RGB-D frames
are matched against a small set of keyframes to detect loop closures, using a fast
image matching procedure (Henry et al., 2010). New keyframes are added when
the accumulated motion since the previous keyframe exceedseither 10 degrees in
rotation or 25 centimeters in translation. When a new keyframe is constructed, a

Autonomous Flight Using an RGB-D Camera 11

RANSAC procedure over FAST keypoints (Rosten and Drummond,2006) compares
the new keyframe to keyframes occurring more than 4 seconds prior. As loop closure
requires matching non-sequential frames, we obtain putative keypoint matches using
Calonder randomized tree descriptors (Calonder et al., 2008). A new keypoint is
considered as a possible match to an earlier frame if the L2 distance to the most
similar descriptor in the earlier frame has a ratio less than0.6 with the next most
similar descriptor. RANSAC inlier matches establish a relative pose between the
frames, which is accepted if there are at least 10 inliers. Matches with a reprojection
error below a fixed threshold are considered inliers. The final refined relative pose
between keyframes is obtained by solving a two-frame sparsebundle adjustment
(SBA) system, which minimizes overall reprojection error.

To keep the loop closure detection near constant time as the map grows, we
limit the keyframes against which the new keyframe is checked. First, we only use
keyframes whose pose differs from the new frame (according to the existing esti-
mates) by at most 90 degrees in rotation and 5 meters in translation. We also use
Nistér’s vocabulary tree approach (Nistér and Stewenius, 2006), which uses a quan-
tized “bag of visual words” model to rapidly determine the 15most likely loop
closure candidates. Keyframes that pass these tests are matched against new frames,
and matching is terminated after the first successful loop closure. On each success-
ful loop closure, a new constraint is added to a pose graph, which is then optimized
using TORO (Grisetti et al., 2007a). Pose graph optimization is typically fast, con-
verging in roughly 30 ms. Corrected pose estimates are then transmitted back to the
vehicle, along with any updated voxel maps.

Greater global map consistency can be achieved using a sparse bundle adjust-
ment technique that optimizes over all matched features across all frames (Konolige,
2010). However, this is a much slower approach and not yet suitable for real-time
operation.

3 Trajectory Planning

The visual odometry and SLAM processes in the previous sections described how
to estimate the position of the vehicle and the environment around it, but did not
describe how the vehicle should move to explore the environment around it. We
assume that the vehicle is holonomic and that we have full control authority, al-
lowing us treat the trajectory planning problem as a kinematic motion planning
problem. Our UAV uses an onboard IMU and processor to auto-stabilize the he-
licopter’s pitch and roll axes (Gurdan et al., 2007). As a result, the configuration
space isC = R3 ×S1: 3 dimensions for the UAV’s position, and one for the UAV’s
yaw angle1. Exploring an unknown environment is often modelled as a problem of

1 C denotes the configuration space (Lozano-Perez., 1983), the space of all vehicle poses.Cfree ∈
C is the set of all collision-free poses (based on a known mapM of obstacles and the dimensions
of the UAV) andCobst ∈ C is the set of poses resulting in collision with obstacles, so thatC ≡
Cfree ∪ Cobst.

12 Bachrach et. al.

coverage, where the objective is to visit all reachable states or “frontiers” that lie on
the boundary of known free space (Yamauchi et al., 1998; Kollar and Roy, 2008).
Therefore, given the current vehicle statex0 ∈ Cfree and the partial map of the en-
vironment, the planning problem is therefore to find a sequence of actions to move
the vehicle from statex0 to a frontier statexg ∈ Cfree without collisions.

The Probabilistic Roadmap (PRM) is a well-known algorithm (Kavraki et al.,
1996) for planning in problems of more than two or three dimensions, in which a
discrete graph is used to approximate the connectivity ofCfree. The PRM builds the
graph by sampling a set of states randomly fromC (adding the start statex0 and goal
statexg), and then evaluating each sampled state for membership inCfree. Samples
that lie within Cfree constitute the nodes of the PRM graph and edges are placed
between nodes where a straight line path between nodes also lies entirely within
Cfree. Given the PRM graph, a feasible, collision-free path can befound using a
standard graph search algorithm from the start node to the goal node.

However, the PRM and its variants are not yet well-suited to the problem of a
GPS-denied UAV, in that executing a plan requires a controller that can follow each
straight-line edge joining two successive graph nodes in the planned path. If the
UAV executing the plan does not have a good estimate of its state, it may not be
able to determine when it has arrived at a graph node and is to start following a new
edge. Even more seriously, UAV stability typically dependson accurate estimates
of higher order variables such as velocity. Without environmental feedback, velocity
estimates from an inertial measurement unit (IMU) can quickly drift, causing catas-
trophic control failures. We therefore need the motion planner to generate plans that
ensure accurate state estimation along the planned path. Byplanning in thebelief
space(or space of distributions), the planner can distinguish between future state
estimates where the covariance will be small (i.e., the vehicle has high confidence
in its mean state estimate) and future state estimates wherethe covariance will be
large (i.e., the mean state estimate is uncertain). To address the problem of planning
in belief space, we use the Belief Roadmap (BRM) algorithm, first presented by
Prentice and Roy (2007), and summarize the algorithm in the following section.

3.1 Belief Space Planning

When planning in belief space, a naive approach would be to treat the belief space as
a high-dimensional configuration space with some dimensions given by the covari-
ance of the belief, and then directly apply the probabilistic roadmap. Assuming the
beliefs are provided by a variant of the Kalman filter, this approach would require
sampling beliefs directly from the space of Gaussian distributions(µ,Σ) over the
state, adding the initial beliefb0 to the set of graph nodes, placing edges between
pairs of beliefs(bi, bj) for which a controller exists that can take the vehicle from
belief bi to bj , and then carrying out graph search as before to find a path that leads
to a belief with maximum probability at the goal. However, the direct application

Autonomous Flight Using an RGB-D Camera 13

of the unmodified PRM to belief space has some obvious failures, which can be
addressed by the following modifications to the PRM algorithm.

Firstly, in a Gaussian belief space, every belief has some (small) probability that
the robot is at the goal state, hence a different objective function is required. In order
to incorporate the full Gaussian distribution in our planning process, we continue
to search for a shortest path trajectory, but add the additional constraint that the
uncertainty of the belief must be small throughout the path,that is, the trace of
the covariance of the helicopter’s belieftr(Σ) < ǫ whereǫ is some defined safety
parameter andΣ is the covariance of the UAV’s state estimate2.

To plan efficiently, the BRM uses the fact that each Gaussian belief bt is a com-
bination of someµ and someΣ, where the reachability ofµ andΣ can be calcu-
lated separately. Under mild assumptions of unbiased motion and sensor models,
the reachability of anyµ is a function of the vehicle kinematics and the environ-
mental structure, just as in the PRM. For anyµ that is reachable from theµ0 of
the initial distribution, the corresponding reachable covariance can be predicted by
propagating the initial covarianceΣ0 along the path using an iterative application
of the motion and sensing models (see equations equations (7) and (8) in Appendix
A). Therefore, to construct a graph of the reachable belief space, the planner first
samples a set of mean poses{µi} from Cfree using the standard pose sampling of
the PRM algorithm, and places an edgeeij between pairs(µi, µj) if the straight line
between poses is collision-free. Forward search can then beused to search for a path
through the graph, but each step of the search computes the posterior covariance at
each node in addition to the cost-to-go.

Covariance propagation requires multiple EKF updates along each edgeeij , and
while this operation is a constant multiplier of the asymptotic search complexity, it
can still dominate the overall search time. These EKF updates are not a one-time
cost; the search process will find multiple paths to nodei, each with a covariance
must then be propagated outwards fromi along edgeeij to reach nodej, incurring
the computational cost of propagating along the edge (a series of EKF updates) for
each covariance.

To reduce this computational cost, the BRM uses the propertythat the covariance
of a Kalman filter-based state estimator can be factored asΣ = BC−1, which
allows the combined process and measurement update for an EKF givesBt and
Ct as a linear function ofBt−1 andCt−1. The linear forms of the process and
measurement update do not depend on the specific factorization, so we can use a
trivial initial factorization asB0 = Σ0, C0 = I, such that

Ψt ,

[

B

C

]

t

=

[

0 I

I M

]

t

[

0 G−T

G RG−T

]

t

[

B

C

]

t−1

, (1)

whereΨt is defined to be the stacked block matrix
[

B
C

]

t
consisting of the covariance

factors andζt ,
[

W X
Y Z

]

t
is defined to be the one-step linear operator on the covari-

2 Note that, depending on the problem statement, covariance terms such as velocity and orientation
may or may not be included in the overall objective. A variety ofalternatives to this objective
function are discussed in the original BRM paper (Prentice and Roy, 2009)

14 Bachrach et. al.

Algorithm 1 The Belief Roadmap (BRM) algorithm.
Require: Start belief(µ0, Σ0), goalµgoal and mapC
1: Sample poses{xi} from Cfree to build belief graph node set{ni} such thatni = {µ =

xi, Σ = ∅}
2: Create edge set{eij} between nodes(ni, nj) if the straight-line path between(ni[µ], nj [µ])

is collision-free
3: Build one-step transfer functions{ζij} ∀ eij ∈ {eij}
4: Augment each nodeni with best pathp=∅ to ni, such thatni={µ,Σ, p}
5: Create search queue with initial position and covarianceQ← n0={µ0, Σ0, ∅}
6: while Q is not emptydo
7: Popn← Q

8: if n = ngoal then
9: Continue

10: end if
11: for all n′ such that∃en,n′ and not n′ ∋ n[p] do
12: Compute one-step updateΨ ′ = ζn,n′ · Ψ , whereΨ =

[

n[Σ]
I

]

13: Σ′ ← Ψ ′

11 · Ψ
′

21
−1

14: if tr(Σ′) < tr(n′[Σ]) then
15: n′ ← {n′[µ], Σ′, n[p] ∪ {n′}}
16: Pushn′ → Q

17: end if
18: end for
19: end while
20: returnngoal[p]

ance factors, equivalent to the process model and the measurement model, and we
recover the posterior covariance from the posterior factors asΣt = BtC

−1

t .
The EKF approximation assumes that the measurement function is locally linear,

which is exactly the approximation that the Jacobian is locally constant. As a result,
whenever the EKF assumptions hold, then we can assume thatMt is constant and
knowna priori. By multiplying Ψt−1 by a series of matricesζt:T , we can compute
the posterior covarianceΣT from T − t matrix multiplications and a single matrix
inversion onCT . This allows us to determineζt for any point along a trajectory and
the linearity of the update allows us to combine multipleζt matrices into a single,
one-step update for the covariance along the entire length of a trajectory.

Table 1 describes the complete Belief Roadmap algorithm, and Step 2 of the al-
gorithm contains a pre-processing phase where each edge is labeled with the trans-
fer functionζij that allows each covariance to be propagated in a single step. By
pre-computing the transfer function for each edge, the search complexity for belief
space planning becomes comparable to configuration space planning.

3.1.1 Belief Space Planning using the Unscented Kalman Filter

The critical step of the BRM algorithm is the construction ofthe transfer function,
which depends on termsRt andMt, the projections of the process and measurement
noise terms into the state space.Rt andMt represent the information lost due to

Autonomous Flight Using an RGB-D Camera 15

(a) Comparison of covariance
predictions

(b) Distribution of errors using
constant prior approximation

Fig. 4 (a) Comparison of trace of covariance from full UKF filtering and trace of covariance from
one-step transfer function using UKFMt matrix. (b) Distribution of ratio of error induced by
computing theMt matrix for the one-step transfer function using a constant prior.

motion, and the information gained due to measurements, respectively (again, see
equations equations (7) and (8) in Appendix A). When using theExtended Kalman
filter to perform state estimation, these terms are trivial to compute. However, the
EKF is not always a feasible form of Bayesian filtering, especially when linearizing
the control or measurement functions results in a poor approximation. One recent
alternate to the EKF is the Unscented Kalman filter (UKF) (Julier et al., 1995),
which uses a set of2n + 1 deterministic samples, known as “sigma points” from
an assumed Gaussian density both to represent the probability density of a space
of dimensionalityn and to directly measure the relevant motion and measurement
covariances. Appendix B provides a formal description of the UKF, and how to
recover the information gain matrixMt.

One concern is that change in information modelled byMt is constant in the
Kalman and extended Kalman filter models (assuming locally constant Jacobians),
but for the UKF depends on the specific priorΣt. Different choices ofΣt for equa-
tion (26) may result in different one-step transfer functions. Nevertheless, the ap-
proximation error can be seen experimentally to be small. Figure 4(a) compares the
covariances computed using the full UKF update with the covariances computed us-
ing the one-step transfer function for a range of motions andrandomized initial con-
ditions. The induced error is low; the traces of the posterior covariances computed
with the one-step transfer function using theMt matrix calculated in equation (26)
closely match the posterior covariances from the full UKF model. Figure 4(b) shows
a distribution of the ratio of the approximation errors to the magnitudes of the in-
formation gain, where 7000 trials were performed using 100 different priors and a
range of initial conditions and trajectories were used to calculate theMt matrix. The
error induced in the one-step transfer function for using a constantMt is less than
2% with a significance ofp = 0.955, indicating low sensitivity to the choice of prior
over a range of operating conditions.

16 Bachrach et. al.

3.2 Sampling in Belief Space

The original Belief Roadmap formulation presented by Prentice and Roy (2007,
2009) assumed some base sampling strategy for generating the graph through be-
lief space. As the number of samples and the density of the graph grows, the BRM
planning process will find increasingly low-covariance paths and is probabilisti-
cally complete. However, as the density of the graph grows, the cost of searching
the graph will also grow; searching the graph will have time complexityO(bd) for
b edges per node and path of lengthd edges. We can reduce this complexity by
minimizing the size of the graph using a sampling strategy that generates nodes that
reflect the useful part of the belief space.

The optimal sampling strategy would generate samples that lie only on the op-
timal path to the goal; this would of course require knowing the optimal path be-
forehand. However, some samples are more likely to be usefulthan others: vehicle
poses that generate measurements with high information value are much more likely
to lie on the optimal path than vehicle poses that generate measurements with little
information.

3.2.1 Sensor Uncertainty Sampling

If poses are initially sampled fromC uniformly, but are accepted or rejected with
probability proportional to the expected information gainfrom sensing at each point,
the graph will still converge to one that maintains the connectivity of the free space.
But, the distribution of the graph nodes will be biased towards locations that gener-
ate sensor measurements which maximize the localization accuracy of the vehicle.
We call this sampling strategySensor Uncertainty(SU) sampling, after the “Sensor
Uncertainty Field” defined by Takeda and Latombe (1992). TheSU field is a map-
ping from locationx to expected information gain,x → I(x), where information
gain is measured as the difference in entropy of the prior andposterior distributions,
which in the Gaussian case is proportional to the lengths of the eigenvectors of the
covariance. However, examining the information filter formof the measurement up-
date in equation (11), we can see that the posterior covariance results from adding
a fixed amount of informationMt; the covariance therefore increases in size by an
amount proportional toMt. We can efficiently approximate the SU field using the
size ofMt such astr(Mt) (that is, the average of each eigenvector ofMt, Fedorov,
1972), rather than explicitly computing the posterior covariance and the resulting
information gain. Finally, building the complete SU field iscomputationally expen-
sive in practice; by sampling from this field in building the BRM graph, we gain
the benefits of focusing the search on the states that lead to high information gain
without the cost of explicitly building the SU field.

Figure 5(a) shows the ground floor of the MIT Stata Center witha 3D-view of
this environment in figure 5(b). The environment has dimensions of13m × 23m.
The helicopter is equipped with a simulated RGB-D camera that is able to sense
features, represented by the green crosses on the walls. We initially assume an unre-

Autonomous Flight Using an RGB-D Camera 17

(a) Photo of environment (b) 3D-environment (c) SU Field

Fig. 5 (a) MIT Stata Center, ground floor. (b) 3D-model of the unstructured, GPS-denied environ-
ment. The green dots are the known position of visual features tobe used for localization. Each
wall has a different density of visual features, though the features are assumed to be uniformly
distributed on each wall. (c) Sensor Uncertainty Field for a fixed height and RGB-D camera orien-
tation. The darker cells indicate locations expected to produce greater information gain.

alistically poor sensor model to highlight the variations of the different algorithms,
specifically that the camera has a2m range and a30◦ field-of-view in the pitch and
the yaw directions. A feature that falls within the helicopter’s field-of-view will then
generate a noisy measurement of the feature’s distance and bearing relative to the
helicopter’s pose. The measurement noise is assumed to be Gaussian with1m vari-
ance for the range measurement and1rad in angular variance, and is independent
of the distance between the feature and the helicopter3. By rotating the helicopter’s
yaw orientation, the planner can direct the camera in different directions, thereby
enabling the helicopter to localize itself in the environment using the features in its
field-of-view and a given map. This sensor model is unrealistic in terms of the max-
imum range and the constant noise model, but serves to illustrate how our planning
approach achieves varying accuracy at the goal. In the subsequent sections, we show
results for a more accurate sensor model in terms of reachingthe goal.

To create the corresponding Sensor Uncertainty Field shownin figure 5(c), the
trace of the information gain matrix,tr(M), is evaluated at each location (x, y) in
Cfree for a fixed height, yaw, pitch and roll angle. Here, the camerais assumed
to be pointing eastwards at a fixed height. Note that the full SU field is the same
dimensionality asC and would require computing the information gain for every
coordinate inCfree. (The 2D slice of the sensor uncertainty field shown in figure 5(c)
is given only to illustrate the concept.) We can, however, evaluate the information
gain of aspecificposition efficiently, allowing us to draw samples randomly from
Cfree and accept them based on their information gainstr(M). The intensities of
the cells in the map in figure 5(c) correspond to the information gain, where darker
map cells indicate locations that are expected to produce greater information gain.

3 We also assume perfect data association, which for the purposes of experimental assessment
allows us to control the noise of the sensor by varying terms in themeasurement matrix. This is
clearly an unrealistic assumption but experimentally did not affect the results.

18 Bachrach et. al.

For instance, the region in the center of the map has high information gain because
of the high concentration of features along the walls in thatregion. The information
gain increases with distance to each wall because the numberof features in the field
of view increases more than the growing covariance, until the distance to the wall
is greater than the maximum range of the sensor. Locations where the associated
sensor measurement is expected to detect more than one obstacle in the map also
tend to have higher information gain compared to those that just encounter one
obstacle. Remember that we do not need to simulate actual measurements; in order
to computetr(M) we only need the measurement Jacobians.

Note that values oftr(M) do not form a proper distribution, so we cannot accept
or reject samples trivially according totr(M). Additionally, the range of values of
tr(M) will vary across environments, depending on how easy the given world is to
localize in. Therefore, for a specific environment, and fork samplesx1, . . . ,xk with
corresponding information gainstr(M1), . . . , tr(Mk), we estimate a normal distri-
bution over the information such thattr(Mk) ∼ N(µk, σk), where(µk, σk) are
the sample mean and covariances oftr(M1:k). We then perform rejection sampling
according to this distribution. For a new samplexk, we draw a rejection threshold
Pk according to the latest sampled normal distribution, and weretain the sample
if tr(Mk) > Pk, otherwise reject it. This provides us with an online methodfor
estimating the distribution of information in the environment, and allows us to bias
our accepted samples towards areas with greater expected information gain relative
to the rest of the environment.

3.2.2 Unscented Kalman Filter Sampling

When using an state estimator that does not directly computeMt, recall that we can
recoverMt from the prior distributionp(x) and the posterior distributionp(x|z), for
example from the Unscented Kalman filter as in section 3.1. However, to recoverMt

from the UKF prior and posterior requires us to invert theSt matrix with complex-
ity O(|Z|3), where|Z| is the number of measurements. In EKF-SU sampling, we
were able to avoid this complexity because theMt matrix could be computed di-
rectly from the measurement Jacobians. Given the number of measurements and the
large number of samples that must be evaluated for information gain, invertingSt

may be computationally expensive. We therefore sample according to the traditional
information gainI,

I(x) = H(p(x))−H(p(x|z)), (2)

where entropy isH(p(x)) = −
∫

p(x) log p(x). Given that we have assumed that
the belief of the helicopter’s position is representable asa Gaussian distribution,
H(p(x)) is computationally cheaper to compute thanMt. In addition, since our
analysis (Figure 4b) suggested that the measure of information gain was statistically
insensitive to the choice of prior, we use a constant priorp(x) = Σ0 to evaluate
sensor uncertainty, such thatH(p(x)) = P0. Furthermore, applying Bayes’ rule,
wherep(x|z) = p(z|x) · p(x), we get

Autonomous Flight Using an RGB-D Camera 19

Algorithm 2 UKF Sensor Uncertainty Sampling Algorithm
Require: MapC, Number of samplesN , Constant priorP0

1: while size of graph< N do
2: Sample a pose,xk, from C, with equal probability
3: if xk ∈ Cfree then
4: Simulate expected sensor measurement,z, atxk

5: Generate sigma points,χi, aboutxk according to constant priorP0, creat-
ing prior distributionp(xk)

6: Calculate information gainI(xk) = P0 −H(p(z|xk))
7: NormalizeI(xl) such thatI(xk) ∈ [0, 1]

8: Update mean ofI, µk = 1

k

∑k

m=1
I(xm)

9: Update cov ofI, σk = 1

k−1

∑k

m=1
(I(xm)− µk)

2

10: Sample thresholdPk from normal distributionN (µk, σk)
11: if I(xk) > Pk then
12: Add xk to graph with probabilityI(xk)
13: end if
14: end if
15: end while
16: return graph

I(x) = P0 −H(p(z|x)), (3)

wherez = argmaxz p(z|x). p(z|x) is calculated according to the UKF algorithm
by simulating the sensor measurement at the sample’s location and finding the prob-
ability of the observing the sensor measurement at each of the sigma points. In gen-
eral, the lower the probability of observation at the neighboring sigma points, the
smaller the entropy of the posterior distribution, and therefore the greater the in-
formation gain. We normalize the information gainI(x) so that it lies in the range
[0,1] by dividing byP0. Similar to our approach for EKF-SU sampling, we then es-
timate a normal distribution over the information gain suchthatI(x) ∼ N(µk, σk),
where(µk, σk) are the sample mean and covariances ofI(x). Finally, we choose a
rejection thresholdPk according to this normal distribution, and accept the sample
if I(x) > Pk. Algorithm 2 summarizes the UKF-SU sampling strategy.

Table 2 shows the computational benefit of rejection sampling according to the
information gainI(x), rather than a measure onMt. We evaluated the time taken
to generate samples for a range of measurements using the twodifferent rejection
sampling functions. Regardless of the number of measurements, we saw an order of
magnitude in time savings when calculating information gain, which can be signifi-
cant for large graphs.

Figure 6(a) shows the samples drawn according to the sensor uncertainty. Ob-
serve that the sampling density is highest in the same regionas the dark region in
Figure 5(c) (center of map), and is lowest when far from any environmental struc-

20 Bachrach et. al.

Number of measurements
90 300 500

tr(Mt) 0.731 2.84 7.23
I(x) 0.0743 0.187 0.289

Table 2 Average time (in ms) to computetr(Mt) andI(x)

ture, which consequently provides little or no localization information. For compar-
ison, 6(b) shows the samples drawn according to a uniform sampling strategy.

In practice, the differences in sampling strategies can result in different paths
and correspondingly different uncertainties. Figure 6(a)shows that the paths cre-
ated by Sensor Uncertainty sampling tend to stay in regions with high information
gain, since the samples were probabilistically chosen based on the amount of in-
formation gain each was expected to provide. The uniform sampling strategy also
attempts to find a low-uncertainty path but the lack of samples in the regions with
high information gain results in a path with higher uncertainty. It is worth noting
that in the figures, the SU sampler appears to put samples close to obstacles, and a
sampler that simply samples close to obstacle boundaries may do well. We will see
in the next section that in fact the SU sampling strategy leads to better performance
than sampling strategies that use the obstacle boundaries.In fact, sampling only
near obstacles both leads to poor performance for camera models — being too close
to obstacles can lead to reduced information content due to the reduced number of
features in the field of view.

3.2.3 Alternate Sampling Strategies

In order to evaluate the effectiveness of the SU sampling strategy, we compared it
with other sampling strategies that have gained popularityin the literature. Although
these algorithms have been proposed to improve the performance of the PRM algo-
rithm, they can also be used to test the performance of the SU strategy in the BRM
context. In this section, we first describe three alternative sampling strategies (Uni-
form, Gaussian, Bridge), before reporting the results of the BRM path-planning
when using each of these strategies.
Uniform Sampling: Uniform sampling is the most basic sampling strategy used
by the majority of the sampling-based techniques. This algorithm does not use any
known information about the world, but merely samplesC uniformly, and adds sam-
ples to the graph that are inCfree. By employing a simple collision-check function,
the uniform sampling strategy is a very efficient means of obtaining the general con-
nectivity of a given map. Figure 6(b) shows an example of the samples generated
using this sampling method.
Gaussian Sampling:A significant limitation of the uniform sampling strategy is
that it often fails to represent important regions in theCfree, for instance, difficult
regions such as narrow corridors and areas around obstaclesmay not be sampled

Autonomous Flight Using an RGB-D Camera 21

(a) SU Sampling (b) Uniform Sampling

Fig. 6 (a) Distribution of 100 samples (shown in red) drawn using Sensor Uncertainty sampling.
(b) Distribution of 100 uniformly drawn samples. In both figures, the dark circles are the 1−σ
ellipses of the covariance. Smaller circles are higher-certainty positions. Note that this is a bird’s-
eye view and the helicopter can fly over some obstacles. Also note that each sample is a point in
R3 × S1 × S1; the SU samples have a high bias towards sensor orientations towards the envi-
ronmental features. In both figures, the paths are found using theBRM, but because the uniform
sampling strategy has many more samples with orientations that do not point towards the environ-
mental features, the overall uncertainty is much higher.

unless a large number of samples are used, incurring a large computation cost. Boor
et al. (1999) present the Gaussian sampling strategy that attempts to give better
coverage of the difficult parts of the free configuration space, especially those areas
that are close to obstacles. Gaussian sampling biases samples towards obstacles in
the environment, which, in the context of the BRM, would seemto be a reasonable
approximation for areas with higher information gain. The algorithm first uniformly
samples theC space to obtain a sample,x1

k, regardless of whether it is inCfree
or Cobs. A distance value,d, and directionθ are then chosen according to normal
distributions, and a second sample,x

2

k, is generated at a locationd away fromx
1

k in
the direction ofθ. The two samples are then tested to determine if they belong to the
subspacesCfree or Cobs; if the samples are in different subspaces ofC, the sample
that is inCfree is then added to the graph. For the purposes of our evaluation, using
the general intuition that the samples should be within viewing range of the obstacles
and features in the environments, we setσ, the standard deviation of the distribution
ond, to be the maximum range of the sensor used for localization.Figure 7(a) shows
an example set of samples generated by the Gaussian samplingstrategy.
Bridge Sampling: A third algorithm addresses a specific problem encountered by
many sampling strategies of not being able to identify narrow passages through
a given environment. Being able to find narrow passages through Cfree is often
critical to finding good paths in many motion planning problems. However, narrow

22 Bachrach et. al.

(a) 100 Samples generated
from Gaussian Sampling

(b) 100 Samples generated
from Bridge Sampling

Fig. 7 (a) Distribution of 100 samples drawn using Gaussian sampling. (b) Distribution of 100
samples drawn using bridge sampling.

passages are also the hardest for a randomized sampler to findand add to the graph,
requiring strategies that are biased towards finding paths in narrow passages.

To address this problem, the bridge test for sampling narrowpassages was devel-
oped by Hsu et al. (2003). The key idea is to only add a sample tothe graph when
it is found to be between two obstacles. Two samples,x

1

k andx
2

k, are first sam-
pled from the map environment, withx2

k being drawn from a normal distribution
with meanx1

k and a given varianceσ. If both samples are found to be inCobs, the
midpoint between the two samples is then generated and tested for collisions. This
midpoint is added to the graph if it is inCfree. For reasons similar to the Gaussian
sampling strategy,σ was set at twice the maximum sensor range. Figure 7(b) shows
an example set of samples generated using the bridge strategy.

Autonomous Flight Using an RGB-D Camera 23

3.3 Comparison of Sampling Strategies: Simulated
Camera-Equipped Helicopter

We tested the effectiveness of the SU sampling strategy against the alternative sam-
pling algorithms above by running experiments on the systemdescribed in section
3.2.1, a helicopter navigating in a simulated environment of the MIT Stata Center
ground floor, as shown in 5(b).

We first observe that the SU strategy is particularly useful when there is variabil-
ity in terms of the information available to the sensors throughout the environment.
As discussed previously, our initial simulated experiments are performed with an
unrealistically poor RGB-D camera model where the sensor’scapability is particu-
larly limited, such that finding paths that maximize information gain throughout the
path then becomes even more critical. Figure 8 compares the performance of the SU
and uniform sampling strategies under different noise and sensor limitation condi-
tions. When the control and measurement noise is doubled and the maximum sensor
range is reduced (Figure 8(b)), the resultant uncertainty for both sampling strategies
increases. However, the emphasis on finding samples with high information gain un-
der the SU sampling strategy reduces the effect of the noisier conditions, resulting
in a greater absolute difference in uncertainty between both sampling strategies.

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Number of Samples

tr
(Σ

go
al

)

Goal Uncertainty for Sampling Strategies with Standard Noise Parameters

BRM − Uniform Sampling
BRM − SU Sampling

(a) Low Noise

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Number of Samples

tr
(Σ

go
al

)

Goal Uncertainty for Sampling Strategies with High Noise Parameters

BRM − Uniform Sampling
BRM − SU Sampling

(b) High Noise

Fig. 8 Performance of SU and uniform sampling strategies under different noise conditions. High
noise scenario has double the control and measurement noise relative to the low noise model,
as well as a25% reduction in maximum sensor range. The bar plots under each graphshow the
percentage of feasible paths that each algorithm was able to find.

Next, to compare amongst the different sampling strategiesand illustrate the per-
formance of the BRM strategy, we randomly selected5 start and goal positions
in the map where the straight-line distance between both points was at least of a
minimum length of8.53m and an average length of13.66m. For each start-goal
combination, we sampled the environment using each of the4 sampling strategies
and a range of sample set sizes. After creating a graph of nodes from these samples,

24 Bachrach et. al.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Number of Samples

tr
(Σ

go
al

)

Goal Uncertainty for Different Sampling Strategies and Planners

PRM − Uniform Sampling
BRM − Gaussian Sampling
BRM − Bridge Sampling
BRM − Uniform Sampling
BRM − SU Sampling

Fig. 9 Comparison amongst the different sampling strategies and planningmethods. All trials pre-
sented in this graph used the same start and goal to perform the search. Each data point represents
30 trials, and the error bars represent the standard error of thecomputed matrix trace. The bar
graphs along the bottom of the figure show, for each sampling-planning strategy and number of
samples, the percentage of the 30 trials that failed to find a paththat satisfied the constraints on the
covariance (our true objective function). The line graph also plots the trace of the helicopter’s ex-
pected covariance at the goal when we use different sampling strategies, sample sizes, and planning
methods. Lower covariances at the goal also typically correspond to more accurate performance,
and is often used as an alternate objective function for motionplanning in belief space.

the BRM and PRM planning strategies were executed and the performance of the
resulting plans compared. For a given start-goal combination, sampling strategy and
sample set size, the experiment was repeated 30 times.

Figure 9 shows the advantage of planning with the BRM, and sampling using the
Sensor Uncertainty sampling strategy. This figure reports the performance of each
of the sampling strategies and planning methods, using a fixed start and goal for
all trials, over a range of sample set sizes, where performance is measured by the
percentage of trials that failed to find a feasible path (bar graphs), as well as the
average trace of the helicopter’s expected covariance at the goal after executing the
planned path (line graphs).

Table 3 shows a comparison of the sampling strategies acrossvarious initial start
and goal positions using 100 samples. An infeasible path wasdefined as one where
the covariance of the state estimate was greater than a threshold. The results not
only suggest that the BRM substantially outperforms the PRMin producing paths
with lower uncertainty, but also that the SU sampling strategy allows us to achieve
better paths with fewer samples. Regardless of the initial conditions, the SU sam-

Autonomous Flight Using an RGB-D Camera 25

pling strategy consistently outperformed the other sampling strategies, in terms of
both the percentage of paths found and the expected uncertainty at the goal. These
results emphasize that SU sampling is also not equivalent tosimply sampling close
to obstacle boundaries.

Path 1 Path 2 Path 3 Path 4 Path 5
Uniform % success 100 96.6 100 100 100

Final cov 17.87 22.60 2.22 19.11 1.48
SU % success 100 96.6 100 100 100

Final cov 12.38 11.36 1.99 12.39 1.39
Gaussian % success 96.6 96.6 100 93.1 89.7

Final cov 23.89 17.89 17.2 22.16 1.41
Bridge % success 100 3.5 17.2 100 13.8

Final cov 21.58 13.48 2.33 21.32 1.36

Table 3 Performance of different sampling strategies across different paths, using 100 samples.

Table 4 shows a comparison of the performance and time costs of different com-
binations of sampling and planning strategies. The conventional PRM method is un-
surprisingly the fastest algorithm, but suffers from poor localization performance.
The BRM suffers from additional time complexity when building the graph; in par-
ticular, the BRM with SU sampling incurs the largest time penalty in building the
graph because of the need to calculate the information gain matrix of every poten-
tial sample. However, the graph construction is a one-time operation and can be
amortized across multiple queries.

Trace Cov. Graph Build Path Search
at Goal Time (s) Time (s)

PRM, Uniform Sampling 56.38 0.79 0.15
BRM, Uniform Sampling 19.11 110.75 0.38
BRM, SU Sampling 12.31 323.12 0.55
BRM, Gaussian Sampling 22.82 88.14 0.21
BRM, Bridge Sampling 21.92 178.58 0.30

Table 4 Performance and time costs of different planners.

Lastly, we replaced the sensor model with a more realistic RGB-D model, and a
more accurate map of a real environment (shown in figure 14(a)). We modeled the
RGB-D sensor model as a Microsoft Kinect with a4m max range and57◦ field of
view in the yaw and43◦ in pitch directions and a Gaussian noise model that is a
function of depth, such thatσ = 1.5× 10−5 × d (Khoshelham, 2011). Note that for
position estimation, we saw experimentally that the noise model of the individual
features had little effect — the dominant effect was the number of available features.
Figure 10 shows the performance of the different algorithmsusing the RGB-D cam-

26 Bachrach et. al.

era model. Figure 10(a) is the relevant measure for our application, the ability to find
paths that satisfy the constraint on the covariance and we see that even with very
few samples, the BRM is able to find a feasible path. For comparison to figure 9,
we also provide the covariance at the the goal. We see that theBRM algorithms are
consistently able to find lower covariance trajectories (the absolute values of the co-
variances between figures 9 and 10(b) are not comparable because the sensor model
and state space are different, and so different overall uncertainties are feasible.)

(a) Paths Found (b) Goal Uncertainty

Fig. 10 Performance of the Kinect camera model in the environment shown infigure 14. (a) The
number of 60 trials that found a feasible path, as a function of the number of samples. The BRM
using the SU sampler found a feasible path 100% of the time except when constrained to using
10 samples. (b) For comparison to figure 9, we also provide a comparisonof the trace of the
helicopter’s expected covariance at the goal (line graph) and the percentage of feasible paths that
each algorithm was able to find (bar graph along the bottom).

4 Indoor Navigation Results

In addition to evaluating the visual odometry algorithms reported in section 2.1, we
conducted a number of autonomous flight experiments in the motion capture system
and in larger environments. In these experiments, the vehicle flew autonomously
with state estimates provided by the algorithms presented in this paper.

Figure 11 shows an example where the MAV was commanded to hover at a target
point using the RGB-D camera, along with statistics about how well it achieved this
goal. The ground truth trajectory and performance measureswere recorded with the
motion capture system.

Metric
Duration 90 s
Mean speed 0.10 m/s
Mean pos. deviation6.2 cm
Max pos. deviation 19 cm

Fig. 11 A plot showing the ground truth trajectory of the vehicle during position hold. The red dot
near the center is the origin around which the vehicle was hovering. The vehicle was controlled
using visual odometry, and its position measured with a motion capture system.

Autonomous Flight Using an RGB-D Camera 27

4.1 Laser-based Validation of Belief Space Navigation

We performed a number of experiments onboard an actual quadrotor helicopter
to demonstrate the properties of our navigation in belief space. The vehicle was
commanded through the environment by a human operator selecting destination
waypoints using a graphical interface. The purpose of theseexperiments were to
characterize the ability of the MAV to maintain a desired position and to follow a
planned trajectory. We initially validated our results by building on our previous
work (Bachrach et al., 2009b) that used a Hokuyo UTM-30LX laser rangefinder for
navigation and localization. The UTM-30LX is a planar laserrangefinder that pro-
vides a 240◦ field-of-view at40 Hz, up to an effective range of30m. The laser is
mounted in the X-Y plane of the helicopter and we modified the laser to optically
redirect 20◦ of its field-of-view to provide a small set of range measurements in the
(downward)z direction. In a single scan, the vehicle is therefore able toestimate
its position, yaw orientation and altitude with respect to environmental features. We
have shown previously that the measurement of the ground plane is relatively noisy,
although sufficient for altitude control.

We performed navigation experiments on two world environments, on the first
floor of MIT’s Stata center, which is a wide indoor walkway environment (Fig-
ure 12(a)), and on the first floor of MIT’s Walker Memorial building, an old gym-
nasium open space that is often used for banquets and functions (Figure 13(a)).
For these two environments, we focused on demonstrating theBRM algorithm’s
ability to generate paths that will allow the helicopter to remain well-localized. We
did not compare the BRM’s performance to the PRM algorithm toavoid potential
loss of control and crashes resulting from inaccurate stateestimation. Instead, we
artificially limited the range of the laser rangefinder for both planning and state es-
timation; we demonstrate the effect of different sensor range limits on the planned
paths and the need for incorporating sensor characteristics when planning, before
moving to mapping using the RGB-D camera.

For each of these environments, we first generated a 2D map of the environment
using SLAM technology that has been reported previously (Bachrach et al., 2009b).
While it may appear that localization using a 2D map is difficult when the helicopter
pitches and rolls, we also reported previously that 2D localization is relatively robust
to changes in pitch and roll (Bachrach et al., 2009b). Figures 12(b) and 13(b) show
the 2D map of both environments, as well as the SU field indicating areas of sensor
uncertainty, computed according to equation (3). However,note that the SU field is
never actually constructed but SU samples are generated viarejection sampling.

For each environment, two different paths were generated, each corresponding
to a different maximum range for the laser rangefinder. Different maximum ranges
affect the helicopter’s ability to localize itself, thus affecting the paths generated by
the BRM algorithm. Figures 12(c) and 13(c) show the helicopter’s trajectories based
on the paths generated by the BRM algorithm for the differentsensor configurations.
For the experiments along the office walkway, the cyan path denotes the trajectory
when the sensor range was set to5m, while the pink path denotes the trajectory for
the10m configuration. For the open indoor environment, the cyan path represents

28 Bachrach et. al.

(a) Wide office walkway (b) SU field

(c) Executed paths for sensor with5m (cyan) and10m (pink) max range

Fig. 12 Helicopter experiments in an office environment (a) View of environment (b) SU field
of the environment. The lighter regions indicate areas of higher sensor uncertainty. Grey regions
indicate obstacles in the environment (c) BRM paths executed when the laser range was set to
5m (cyan) and10m (pink). The helicopter was able to successfully navigate both planned paths,
traveling44.05m and36.28m respectively. The red cross denotes where the state estimation would
have failed if the 10m path were attempted using the 5m sensor.

the8m configuration, while the pink path represents the trajectory when the sensor
range was30m. Due to the absence of a motion capture system, all paths were
recorded based on the helicopter’s state estimate from its localization module, and
the helicopter’s ability to reach the goal location was verified using the human eye.

In all of these scenarios, the helicopter successfully executed the paths generated
by the BRM algorithm, and the actual and desired paths matched closely regard-
less of the range limits. In addition, the path generated forthe laser with a shorter
maximum range was always longer than that of the laser with the longer maximum
range. In general, when the sensor is of higher quality, moreof the environment is
well-localizable, and hence the planned path more closely approximates the shortest
path trajectory. In contrast, a low-quality sensor requires more careful planning to
ensure that the vehicle remains well-localized, often resulting in a longer path.

We examined how the helicopter would perform if the BRM had assumed a bet-
ter sensor than actually available, which allowed us to assess the effect of the sensor
model on the planning process. To avoid potential crashes, we did not perform this

Autonomous Flight Using an RGB-D Camera 29

(a) Open, indoor environment

(b) SU field (c) Executed paths for sensor with8m
(cyan) and30m (pink) max range

Fig. 13 Helicopter experiments in a large open indoor environment (a)View of environment (b)
SU field of the environment. The lighter regions indicate areas of higher sensor uncertainty. Grey
regions indicate obstacles in the environment (c) BRM paths executed when the laser range was
set to8m (cyan) and30m (pink). The helicopter was able to successfully navigate both planned
paths, traveling36.58m and32.21m respectively. The red cross denotes where the state estimation
would have failed if the 10m path were attempted using the 5m sensor.

analysis on actual hardware, but instead modified the raw laser data from the earlier
experiments. Specifically, we post-processed the raw laserdata from the experi-
ments shown in figures 12 and 13, truncating the laser data to have a shorter maxi-
mum range than was actually available or was known to the BRM during planning.
We then re-estimated the vehicle’s state along the trajectory using the modified laser
data, and evaluated whether the helicopter was able to remain well-localized. In both
cases, the vehicle followed a trajectory that did not contain enough information for
the vehicle to stay well localized, since the truncation to ashorter maximum range
removed a considerable amount of information from the sensor signal. Additionally,
in both cases, the state estimate became sufficiently uncertain that the vehicle con-
trol would likely have become unstable. The crosses on both Figures 12(c) and 13(c)

30 Bachrach et. al.

indicate the point at which the helicopter was no longer ableto localize itself, deter-
mined whentr(Σ) was greater than 1. Given the helicopter’s strict requirements for
localizability, where it is essential to be well-localizedat every step, the crosses ef-
fectively mark the points where the helicopter would have crashed given the planned
path and the modified sensor characteristics. It is therefore critical that sensor limi-
tations are accurately incorporated when planning under uncertainty.

4.2 Belief Space Navigation using the RGB-D Camera

We also demonstrated the use of the BRM algorithm for navigation on the helicopter.
Figure 14(a) shows an example environment of an open space, where the center of
the environment is out of range of the RGB-D camera. Additionally, the left side
of the environment (in the picture) is essentially featureless. In figure 14(b), we see
that the sensor uncertainty field reflects the absence of information along this wall.

(a) Open, indoor environment

(b) SU field (c) Paths for RGB-D sensor with4m
(pink) and30m (green) max range

Fig. 14 Helicopter experiments in a large open indoor environment (a)View of environment (b)
SU field of the environment (slice at0◦ yaw). The lighter regions indicate areas of higher sensor
uncertainty. Grey regions indicate obstacles in the environment (c) BRM paths using the RGB-D
model (max range4m, pink) and laser (max range30m, green).

Figure 14(c) shows the paths generated by the shortest path planner (green) and
the BRM planner using the RGB-D sensor model (pink), with thecorresponding
covariances of the state estimator drawn on top of each trajectory. As expected, we
see that the covariances of the state estimate grow along theshortest path, but stay
tightly bounded along the BRM trajectory.

Autonomous Flight Using an RGB-D Camera 31

4.3 Mapping using the RGB-D Camera

Finally, we experimentally validated our mapping and motion planning algorithms
using the RGB-D camera. We have flown in a number of locations around the MIT
campus, and at the Intel Research office in Seattle. Two such experiments are shown
in figure 15. As the MAV covered greater distances, the RGB-D mapping algorithm
limited the global drift on its position estimates by detecting loop closures and cor-
recting the trajectory estimates. The trajectory history was then be combined with
the RGB-D sensor data to automatically generate maps that are useful both for a
human operator’s situational awareness, and for autonomous path planning and de-
cision making. While ground truth position estimates are notavailable, the quality
of the state estimates computed by our system is evident in the rendered point cloud.

(a) (b)
Fig. 15 Trajectories flown by the MAV in two navigation experiments.

(a) (b)
Fig. 16 Voxel maps for the environments in Fig. 15. (a) Dense maximum-likelihood occupancy
voxel map of the environment depicted in Fig. 15a, false-colored by height. Unknown/unobserved
cells are also tracked, but not depicted here. (b) A voxel map ofthe environment in Fig. 15b allows
the vehicle to plan a collision-free 3D trajectory (green).

Figure 16a shows an occupancy voxel map populated using the dense depth
data provided by the RGB-D sensor. These occupancy maps can be used for au-
tonomous path planning and navigation in highly cluttered environments, enabling

32 Bachrach et. al.

flight through tight passageways and in close proximity to obstacles. Figure 16b
shows a rendering of the MAV’s internal state estimate as it flew through the envi-
ronment depicted in Figure 15b. While these renderings are not necessary for obsta-
cle avoidance, they would serve to provide a human operator with greater situational
awareness of the MAV’s surrounding environment.

5 Related Work

Visual odometry Visual odometry refers to the process of estimating a vehicle’s
3D motion from visual imagery alone, and dates back to Moravec’s work on the
Stanford cart (Moravec, 1980). The basic algorithm used by Moravec and oth-
ers since then is to identify features of interest in each camera frame, estimate
depth to each feature (typically using stereo), match features across time frames,
and then estimate the rigid body transformation that best aligns the features over
time. Since then, a great deal of progress has been made in allaspects of visual
odometry. Common feature detectors in modern real-time algorithms include Harris
corners (Harris and Stephens, 1988) and FAST features (Rosten and Drummond,
2006), which are relatively quick to compute and resilient against small viewpoint
changes. Methods for robustly matching features across frames include RANSAC-
based methods (Nistér et al., 2004; Johnson et al., 2008; Konolige et al., 2007) and
graph-based consistency algorithms (Howard, 2008). In themotion estimation pro-
cess, techniques have ranged from directly minimizing Euclidean distance between
matched features (Horn, 1987), to minimizing pixel reprojection error instead of 3D
distance (Nist́er et al., 2004). When computation constraints permit, bundle adjust-
ment has been shown to help reduce integrated drift (Konolige et al., 2007).

Visual odometry estimates local motion and generally has unbounded global
drift. To bound estimation error, it can be integrated with simultaneous localiza-
tion and mapping (SLAM) algorithms, which employ loop closing techniques to
detect when a vehicle revisits a previous location. Most recent visual SLAM meth-
ods rely on fast image matching techniques (Snavely et al., 2006; Newman et al.,
2009) for loop closure. As loops are detected, a common approach is to construct
a pose graph representing the spatial relationships between positions of the robot
during its trajectory and environmental features, creating constraints that link pre-
vious poses. Optimization of this pose graph results in a globally aligned set of
frames (Grisetti et al., 2007b; Olson et al., 2006; Kaess et al., 2008). For increased
visual consistency, Sparse Bundle Adjustment (SBA, Triggset al., 2000) can be
used to simultaneously optimize the poses and the locationsof observed features.
MAVs and Visual Navigation The primary focus in the visual odometry commu-
nities has been on ground vehicles, however, there has been significant amount of
research on using visual state estimation for the control ofMAVs. For larger outdoor
helicopters, several researchers have demonstrated various levels of autonomy using
vision based state estimates (Kelly and Sukhatme, 2007; Buskey et al., 2004). While
many of the challenges for such vehicles are similar to smaller indoor MAVs, the

Autonomous Flight Using an RGB-D Camera 33

payload and flight environments are quite different. For smaller MAVs operating in
indoor environments, a number of researchers have used monocular camera sensors
to control MAVs (Steder et al., 2008; Ahrens et al., 2009; Blösch et al., 2010; Ce-
lik et al., 2008). Ko et al. (2007) use the iMote2 technology and the UKF for state
estimation in aerial vehicles, and Valenti et al. (2006) were the first to demonstrate
reliable navigation and position estimation on quadrotor helicopters. However, these
algorithms require specific assumptions about the environment (such as known pat-
terns) to obtain the unknown scale factor inherent in using amonocular camera.
Previous work in our group used a stereo camera to stabilize aMAV in unknown in-
door environments (Achtelik et al., 2009), but the computation had to be performed
offboard, and no higher level mapping or SLAM was performed.

Finally, there has been considerable work in using laser range finders for MAV
navigation and control (He et al., 2008b; Bachrach et al., 2009a; Grzonka et al.,
2009; Shen et al., 2011) with the limitations discussed earlier in this paper. Laser
range finding on-board helicopters is also not a novel technology (Thrun et al., 2003;
Mejias et al., 2006), and more recently, a number of quadrotor configurations have
been developed (Angeletti et al., 2008; Grzonka et al., 2009) that are similar to the
design we first proposed by He et al. (2008a).
Visual Mapping Our objective is not only alignment and registration, but also build-
ing 3D models with both shape and appearance information. Inthe vision and graph-
ics communities, a large body of work exists on alignment andregistration of images
for 3D modeling and dense scene reconstruction (e.g., Pollefeys et al., 2008). How-
ever, our focus is on primarily on scene modeling for robot perception and planning,
and secondarily for human situational awareness (e.g., fora human supervisor com-
manding the MAV). Strobl et al. (2009) combine a ToF camera with a stereo camera
to build 3D object models in real-time. Kim et al. (2009) useda set of time-of-
flight cameras in a fixed calibrated configuration and with no temporal alignment
of sensor streams. Se and Jasiobedzki (2008) use a stereo camera combined with
SIFT features to create 3D models of environments, but make no provision for loop
closure or global consistency. Newcombe and Davison (2010)develop an impres-
sive system that does real-time dense 3D reconstruction with a monocular camera,
although their system is still limited to small feature-rich scenes.

There has also been a large amount of work on dense reconstruction from videos
(e.g., Pollefeys et al., 2008) and photos (e.g., Debevec et al., 1996; Furukawa and
Ponce, 2009), mostly on objects or outdoor scenes. One interesting line of work (Fu-
rukawa et al., 2009) attacks the arguably harder problem of indoor reconstruction,
using a Manhattan-world assumption to fit simple geometric models for visualiza-
tion purposes. Such approaches are computationally demanding and not very robust
in feature-sparse environments.
Motion Planning under Uncertainty Modern approaches to planning with incom-
plete state information are typically based on the partially observable Markov deci-
sion process (POMDP) model or as a graph search through belief space (Bonet and
Geffner, 2000). While the POMDP provides a general frameworkfor belief space
planning, the complexity of the solution grows exponentially in the length of the
policy and the number of potential observations. Approximation algorithms exist

34 Bachrach et. al.

to mitigate the problem of scalability (Pineau et al., 2003;Smith and Simmons,
2004), but these techniques still face computational issues in addressing large prob-
lems. Other papers have incorporated sensor characteristics for planning (Täıx et al.,
2008), though the algorithm assumes that a non-collision path already exists, and fo-
cuses on determining the best landmarks to associate to eachpart of the path. den
Berg et al. (2010) propose using a distribution over state estimates with a conven-
tional RRT to generate motion plans, although this approachis not complete and can
fail to find feasible plans. Bry and Roy (2011) proposed the Rapidly-exploring Ran-
dom Belief Tree to track a distribution over state estimatesalong with the conven-
tional Kalman filter covariance using an incremental sampling technique to refine
trajectories, and is strongly related to the BRM algorithm.

The extended Kalman filter and unscented Kalman filter have been used exten-
sively, especially for state estimation. The symplectic form (and related Hamiltonian
form) of the covariance update has been reported before, most recently by Mourikis
and Roumeliotis (2006). Planning algorithms have also incorporated these filters
to generate paths that are robust to sensor uncertainty (Gonzalez and Stentz, 2007;
Brooks et al., 2006). However, without the efficient covariance update presented
in this paper, the deterministic search performed by these planning algorithms is
computationally expensive.

6 Conclusion

This paper presented an experimental analysis of our approach to enabling au-
tonomous flight using an RGB-D sensor. Our system combines visual odometry
techniques from the existing literature with our previous work on autonomous flight
and mapping, and is able to conduct all sensing and computation required for local
position control onboard the vehicle. Using the RGB-D sensor, our system is able
to plan complex 3D paths in cluttered environments while retaining a high degree
of situational awareness. Additionally, we showed how the Belief Roadmap algo-
rithm Prentice and Roy (2007, 2009) can be used to plan trajectories that incorpo-
rate a predictive model of sensing, allowing the planner to minimize the positional
error of the helicopter at the goal using efficient graph search. The original BRM
algorithm assumed an Extended Kalman filter model for position estimation, and
we showed how this algorithm can be extended to use the Unscented Kalman filter
and provided a new sampling strategy for UKF position estimation. We concluded
with an experimental validation of our overall system for both laser- and RGB-D
based navigation and mapping.

Autonomous Flight Using an RGB-D Camera 35

7 Acknowledgements

This research was supported by the Office of Naval Research under MURI N00014-
07-1-0749, Science of Autonomy program N00014-09-1-0641 and the Army Re-
search Office under the MAST CTA. Peter Henry and Dieter Fox were supported
by ONR MURI grant number N00014-09-1-1052, and by the NSF under contract
number IIS-0812671, as well as collaborative participation in the Robotics Consor-
tium sponsored by the U.S Army Research Laboratory under Agreement W911NF-
10-2-0016. Ruijie He was supported by the Republic of Singapore Armed Forces.
Nicholas Roy was supported by the National Science Foundation Division of Infor-
mation and Intelligent Systems under grant # 0546467.

Appendix

A. The Extended Kalman Filter

For reference, we provide a description of the extended Kalman filter equations.
Bayesian filtering is one of the most robust methods of localization (Leonard and
Durrant-Whyte, 1991), in which a probability distributionp(xt|u1:t, z1:t) is inferred
over the (unknown) vehicle statext at time t following a series of noisy actions
u1:t and measurementsz1:t. With some standard assumptions about the actions and
observations, the posterior distribution (or belief) can be expressed as

p(xt|u1:t, z1:t) =
1

Z
p(zt|xt)

∫

S

p(xt|ut,xt−1)p(xt−1)dxt−1, (4)

whereZ is a normalizer. Equation (4), known as the Bayes’ filter, provides an effi-
cient, recursive way to update the state distribution.

The Kalman filter is a form of Bayes filtering that assumes thatall probability
distributions are Gaussian such thatp(xt) = N(µt, Σt) with meanµt and covari-
anceΣt, and that the transition and observation Gaussians are linearly parameter-
ized by the state and control. The Extended Kalman filter (EKF) allows the same
inference algorithm to operate with non-linear transitionand observation functions
by linearizing these functions around the current mean estimate. More formally, the
next statext and observationzt are given by the following functions,

xt = g(xt−1, ut, wt), wt ∼ N(0,Wt), (5)

and zt = h(xt, qt), qt ∼ N(0, Qt), (6)

whereut is a control action, andwt andqt are random, unobservable noise variables.
The EKF computes the state distribution at timet in two steps: a process update
based only on the control inputut leading to an estimatep(xt) = N(µt, Σt), and
a measurement update to complete the estimate ofp(xt) = N(µt, Σt). The process
step follows as:

36 Bachrach et. al.

µt = g(µt−1, ut), Σt = GtΣt−1G
T
t + VtWtV

T
t , (7)

whereGt is the Jacobian ofg with respect tox andVt is the Jacobian ofg with re-
spect tow. For convenience, we denoteRt , VtWtV

T
t . Similarly, the measurement

step follows as:

µt = µt +Kt(Htµt − zt), Σt = (I −KtHt)Σt, (8)

whereHt is the Jacobian ofh with respect tox andKt is known as the Kalman
gain, given by

Kt = ΣtH
T
t

(

HtΣtH
T
t +Qt

)

−1

. (9)

An alternate form of the EKF represents the distributionp(xt|u1:t, z1:t) by an infor-
mation vectorξt and information matrixΩt,Σ−1

t . The information form may be
more efficient to compute in domains where the information matrix is sparse (Thrun
et al., 2004). The information matrix update can be written as

Ωt = Σ
−1

t = (GtΣt−1G
T
t +Rt)

−1

(10)

Ωt = Ωt +HT
t Q

−1

t Ht. (11)

For convenience, we denoteMt , HT
t Q

−1

t Ht such thatΩt = Ωt +Mt.

B. The Unscented Kalman Filter

The critical step of the BRM algorithm is the construction ofthe transfer function,
which depends on termsRt andMt, the projections of the process and measurement
noise terms into the state space.Rt andMt also represent the information lost due
to motion, and the information gained due to measurements, respectively. When
using the Extended Kalman filter to perform state estimation, these terms are trivial
to compute. However, the EKF is not always a feasible form of Bayesian filtering,
especially when linearizing the control or measurement functions results in a poor
approximation.

One recent alternate to the EKF is the Unscented Kalman filter(UKF) (Julier
et al., 1995), which uses a set of2n + 1 deterministic samples, known as “sigma
points” from an assumed Gaussian density both to represent the probability density
of a space of dimensionalityn and to directly measure the relevant motion and
measurement covariances. These samples are generated according to:

X 0

t =µt−1, (12)

X i
t =µt−1 +

(

√

(n+ λ)Σt

)i

, i=1, . . . , n (13)

X i
t =µt−1 −

(

√

(n+ λ)Σt

)i

, i=n+1, . . . , 2n (14)

Autonomous Flight Using an RGB-D Camera 37

where
(

√

(n+ λ)Σt

)i

is theith column of the root of the matrix. Each sigma point

X i has an associated weightwi
m used when computing the mean, andwi

c is the
weight used when computing the covariance, such that

∑

2n

i=0
wi

c = 1,
∑

2n

i=0
wi

m =
1. The weights and theλ parameters are chosen to match the mean and variance of
the assumed Gaussian distribution; the mechanism for choosing these parameters
can be found in Julier et al. (1995). The samples are propagated according to the
non-linear process model such that

X
i

t = g(X i
t , u, 0), (15)

generating the process mean and covariance

µt =

2n
∑

i=0

wi
mX

i

t (16)

Σt =

2n
∑

i=0

wi
c(X

i

t − µt)(X
i

t − µt) +Rt. (17)

The measurement function uses the process mean and covariance to create sigma
points in the measurement space, which are then used to generate the posterior mean
and covariance(µt, Σt), such that

Z
i

t = h(X
i

t, 0) µz
t =

2n
∑

i=0

wi
mZ

i

t (18)

St =

(

2n
∑

i=0

wi
m(Z

i

t − µz
t)(Z

i

t − µz
t)

T

)

+Qt (19)

Kt =

(

2n
∑

i=0

wi
c(X

i

t − µt)(Z
i

t − µz
t)

T

)

S−1

t (20)

µt = µt +Kt(zt − µz
t) (21)

Σt = Σt −KtStK
T
t . (22)

Note thatRt , VtWtV
T
t andQt are the same process and measurement noise

terms from the EKF definition given in equations (5-9). The advantage of the UKF
is that the process and measurement functions are not projected into the state space
by a linearization; instead, the Unscented Transform computes the moments of the
process and measurement distributions in the state space itself. As a result, the UKF
eliminates the need for linearization and captures the distribution accurately up to
the second order, rather than the first order fidelity of the EKF.

Although the UKF provides a mechanism for efficiently tracking the posterior
distribution as a Gaussian while avoiding linearization ofthe measurement model,
the UKF no longer calculates theMt matrix, which is a critical piece of the individ-

38 Bachrach et. al.

ual transfer functionsζt. Nevertheless, we can still recoverMt from the UKF update
directly by working in the information form and noticing that Mt is the information
gain due to measurementzt. We can combine equation (11) and equation (22),

Ωt = Ωt +Mt (23)

⇒ Mt = Ωt −Ωt (24)

= Σ−1

t −Σ
−1

t (25)

= (Σt −KtStK
T
t)

−1 −Σ
−1

t . (26)

In order to calculate theMt matrix for a series of points along a trajectory, we
therefore generate a prior covariance and compute the posterior covariance as in
equation (22). The UKF is still a projection of the measurement noise into the state
space, but is a more accurate projection than an explicit linearization of the mea-
surement model. Additionally, the UKF covariance update does not depend on the
actual measurement received, exactly as in the EKF.

