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Estimation, Planning and Mapping for
Autonomous Flight Using an RGB-D Camera in
GPS-denied Environments

Abraham Bachrach*, Samuel Prentice*, Ruijie He, Peter Kehlbert S. Huang,
Michael Krainin, Daniel Maturana, Dieter Fox and NicholasyR

Abstract RGB-D cameras provide both color images and per-pixel degtimates.
The richness of this data and the recent development of tst/sensors have com-
bined to present an attractive opportunity for mobile radsotesearch. In this paper,
we describe a system for visual odometry and mapping usirng@B-D camera,
and its application to autonomous flight. By leveraging lssitom recent state-
of-the-art algorithms and hardware, our system enablesigbx ih cluttered envi-
ronments using only onboard sensor data. All computatiohsensing required for
local position control are performed onboard the vehiaducing the dependence
on unreliable wireless links. However, even with accurddesgnsing and position
estimation, some parts of the environment have more perakgtructure than oth-
ers, leading to state estimates that vary in accuracy athessnvironment. If the
vehicle plans a path without regard to how well it can localizelf along that path, it
runs the risk of becoming lost or worse. We show how the B&®didmap (BRM)
algorithm (Prentice and Roy, 2009), a belief space extensfadhe Probabilistic
Roadmap algorithm, can be used to plan vehicle trajectdhigsincorporate the
sensing model of the RGB-D camera. We evaluate the efferdagof our system
for controlling a quadrotor micro air vehicle, demonstriseuse for constructing
detailed 3D maps of an indoor environment, and discusaiigdtions.
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1 Introduction

Unmanned air vehicles (UAVS) rely on accurate knowledgehefrtposition for
decision-making and control. As a result, considerablestiment has been made
towards improving the availability of global positioningfiastructure, including
utilizing satellite-based GPS systems and developingrighgns to use existing RF
signals such as WiFi. However, most indoor environmentsraady parts of the
urban canyon remain without access to external positiogysiems, limiting the
ability of current autonomous UAVSs to fly through these areas

Localization using sonar ranging (Leonard and Durrant-Whyit991), laser
ranging (Thrun et al., 2000) or camera sensing (Se et al2)2tfs been used ex-
tremely successfully on a number of ground robots and is resemially a com-
modity technology. Previously, we have developed algoritfor MAV flight in
cluttered environments using laser range finders (Bachetah, 2009a) and stereo
cameras (Achtelik et al., 2009). Laser range finders thatamently available in
form factors appropriate for use on a MAV are very high piiecisbut only provide
range measurements along a plane around the sensor. Siseesémsors can only
detect objects that intersect the sensing plane, they aseuseful in environments
characterized by vertical structures, and less so in marglax scenes.

Fig. 1 Our quadrotor micro air vehicle (MAV). The RGB-D camera is maahat the base of the
vehicle, tilted slightly down.

Structured light RGB-D cameras are based upon stereo tpeds)i and thus
share many properties with stereo cameras. The primamsréiftes lie in the range
and spatial density of depth data. Since RGB-D camerasiiflait@ a scene with a
structured light pattern, they can estimate depth in aratis poor visual texture
but are range-limited by their projectors. This paper pneseur approach to pro-
viding an autonomous micro air vehicle with fast and rekaslate estimates and
a 3D map of its environment by using an on-board RGB-D camadhimertial
measurement unit (IMU). Together, these allow the MAV teesabperate in clut-
tered, GPS-denied indoor environments. The control of aada vehicle requires
accurate estimation of not only the position of the vehialé ddso the velocity —
estimates that our algorithms are able to provide. Estimgaivehicle’s 3D motion
from sensor data typically consists of estimating its re¢aotion at each time step



Autonomous Flight Using an RGB-D Camera 3

by aligning successive sensor measurements such as lasers@R GB-D frames, a
process most often known as “visual odometry” when compgaramera or RGB-D
images.

Given knowledge of the relative motion of the vehicle fromsar frame to sen-
sor frame, the 3D trajectory of the vehicle in the environtrean be estimated by
integrating the relative motion estimates over time. Gikeowledge of the vehicle
position in the environment, the locations of obstaclesithesensor frame can also
be used to construct a global map. While often useful for Ipoaition control and
stability, visual odometry methods suffer from long-terniftcand are not suitable
for building large-scale maps. To solve this problem, we @ismonstrate how our
previous work on RGB-D Mapping (Henry et al., 2010) can beiporated to de-
tect loop closures, correct for accumulated drift and na@inga representation of
consistent pose estimates over the history of previousgsam

However, the fast dynamics of UAVs have stringent requingisén terms of
state estimation accuracy. The RGB-D sensor has a limitegerand field of view,
which strongly affects its reliability for state estimation UAVS. When position
information is temporarily not available from the onboagedsors, the state estimate
will diverge from the true state much faster than on a groueldicte, giving the
UAV greater sensitivity to sensor limitations as it movesotigh the environment.
Our approach to addressing this sensitivity is based on #tiefBRoadmap (BRM)
algorithm (Prentice and Roy, 2007; He et al., 2008a; Preraicd Roy, 2009). The
BRM is a generalization of the Probabilistic Roadmap (PRMpathm (Kavraki
et al., 1996), performing searches in the belief space of/é¢fécle efficiently by
using the symplectic form of the Kalman Filter (KF) (Abou+idil, 2003) to find
the minimum expected cost path for the vehicle.

In this paper, we provide two primary contributions. Fiysthe provide a sys-
tematic experimental analysis of how the best practicessnal odometry using
an RGB-D camera enable the control of a micro air vehicleoBely, we give an
extension of the BRM planning algorithm for a quadrotor tatiter (Figure 1). We
describe our overall system, justify the design decisioaslen provide a ground-
truth evaluation, and discuss its capabilities and linotes. We conclude the paper
with a demonstration of the quadrotor helicopter using tRévBalgorithm to navi-
gate autonomously in indoor environments.

This paper extends preliminary results given by Huang g@8ll1) and by He
et al. (2008a), demonstrating the RGB-D mapping algoritmu the BRM algo-
rithm. We give additional algorithmic details regardingimstion and mapping,
provide the extension of the BRM to other sensor modalitiehsas the RGB-D
camera, and give a more thorough experimental analysiskwerld environments.

2 Vehicle Position Estimation

The problem we address is that of quadrotor helicopter @#ioig. The quadrotor
must use the onboard RGB-D sensor to estimate its own pogitioal estimation),
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build a dense 3D model of the environment (global simultasdocalization and
mapping) and use this model to plan trajectories througletive@onment.

Our algorithms are implemented on the vehicle shown in [EduiThe vehicle is
a Pelican quadrotor manufactured by Ascending Techna@dgrabH. The vehicle
has a maximal dimension @fcm, and a payload of up t000g. We have mounted
a stripped down Microsoft Kinect sensor and connected hemnboard flight com-
puter. The flight computer, developed by the Pixhawk pragg&TH Zurich (Meier
etal., 2011), is a 1.86 GHz Core2Duo processor with 4 GB of RANe computer
is powerful enough to allow all of the real-time estimatiaaontrol algorithms to
run onboard the vehicle.

Following our previous work, we developed a system that dplas the real-
time local state estimation from the global simultaneowsliaation and mapping
(SLAM). The local state estimates are computed from visdaheetry (section 2.1),
and to correct for drift in these local estimates the estimperiodically incorpo-
rates position corrections provided by the SLAM algoritle®dtion 2.2). This archi-
tecture allows the SLAM algorithm to use much more processime than would
be possible if the state estimates from the SLAM algorithmengirectly used to
control the vehicle.

If the UAV does not have access to perfect state knowledgh, asifrom external
sources (e.g., motion capture, GPS, etc.), it can locakadf by first using sensors
to measure environmental features and then by registdrégeasurements against
a pre-existing map. To control the quadrotor, we integrétedhew visual odome-
try and RGB-D Mapping algorithms into our system previoustyeloped around
2D laser scan-matching and SLAM (Bachrach et al., 2009&.ribtion estimates
computed by the visual odometry are fused with measurenfiemtsthe onboard
IMU in an Extended Kalman Filter, described in Appendix AgTlilter computes
estimates of both the position and velocity which are useth&yID position con-
troller to stabilize the position of the vehicle.

We keep the SLAM process separate from the real-time coldop, instead
having it provide corrections for the real-time positiotireates. Since these posi-
tion corrections are delayed significantly from when the sneament upon which
they were based was taken, we must account for this delay wieincorporate
the correction by retroactively modifying the approprigtesition estimate in the
state history. All future state estimates are then recoatpfrom this corrected po-
sition, resulting in globally consistent real-time statimates. By incorporating
the SLAM corrections after the fact, we allow the real-tintats estimates to be
processed with low enough delay to control the MAV, whildl sticorporating the
information from SLAM to ensure drift free position estiritat.

2.1 Visual Odometry

The visual odometry algorithm that we have developed isdaseund a standard
stereo visual odometry pipeline, with components adapted &xisting algorithms.
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Fig. 2 The input RGB-D data to the visual odometry algorithm alongside detected feature
matches. The top row images are from timéhe bottom row images are from timet 1. The
left column is the depth image, and the middle column is the cooretipg RGB image. The right
hand column shows the pixels that are matched between frames imhier feature matches are
drawn in blue and outliers are drawn in red.

While most visual odometry algorithms follow a common aretitire, a large num-
ber of variations and specific approaches exist, each vgithwn attributes. A con-
tribution of this paper is to specify the steps of our visuddmetry algorithm and
compare the alternatives for each step. In this section weifythese steps and we
provide the experimental comparison of each step in theal/isdometry pipeline.
Our overall algorithm is most closely related to the apphesctaken by Mei et al.
(2009) and Howard (2008), and consists of the following sege of operations:

1. Image PreprocessingAn RGB-D image is first acquired from the RGB-D cam-
era (Fig. 2). The RGB component of the image is converted &yspale and
smoothed with a Gaussian kernelof= 0.85, and a Gaussian pyramid is con-
structed to enable more robust feature detection at diffeseales. Each level
of the pyramid corresponds to one octave in scale spaceuriesait the higher
scales generally correspond to larger image structuréeiadene, which gener-
ally makes them more repeatable and robust to motion blur.

2. Feature Extraction: Features are extracted at each level of the Gaussian pyramid
using the FAST feature detector (Rosten and Drummond, 200&) threshold
for the FAST detector is adaptively chosen using a simplpgntoonal controller
to ensure a sufficient number of features are detected infeatie. The depth
corresponding to each feature is also extracted from théhdeyage. Features
that do not have an associated depth are discarded. To imanta@ore uniform
distribution of features, each pyramid level is discretiz@o 80x 80 pixel buck-
ets, and the 25 features in each bucket with the strongest EABer score are
retained.
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3. Initial Rotation Estimation: For small motions such as those encountered in
successive image frames, the majority of a feature’s apparetion in the image
plane is caused by 3D rotation. Estimating this rotatioovedl us to constrain the
search window when matching features between frames. Weéhagechnique
proposed by Mei et al. (2009) to compute an initial rotatigrdivectly minimiz-
ing the sum of squared pixel errors between downsampleibwaref the current
and previous frames.

One could also use an IMU or a dynamics model of the vehicl@mpute this
initial motion estimate, however the increased generalitthe image based es-
timate is preferable, while providing sufficient perforrsanAn alternative ap-
proach would be to use a coarse-to-fine motion estimationitératively esti-
mates motion from each level of the Gaussian pyramid, asogerpby Johnson
et al. (2008).

4. Feature Matching: Each feature is assigned an 80-byte descriptor consisting
of the brightness values of tliex 9 pixel patch around the feature, normalized
to zero mean and omitting the bottom right pixel. The omissd one pixel
results in a descriptor length more suitable for vectorizetiuctions. Features
are then matched across frames by comparing their featsogigir values us-
ing a mutual-consistency check (Nastet al., 2004). The match score between
two features is the sum-of-absolute differences (SAD) efrtfeature descrip-
tors (Howard, 2008), which can be quickly computed using BliMstructions
such as Intel SSE2. A feature match is declared when tworissahave the low-
est scoring SAD with each other, and they lie within the deavimdow defined
by the initial rotation estimation.

Once an initial match is found, the feature location in thees frame is refined
to obtain a sub-pixel match. Refinement is computed by miriigithe sum-of-

square errors of the descriptors, using ESM to solve thatiternonlinear least
squares problem (Benhimane and Malis, 2004). We also us® $tstructions

to speed up this process.

5. Inlier Detection: Although the constraints imposed by the initial rotatioti-es
mation substantially reduce the rate of incorrect featumchres between frames,
an additional step is necessary to further prune away badhesit We fol-
low Howard’s approach of computing a graph of consistentufeamatches,
and then using a greedy algorithm to approximate the maxatiglie in the
graph (Howard, 2008; Hirschmuller et al., 2002).

The graph is constructed according to the fact that rigidyboubtions are

distance-preserving operations — the Euclidean distaetveden two features at
one time should match their distance at another time. Ttach pair of matched
features across frames is a vertex in the graph, and an edgenied between

two such pairs of matched feature if the 3D distance betweerigatures does
not change substantially from the prior frame to the subsegtrame. For a
static scene, the set of inliers make up the maximal cligumos$istent matches.
The max-clique search is approximated by starting with aptgiset of matched
feature pairs and iteratively adding matched feature paitls greatest degree
that is consistent with all matched feature pairs in theudigFig. 2). Overall,
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Fig. 3 Panorama photograph of the motion capture room used to condugt@und-truth exper-
iments. Visual feature density varies substantially throughustroom.

this algorithm has a runtime quadratic in the number of neddeature pairs,
but runs very quickly due to the speed of the consistencykihgcln our exper-
imental analysis, we compare this approach to RANSAC-basettiods (Nigtr
et al., 2004; Konolige et al., 2007).

6. Motion estimation: The final motion estimate is computed from the matched

features in three steps. First, Horn’s absolute oriematiethod provides an ini-
tial estimate by minimizing the Euclidean distances betwie inlier feature
matches (Horn, 1987). Second, the motion estimate is refiyechinimizing
feature reprojection error using a nonlinear least-squsotver (Benhimane and
Malis, 2004). This refinement step implicitly accounts foe increase in depth
uncertainty with range due to the fact that the depth eséismate computed by
stereo matching in image space. Finally, feature matche=eehng a fixed repro-
jection error threshold are discarded from the inlier set i@ motion estimate
is refined once again.
To reduce short-scale drift, we additionally use a keyfra@ehnique. Motion is
estimated by comparing the newest frame against a refefiemoe. If the camera
motion relative to the reference frame is successfully asegbwith a sufficient
number of inlier features, then the reference frame is nahghd. Otherwise,
the newest frame replaces the reference frame after theatiin is finished. If
motion estimation against the reference frame fails, themtotion estimation
is tried again with the second most recent frame. This sihpleistic serves to
eliminate drift in situations where the camera viewpoineslmot vary signifi-
cantly, a technique especially useful when hovering.

2.1.1 Visual Odometry Performance

There are a variety of visual odometry methods, and theiegiiterature is often
unclear about the advantages and limitations of each. Viéepteesults comparing
a number of these approaches and analyze their performArds.true in many
domains, the tradeoffs can often be characterized as selegccuracy at the ex-
pense of additional computational requirements. In sorses;ahe additional cost
is greatly offset by the improved accuracy.

We conducted a number of experiments using a motion capysters that pro-
vides 120 Hz ground truth measurements of the MAV’s positiad attitude. The
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motion capture environment can be characterized as a sioghe approximately
11m x 7m x 4m in size, lit by overhead fluorescent lights and with a wideéataon
of visual clutter — one wall is blank and featureless, andatiers have a varying
number of objects and visual features (see Fig. 3). Whileishiet a large volume,
it is representative of many confined, indoor spaces, andg®s the opportunity to
directly compare against ground truth.

We recorded a dataset of the MAV flying various patterns thhothe motion
capture environment, designed to challenge vision-bagpaches to the point of
failure, and includes motion blur and feature-poor imagssyould commonly be
encountered indoors and under moderate lighting conditiBnbstantial movement
in X, Y, Z, and yaw were all recorded, with small deviationg@ll and pitch. We
numerically differentiated the motion capture measuramenobtain the vehicle’s
ground truth 3D velocities, and compared them to the ve&scind trajectories es-
timated by the visual odometry and mapping algorithms. &aldhows the perfor-
mance of our integrated approach, and its behavior whestudifferent aspects
of the algorithm. Each experiment varied a single aspech foar approach. We
present the mean velocity error magnitude, the overall ctatjn time per RGB-
D frame, and thegross failure rate We define a gross failure to be any instance
where the visual odometry algorithm was either unable talpce a motion esti-
mate (e.g., due to insufficient feature matches) or whereittw in the estimated
3D velocities exceeded a fixed threshold of 1 m/s. Timingltesvere computed on
a 2.67 GHz laptop computer.

Visual Odometry Variations

In developing our overall approach to visual odometry, waeased different vari-
ants of the following steps of the process:

Inlier detection RANSAC based methods (N&tet al., 2004) are more com-
monly used than the greedy max-clique approach. We testadsigwo RANSAC
schemes, traditional RANSAC and Preemptive RANSAC @#is2005). The latter
attempts to speed up RANSAC by avoiding excessive scoringafig motion hy-
potheses. In our experiments, when allocated a comparatdara of computation
time (by using 500 hypotheses), greedy max-clique outpadd both.

Initial rotation estimation A good initial rotation estimate can help constrain
the feature matching process and reduce the number of @utdaature matches.
Disabling the rotation estimate results in slightly fastemtime, but more frequent
estimation failures.

Gaussian pyramid levels Detecting and matching features on different levels of
a Gaussian pyramid provides provides resilience againgsbmblur and helps track
larger features.

Reprojection error  We compared unidirectional motion refinement, which min-
imizes the reprojection error of newly detected feature® dime reference frame,
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Velocity error % gross total time
in m/s failures inms

Our approach 0.3874+ 0.004 3.39 14.7

Inlier detection

RANSAC 0.412+ 0.005 6.05 15.3

Preemptive RANSAC 0.414+ 0.005 5.91 14.9

Greedy max-clique eur approach 0.387+ 0.004 3.39 14.7

Initial rotation estimate

None 0.388+ 0.004 4.22 13.6

Gaussian pyramid levels

1 0.3874 0.004 5.17 17.0

2 0.385+ 0.004 3.52 15.1

3 —our approach 0.387+ 0.004 3.39 14.7

4 0.387+ 0.004 3.50 14.5

Reprojection error minimization

Bidir. Gauss-Newton 0.387+ 0.004 3.24 14.7

Bidir. ESM —our approach 0.387+ 0.004 3.39 14.7

Unidir. Gauss-Newton 0.391+ 0.004 3.45 14.6

Unidir. ESM 0.391+ 0.004 3.47 14.6

Absolute orientation only 0.467+ 0.005 10.97 14.4

Feature window size

3 0.391+ 0.004 5.96 12.8

5 0.388+ 0.004 4.24 13.7

7 0.388+ 0.004 3.72 14.2

9 —our approach 0.387+ 0.004 3.39 14.7

11 0.388+ 0.004 3.42 15.7

Subpixel feature refinement

No refinement 0.404+ 0.004 5.13 13.1

Adaptive FAST threshold

Fixed threshold (10) 0.385+ 0.004 3.12 15.3

Feature grid/bucketing

No grid 0.398+ 0.004 4.02 24.6

Table 1 Comparison of various approaches on a challenging dataset.d&mputed using a high
resolution motion capture system for ground truth.

with bidirectional refinement, which additionally minineiz the reprojection error
of reference features projected onto the new frame. We iaddlty compared a
standard Gauss-Newton optimization technique with ESMirBctional refinement
does provide slightly more accuracy without substantigiater cost, and we found
no significant difference between Gauss-Newton and ESM.

Feature window size As expected, larger feature windows result in more suc-

cessful motion estimation at the cost of additional comipartietime. Interestingly,
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a very small window size of 33 yielded reasonable performance, a behavior we
attribute to the constraints provided by the initial ratatestimate.

Subpixel refinement, adaptive thresholding, and feature boketing We found
the accuracy improvements afforded by subpixel featuraeefent outweighed its
additional computational cost. While the lighting in the iatcapture experiments
did not substantially change, adaptive thresholdinggtlided a lower failure rate.
We would expect the accuracy difference to be greater whamgfiyhrough more
varied lighting conditions. Finally, without feature buwting, the feature detector
often detected clusters of closely spaced features, whithm confused the match-
ing process and resulted in both slower speeds and decraesadcy.

Taking the best performing version of each of the above trarig, our algorithm
had a mean velocity error of 0.387 m/s and a 3.39% grosséaiiie, and is unlikely
to have been capable of autonomously flying the MAV throughehtire recorded
trajectory. In contrast, in environments with richer visieatures, we have observed
mean velocity errors of 0.08 m/s, with no gross failuresniigantly lower than the
values reported in table 1. Many of the gross failures aretdute blank wall
on one side of the room — no state estimation process baseidual features can
overcome this problem. To specifically address this prolaathto ensure the safety
of the vehicle, we will turn to planning algorithms presehiie section 3.

2.2 Mapping

Visual odometry provides locally accurate pose estimdtesiever global consis-
tency is needed for metric map generation and navigationloxg time-scales. We
therefore integrate our visual odometry system with ouvipres work in RGBD-
Mapping (Henry et al., 2010). This section focuses on thedezysions required for
real-time operation; we refer readers to our previous pabbn for details on the
original algorithm that emphasizes mapping accuracy (fHenal., 2010).

Unlike the local pose estimates needed for maintainindestaght, map updates
and global pose updates are not required at a high frequentgan therefore be
processed on an offboard computer. The MAV transmits RGEx2 tb an offboard
laptop, which detects loop closures, computes global poseaions, and con-
structs a 3D log-likelihood occupancy grid map. For coamégation, we found
that a grid map withlOcm resolution provided a useful balance between map size
and precision. Depth data is downsampled tox28 prior to a voxel map update
to increase the update speed, resulting in spacing betweggth gixels of approx-
imately 5¢m at a range obm. Incorporating a single frame into the voxel map
currently takes approximately5ms.

As before, we adopt a keyframe approach to loop closure — re#-R frames
are matched against a small set of keyframes to detect l@gures, using a fast
image matching procedure (Henry et al., 2010). New keyfesaare added when
the accumulated motion since the previous keyframe exceifttsr 10 degrees in
rotation or 25 centimeters in translation. When a new keyérasnconstructed, a



Autonomous Flight Using an RGB-D Camera 11

RANSAC procedure over FAST keypoints (Rosten and Drumm2ed6) compares
the new keyframe to keyframes occurring more than 4 secamats fs loop closure
requires matching non-sequential frames, we obtain petkéypoint matches using
Calonder randomized tree descriptors (Calonder et al.83200 new keypoint is
considered as a possible match to an earlier frame if thdistance to the most
similar descriptor in the earlier frame has a ratio less th&nwith the next most
similar descriptor. RANSAC inlier matches establish atie¢éapose between the
frames, which is accepted if there are at least 10 inlierécMes with a reprojection
error below a fixed threshold are considered inliers. Thd fefaned relative pose
between keyframes is obtained by solving a two-frame spaugéle adjustment
(SBA) system, which minimizes overall reprojection error.

To keep the loop closure detection near constant time as #pe grows, we
limit the keyframes against which the new keyframe is chdckérst, we only use
keyframes whose pose differs from the new frame (accordirthe existing esti-
mates) by at most 90 degrees in rotation and 5 meters in at&nsl We also use
Nistér’s vocabulary tree approach (Ngsiand Stewenius, 2006), which uses a quan-
tized “bag of visual words” model to rapidly determine the mbst likely loop
closure candidates. Keyframes that pass these tests areadatgainst new frames,
and matching is terminated after the first successful loopurk. On each success-
ful loop closure, a new constraint is added to a pose graplthws then optimized
using TORO (Grisetti et al., 2007a). Pose graph optiminasaypically fast, con-
verging in roughly 30 ms. Corrected pose estimates are thaesrnitted back to the
vehicle, along with any updated voxel maps.

Greater global map consistency can be achieved using aespansile adjust-
ment technique that optimizes over all matched featurexsa@ill frames (Konolige,
2010). However, this is a much slower approach and not yédldeifor real-time
operation.

3 Trajectory Planning

The visual odometry and SLAM processes in the previous@estiescribed how
to estimate the position of the vehicle and the environmemtirad it, but did not
describe how the vehicle should move to explore the enviemtraround it. We
assume that the vehicle is holonomic and that we have fullrcbauthority, al-
lowing us treat the trajectory planning problem as a kinémiatotion planning
problem. Our UAV uses an onboard IMU and processor to aatoiste the he-
licopter’s pitch and roll axes (Gurdan et al., 2007). As aulteshe configuration
space i€ = R? x S': 3 dimensions for the UAV’s position, and one for the UAV’s
yaw anglé. Exploring an unknown environment is often modelled as #&ler of

1 ¢ denotes the configuration space (Lozano-Perez., 1983), dite s all vehicle poses..,.. €

C is the set of all collision-free poses (based on a known apf obstacles and the dimensions
of the UAV) and(C,,s; € C is the set of poses resulting in collision with obstacles, so&hat
cfree U Cobst-
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coverage, where the objective is to visit all reachablesstat “frontiers” that lie on
the boundary of known free space (Yamauchi et al., 1998;aKa@lhd Roy, 2008).
Therefore, given the current vehicle statec Cy,.. and the partial map of the en-
vironment, the planning problem is therefore to find a seqgaeaf actions to move
the vehicle from state, to a frontier statex, € Cy,.. without collisions.

The Probabilistic Roadmap (PRM) is a well-known algorithikayraki et al.,
1996) for planning in problems of more than two or three disi@ns, in which a
discrete graph is used to approximate the connectivigyaf.. The PRM builds the
graph by sampling a set of states randomly f@®(adding the start state, and goal
statex,), and then evaluating each sampled state for memberstig.in. Samples
that lie withinCy,.. constitute the nodes of the PRM graph and edges are placed
between nodes where a straight line path between nodesiedsentirely within
Csree- Given the PRM graph, a feasible, collision-free path cariob@d using a
standard graph search algorithm from the start node to taengale.

However, the PRM and its variants are not yet well-suitechogroblem of a
GPS-denied UAV, in that executing a plan requires a comrdfiat can follow each
straight-line edge joining two successive graph nodes énpllanned path. If the
UAV executing the plan does not have a good estimate of ite,stamay not be
able to determine when it has arrived at a graph node and fartd@llowing a new
edge. Even more seriously, UAV stability typically depemisaccurate estimates
of higher order variables such as velocity. Without envinemtal feedback, velocity
estimates from an inertial measurement unit (IMU) can dyidkift, causing catas-
trophic control failures. We therefore need the motion p&rto generate plans that
ensure accurate state estimation along the planned patplaBying in thebelief
space(or space of distributions), the planner can distinguistwben future state
estimates where the covariance will be small (i.e., theatehias high confidence
in its mean state estimate) and future state estimates vihemovariance will be
large (i.e., the mean state estimate is uncertain). To addne problem of planning
in belief space, we use the Belief Roadmap (BRM) algorithnst firesented by
Prentice and Roy (2007), and summarize the algorithm indhefing section.

3.1 Belief Space Planning

When planning in belief space, a naive approach would bedbtine belief space as

a high-dimensional configuration space with some dimemssgiven by the covari-
ance of the belief, and then directly apply the probabdistadmap. Assuming the
beliefs are provided by a variant of the Kalman filter, thiprach would require
sampling beliefs directly from the space of Gaussian distions(y, >’) over the
state, adding the initial beliéf, to the set of graph nodes, placing edges between
pairs of beliefs(b;, b;) for which a controller exists that can take the vehicle from
beliefb; to b;, and then carrying out graph search as before to find a pétlets

to a belief with maximum probability at the goal. However ttirect application



Autonomous Flight Using an RGB-D Camera 13

of the unmodified PRM to belief space has some obvious fa)umhich can be
addressed by the following modifications to the PRM algaonith

Firstly, in a Gaussian belief space, every belief has somel(sprobability that
the robot is at the goal state, hence a different objectimetfan is required. In order
to incorporate the full Gaussian distribution in our plaipprocess, we continue
to search for a shortest path trajectory, but add the additioonstraint that the
uncertainty of the belief must be small throughout the p#iht is, the trace of
the covariance of the helicopter’s belief X') < e wheree is some defined safety
parameter and is the covariance of the UAV’s state estinfate

To plan efficiently, the BRM uses the fact that each Gaussiiefth, is a com-
bination of someu and some¥, where the reachability gf and X' can be calcu-
lated separately. Under mild assumptions of unbiased matiwl sensor models,
the reachability of any: is a function of the vehicle kinematics and the environ-
mental structure, just as in the PRM. For gmyhat is reachable from thg, of
the initial distribution, the corresponding reachablear@nce can be predicted by
propagating the initial covariancg, along the path using an iterative application
of the motion and sensing models (see equations equatipasdq8) in Appendix
A). Therefore, to construct a graph of the reachable befiats, the planner first
samples a set of mean posjgs } from Cy,... using the standard pose sampling of
the PRM algorithm, and places an edggbetween pairé;, 1t;) if the straight line
between poses is collision-free. Forward search can thesdzto search for a path
through the graph, but each step of the search computes $lteripo covariance at
each node in addition to the cost-to-go.

Covariance propagation requires multiple EKF updatesgpéach edge;;, and
while this operation is a constant multiplier of the asyntigteearch complexity, it
can still dominate the overall search time. These EKF ugdate not a one-time
cost; the search process will find multiple paths to nfydsach with a covariance
must then be propagated outwards froalong edge:;; to reach nodg, incurring
the computational cost of propagating along the edge (asefiEKF updates) for
each covariance.

To reduce this computational cost, the BRM uses the propleastythe covariance
of a Kalman filter-based state estimator can be factoredl as BC~!, which
allows the combined process and measurement update for &ngivs B, and
C, as a linear function of3,_; and C;_;. The linear forms of the process and
measurement update do not depend on the specific factorizath we can use a
trivial initial factorization asBy = Xy, Cy = I, such that

2 [o] = [ Lo e, 1, @

whereY, is defined to be the stacked block mat[rig] . consisting of the covariance
factors and;, £ [‘?/ )Z‘]t is defined to be the one-step linear operator on the covari-

2 Note that, depending on the problem statement, covarianos &rch as velocity and orientation
may or may not be included in the overall objective. A varietyatiernatives to this objective
function are discussed in the original BRM paper (Prentice amd R009)
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Algorithm 1 The Belief Roadmap (BRM) algorithm.

Require: Start belief(10, Xo), goalpgoq: and mapC

1. Sample pose$x;} from Cj,.. to build belief graph node sdfin;} such thatn; = {p =
Xiy Z = @}

2: Create edge s€t;;} between nodegn;, n;) if the straight-line path betweeim; 1], n;[u])
is collision-free

3: Build one-step transfer functiofg;;} VvV e;; € {ei;}
4: Augment each node; with best pathp=0 to n;, such that;={u, >, p}
5: Create search queue with initial position and covariapee no = {uo, 0,0}
6: while @ is not emptydo
7: Popn + Q
8: if n.=ngoq then
9: Continue
10:  endif
11.  forall »’ such tha8e,, ,+ and notn’ > n[p] do
12: Compute one-step updaké = ¢,, ., - &, wherew = ["[*]]
13: ! wh Tt
14: if tr(X’) < tr(n’[X]) then
15: n' {0/ [u], ' n[p] U {n'}}
16: Pushn/ — Q
17: end if
18:  end for
19: end while

20: returnn goq[p]

ance factors, equivalent to the process model and the nesasant model, and we
recover the posterior covariance from the posterior facasp., = B,C; L

The EKF approximation assumes that the measurement faristiocally linear,
which is exactly the approximation that the Jacobian isllpc@nstant. As a result,
whenever the EKF assumptions hold, then we can assuméthit constant and
knowna priori. By multiplying ¥;_; by a series of matrice§., we can compute
the posterior covariancEr from T — ¢ matrix multiplications and a single matrix
inversion onC'r. This allows us to determing for any point along a trajectory and
the linearity of the update allows us to combine multiplenatrices into a single,
one-step update for the covariance along the entire lerfgthrajectory.

Table 1 describes the complete Belief Roadmap algorithish Sdep 2 of the al-
gorithm contains a pre-processing phase where each edggeied with the trans-
fer function¢;; that allows each covariance to be propagated in a single Biep
pre-computing the transfer function for each edge, thecbkemmmplexity for belief
space planning becomes comparable to configuration spaceipd.

3.1.1 Belief Space Planning using the Unscented Kalman Félt
The critical step of the BRM algorithm is the constructiortloé transfer function,

which depends on ternfs;, and M, the projections of the process and measurement
noise terms into the state spadg. and M, represent the information lost due to



Autonomous Flight Using an RGB-D Camera 15

=)

Trace of One-Step UKF Covariance
Counts

"7 race of Ful UKF Govariance © 7 Normalized Errorin Bins
(a) Comparison of covariance (b) Distribution of errors using
predictions constant prior approximation

Fig. 4 (a) Comparison of trace of covariance from full UKF filteringdetmace of covariance from
one-step transfer function using UKH; matrix. (b) Distribution of ratio of error induced by
computing theM; matrix for the one-step transfer function using a constant prior.

motion, and the information gained due to measurementgsectgely (again, see
equations equations (7) and (8) in Appendix A). When usinggktended Kalman
filter to perform state estimation, these terms are trivvatampute. However, the
EKF is not always a feasible form of Bayesian filtering, esglgcwhen linearizing
the control or measurement functions results in a poor apation. One recent
alternate to the EKF is the Unscented Kalman filter (UKF)igiuét al., 1995),
which uses a set dfn + 1 deterministic samples, known as “sigma points” from
an assumed Gaussian density both to represent the propalatisity of a space
of dimensionalityn and to directly measure the relevant motion and measurement
covariances. Appendix B provides a formal description @& tKF, and how to
recover the information gain matrix/;.

One concern is that change in information modelledMy is constant in the
Kalman and extended Kalman filter models (assuming localhstant Jacobians),
but for the UKF depends on the specific prigy. Different choices of, for equa-
tion (26) may result in different one-step transfer funcioNevertheless, the ap-
proximation error can be seen experimentally to be smajurié 4(a) compares the
covariances computed using the full UKF update with the dawaes computed us-
ing the one-step transfer function for a range of motionsrandomized initial con-
ditions. The induced error is low; the traces of the posteravariances computed
with the one-step transfer function using thé matrix calculated in equation (26)
closely match the posterior covariances from the full UKFdeloFigure 4(b) shows
a distribution of the ratio of the approximation errors te thagnitudes of the in-
formation gain, where 7000 trials were performed using lif@érént priors and a
range of initial conditions and trajectories were used toutate the); matrix. The
error induced in the one-step transfer function for usingm@stant)/; is less than
2% with a significance gf = 0.955, indicating low sensitivity to the choice of prior
over a range of operating conditions.
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3.2 Sampling in Belief Space

The original Belief Roadmap formulation presented by Recenand Roy (2007,
2009) assumed some base sampling strategy for generaéirgzaph through be-
lief space. As the number of samples and the density of thghgyeows, the BRM
planning process will find increasingly low-covariancehsataind is probabilisti-
cally complete. However, as the density of the graph groles cost of searching
the graph will also grow; searching the graph will have timenplexity O(b%) for

b edges per node and path of lengtledges. We can reduce this complexity by
minimizing the size of the graph using a sampling strategy generates nodes that
reflect the useful part of the belief space.

The optimal sampling strategy would generate samples ithanly on the op-
timal path to the goal; this would of course require knowihg bptimal path be-
forehand. However, some samples are more likely to be utiednl others: vehicle
poses that generate measurements with high informatioie eeie much more likely
to lie on the optimal path than vehicle poses that generatsuanements with little
information.

3.2.1 Sensor Uncertainty Sampling

If poses are initially sampled fror@ uniformly, but are accepted or rejected with
probability proportional to the expected information giém sensing at each point,
the graph will still converge to one that maintains the catingy of the free space.
But, the distribution of the graph nodes will be biased tasdocations that gener-
ate sensor measurements which maximize the localizaticuracy of the vehicle.
We call this sampling stratedyensor UncertaintySU) sampling, after the “Sensor
Uncertainty Field” defined by Takeda and Latombe (1992). Sbefield is a map-
ping from locationz to expected information gaim; — Z(x), where information
gain is measured as the difference in entropy of the priopasterior distributions,
which in the Gaussian case is proportional to the lengtheegtgenvectors of the
covariance. However, examining the information filter favhthe measurement up-
date in equation (11), we can see that the posterior coaisgsults from adding
a fixed amount of informatio/;; the covariance therefore increases in size by an
amount proportional td/;. We can efficiently approximate the SU field using the
size of M, such agr(M;) (that is, the average of each eigenvectoMff Fedorov,
1972), rather than explicitly computing the posterior atace and the resulting
information gain. Finally, building the complete SU fielccismputationally expen-
sive in practice; by sampling from this field in building thé&kB! graph, we gain
the benefits of focusing the search on the states that leadtidriformation gain
without the cost of explicitly building the SU field.

Figure 5(a) shows the ground floor of the MIT Stata Center wi8D-view of
this environment in figure 5(b). The environment has dimamsiof 13m x 23m.
The helicopter is equipped with a simulated RGB-D cameraithable to sense
features, represented by the green crosses on the wallgitiiflyi assume an unre-
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(a) Photo of environment (b) 3D-environment (c) SU Field

Fig. 5 (a) MIT Stata Center, ground floor. (b) 3D-model of the unstrced, GPS-denied environ-

ment. The green dots are the known position of visual featuree tased for localization. Each

wall has a different density of visual features, though theufest are assumed to be uniformly
distributed on each wall. (c) Sensor Uncertainty Field for edikeight and RGB-D camera orien-
tation. The darker cells indicate locations expected talpce greater information gain.

alistically poor sensor model to highlight the variatiorish® different algorithms,
specifically that the camera hag@a range and 80° field-of-view in the pitch and
the yaw directions. A feature that falls within the helicex field-of-view will then
generate a noisy measurement of the feature’s distanceemiohd) relative to the
helicopter’'s pose. The measurement noise is assumed toussi@a withlm vari-
ance for the range measurement andd in angular variance, and is independent
of the distance between the feature and the helichgBgrrotating the helicopter’s
yaw orientation, the planner can direct the camera in diffedirections, thereby
enabling the helicopter to localize itself in the envirommesing the features in its
field-of-view and a given map. This sensor model is unrealistterms of the max-
imum range and the constant noise model, but serves tardtestow our planning
approach achieves varying accuracy at the goal. In the qubsésections, we show
results for a more accurate sensor model in terms of reathéngoal.

To create the corresponding Sensor Uncertainty Field shiodigure 5(c), the
trace of the information gain matrixy (M), is evaluated at each locatiom, (/) in
Csree for a fixed height, yaw, pitch and roll angle. Here, the camsrassumed
to be pointing eastwards at a fixed height. Note that the fullfild is the same
dimensionality ag® and would require computing the information gain for every
coordinate irCy,... (The 2D slice of the sensor uncertainty field shown in figfog 5
is given only to illustrate the concept.) We can, howeveal@ate the information
gain of aspecificposition efficiently, allowing us to draw samples randonrlyn
Crree and accept them based on their information gair{d/). The intensities of
the cells in the map in figure 5(c) correspond to the infororagain, where darker
map cells indicate locations that are expected to produeatgr information gain.

3 We also assume perfect data association, which for the purposepaifragntal assessment
allows us to control the noise of the sensor by varying terms imteasurement matrix. This is
clearly an unrealistic assumption but experimentally did ne&cffhe results.
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For instance, the region in the center of the map has highrirdtion gain because
of the high concentration of features along the walls in tegion. The information
gain increases with distance to each wall because the nushfeatures in the field
of view increases more than the growing covariance, ungildistance to the wall
is greater than the maximum range of the sensor. Locatiomsenthe associated
sensor measurement is expected to detect more than onelebistthe map also
tend to have higher information gain compared to those tlnstt gncounter one
obstacle. Remember that we do not need to simulate actuaureaents; in order
to computeir (M) we only need the measurement Jacobians.

Note that values ofr (M) do not form a proper distribution, so we cannot accept
or reject samples trivially according to(M ). Additionally, the range of values of
tr(M) will vary across environments, depending on how easy thengivorld is to
localize in. Therefore, for a specific environment, andifeamples, . . . , x; with
corresponding information gaing(M;), . . ., tr(My), we estimate a normal distri-
bution over the information such that(My) ~ N(ug, o), where(uy, ox) are
the sample mean and covariance$¢f\/;.;. ). We then perform rejection sampling
according to this distribution. For a new samglg we draw a rejection threshold
Py, according to the latest sampled normal distribution, andretain the sample
if tr(My) > Py, otherwise reject it. This provides us with an online metffiad
estimating the distribution of information in the enviroent, and allows us to bias
our accepted samples towards areas with greater expeébechation gain relative
to the rest of the environment.

3.2.2 Unscented Kalman Filter Sampling

When using an state estimator that does not directly compyteecall that we can
recover)M; from the prior distributiorp(x) and the posterior distributign(x|z), for
example from the Unscented Kalman filter as in section 3. We¥er, to recovei/,
from the UKF prior and posterior requires us to invert hanatrix with complex-
ity O(|Z]), where|Z| is the number of measurements. In EKF-SU sampling, we
were able to avoid this complexity because g matrix could be computed di-
rectly from the measurement Jacobians. Given the numbeea$arements and the
large number of samples that must be evaluated for infoomagain, invertingS;
may be computationally expensive. We therefore samplerditagpto the traditional
information gainz,

I(x) = H(p(x)) — H(p(x|2)), @)

where entropy i1 (p(x)) = — [ p(x)log p(x). Given that we have assumed that
the belief of the helicopter’s position is representabledSaussian distribution,
H(p(x)) is computationally cheaper to compute th&f. In addition, since our
analysis (Figure 4b) suggested that the measure of infavmgain was statistically
insensitive to the choice of prior, we use a constant pgrier) = X, to evaluate
sensor uncertainty, such that(p(x)) = FPy. Furthermore, applying Bayes’ rule,
wherep(x|z) = p(z|x) - p(x), we get
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Algorithm 2 UKF Sensor Uncertainty Sampling Algorithm
Require: MapC, Number of sampled/, Constant prio,
1: while size of graph< N do
2. Sample a posexy, from C, with equal probability
3 if x5, € Cf,-ee then
4: Simulate expected sensor measuremerdt xy,
5 Generate sigma pointg,, aboutx, according to constant pridr,, creat-
ing prior distributionp(xy)

6: Calculate information gaifi (x) = Py — H(p(z|xx))

7: NormalizeZ(x;) such thatZ(x;) € [0, 1]

8: Update mean of, 11, = + S°F _| Z(x,,)

9: Update cov ofZ, o), = 25 S8 (Z(xm) — x)?
10: Sample threshold@;. from normal distributionV (p, o)
11: if Z(x) > Py then
12: Add x;, to graph with probabilityZ (xy,)
13: end if
14:  endif
15: end while

16: return graph

I(x) = Py — H(p(z[x)), ®3)

wherez = argmax, p(z|x). p(z|x) is calculated according to the UKF algorithm
by simulating the sensor measurement at the sample’sdocarid finding the prob-
ability of the observing the sensor measurement at eacledigima points. In gen-
eral, the lower the probability of observation at the newitig sigma points, the
smaller the entropy of the posterior distribution, and ¢ffiere the greater the in-
formation gain. We normalize the information g&ifix) so that it lies in the range
[0,1] by dividing by Py. Similar to our approach for EKF-SU sampling, we then es-
timate a normal distribution over the information gain stieditZ (x) ~ N (g, 0% ),
where(uy, o) are the sample mean and covariance®(sf). Finally, we choose a
rejection threshold?, according to this normal distribution, and accept the sampl
if Z(x) > Px. Algorithm 2 summarizes the UKF-SU sampling strategy.

Table 2 shows the computational benefit of rejection sarg@iccording to the
information gainZ(x), rather than a measure dd;. We evaluated the time taken
to generate samples for a range of measurements using thdiffar@nt rejection
sampling functions. Regardless of the number of measuresmea saw an order of
magnitude in time savings when calculating informatiomgaihich can be signifi-
cant for large graphs.

Figure 6(a) shows the samples drawn according to the sensertainty. Ob-
serve that the sampling density is highest in the same rexgche dark region in
Figure 5(c) (center of map), and is lowest when far from anyrenmental struc-
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Number of measurements
90 300 (500
tr(M;)|0.731 |2.84 |7.23
Z(x) (0.0743/0.187 |0.289

Table 2 Average time (in ms) to compute(M;) andZ(z)

ture, which consequently provides little or no localizatinformation. For compar-
ison, 6(b) shows the samples drawn according to a unifornpbagnstrategy.

In practice, the differences in sampling strategies caaltrés different paths
and correspondingly different uncertainties. Figure &taws that the paths cre-
ated by Sensor Uncertainty sampling tend to stay in regidtishigh information
gain, since the samples were probabilistically chosendasethe amount of in-
formation gain each was expected to provide. The uniformpéiam strategy also
attempts to find a low-uncertainty path but the lack of saspiehe regions with
high information gain results in a path with higher uncentyilt is worth noting
that in the figures, the SU sampler appears to put samples wasbstacles, and a
sampler that simply samples close to obstacle boundariggimaell. We will see
in the next section that in fact the SU sampling strategydeadbetter performance
than sampling strategies that use the obstacle boundéamiéact, sampling only
near obstacles both leads to poor performance for cameralmedbeing too close
to obstacles can lead to reduced information content duegetoetduced number of
features in the field of view.

3.2.3 Alternate Sampling Strategies

In order to evaluate the effectiveness of the SU sampliregesiy, we compared it
with other sampling strategies that have gained popularitye literature. Although
these algorithms have been proposed to improve the perfmenat the PRM algo-
rithm, they can also be used to test the performance of theti@tégy in the BRM
context. In this section, we first describe three alteread®mpling strategies (Uni-
form, Gaussian, Bridge), before reporting the results ef BRM path-planning
when using each of these strategies.

Uniform Sampling: Uniform sampling is the most basic sampling strategy used
by the majority of the sampling-based techniques. Thisralyn does not use any
known information about the world, but merely sampfasiformly, and adds sam-
ples to the graph that are {fy,... By employing a simple collision-check function,
the uniform sampling strategy is a very efficient means odiolintg the general con-
nectivity of a given map. Figure 6(b) shows an example of teses generated
using this sampling method.

Gaussian Sampling:A significant limitation of the uniform sampling strategy is
that it often fails to represent important regions in the.., for instance, difficult
regions such as narrow corridors and areas around obstaelgsot be sampled
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(a) SU Sampling (b) Uniform Sampling

Fig. 6 (a) Distribution of 100 samples (shown in red) drawn using Sensecekiainty sampling.
(b) Distribution of 100 uniformly drawn samples. In both figureg thark circles are the-do
ellipses of the covariance. Smaller circles are higher-reyt@ositions. Note that this is a bird’s-
eye view and the helicopter can fly over some obstacles. Also nate#th sample is a point in
R3 x S x 81; the SU samples have a high bias towards sensor orientationsde envi-
ronmental features. In both figures, the paths are found usinBRiM, but because the uniform
sampling strategy has many more samples with orientations thattgimimb towards the environ-
mental features, the overall uncertainty is much higher.

unless a large number of samples are used, incurring a largputation cost. Boor
et al. (1999) present the Gaussian sampling strategy ttexhpts to give better
coverage of the difficult parts of the free configuration sp&specially those areas
that are close to obstacles. Gaussian sampling biasesesatoplards obstacles in
the environment, which, in the context of the BRM, would seerbe a reasonable
approximation for areas with higher information gain. Thgoathm first uniformly
samples the space to obtain a sample}, regardless of whether it is iif, .

or Cops. A distance valueg, and directiord are then chosen according to normal
distributions, and a second samptg, is generated at a locatiahaway fromxj. in
the direction o). The two samples are then tested to determine if they betotigpt
subspace€ ... of Cos; if the samples are in different subspace& pthe sample
that is inCy... is then added to the graph. For the purposes of our evalyatsimgy
the general intuition that the samples should be within ingwange of the obstacles
and features in the environments, wesgthe standard deviation of the distribution
ond, to be the maximum range of the sensor used for localiz&figiire 7(a) shows
an example set of samples generated by the Gaussian sarsipéitegy.

Bridge Sampling: A third algorithm addresses a specific problem encounteyed b
many sampling strategies of not being able to identify narpassages through
a given environment. Being able to find narrow passages d@tr6y,.. is often
critical to finding good paths in many motion planning prabte However, narrow
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(a) 100 Samples generated (b) 100 Samples generated
from Gaussian Sampling from Bridge Sampling

Fig. 7 (a) Distribution of 100 samples drawn using Gaussian sampling. @&)iBution of 100
samples drawn using bridge sampling.

passages are also the hardest for a randomized sampler smfiratid to the graph,
requiring strategies that are biased towards finding pathairow passages.

To address this problem, the bridge test for sampling napassages was devel-
oped by Hsu et al. (2003). The key idea is to only add a sampleetgraph when
it is found to be between two obstacles. Two sampigsandx;, are first sam-
pled from the map environment, witk? being drawn from a normal distribution
with meanx}c and a given variance. If both samples are found to be @,,, the
midpoint between the two samples is then generated andltisteollisions. This
midpoint is added to the graph if it is @,.... For reasons similar to the Gaussian
sampling strategyr was set at twice the maximum sensor range. Figure 7(b) shows
an example set of samples generated using the bridge strateg
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3.3 Comparison of Sampling Strategies: Simulated
Camera-Equipped Helicopter

We tested the effectiveness of the SU sampling strategysigihie alternative sam-
pling algorithms above by running experiments on the systeatribed in section
3.2.1, a helicopter navigating in a simulated environmérihe MIT Stata Center
ground floor, as shown in 5(b).

We first observe that the SU strategy is particularly usehgmthere is variabil-
ity in terms of the information available to the sensors tigiwout the environment.
As discussed previously, our initial simulated experirsearte performed with an
unrealistically poor RGB-D camera model where the sensafmbility is particu-
larly limited, such that finding paths that maximize infotioa gain throughout the
path then becomes even more critical. Figure 8 comparestii@mance of the SU
and uniform sampling strategies under different noise amdar limitation condi-
tions. When the control and measurement noise is doublechandaximum sensor
range is reduced (Figure 8(b)), the resultant uncertaomtpdth sampling strategies
increases. However, the emphasis on finding samples withiigrmation gain un-
der the SU sampling strategy reduces the effect of the maisi@ditions, resulting
in a greater absolute difference in uncertainty betweeh sainpling strategies.
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Fig. 8 Performance of SU and uniform sampling strategies under differ@se conditions. High
noise scenario has double the control and measurement noiseergtathe low noise model,
as well as &5% reduction in maximum sensor range. The bar plots under each ghaphthe
percentage of feasible paths that each algorithm was ablecto fi

Next, to compare amongst the different sampling strateggiesllustrate the per-
formance of the BRM strategy, we randomly selecestart and goal positions
in the map where the straight-line distance between bothtpoevas at least of a
minimum length of8.53m and an average length @8.66m. For each start-goal
combination, we sampled the environment using each oft ts&mpling strategies
and a range of sample set sizes. After creating a graph ofrfoala these samples,
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Goal Uncertainty for Different Sampling Strategies and Planners
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Fig. 9 Comparison amongst the different sampling strategies and plam@tigpds. All trials pre-
sented in this graph used the same start and goal to perform thé.seact data point represents
30 trials, and the error bars represent the standard error afoimputed matrix trace. The bar
graphs along the bottom of the figure show, for each samplingapig strategy and number of
samples, the percentage of the 30 trials that failed to find atpatlsatisfied the constraints on the
covariance (our true objective function). The line grapodllots the trace of the helicopter’s ex-
pected covariance at the goal when we use different samplirtggiea, sample sizes, and planning
methods. Lower covariances at the goal also typically correspmmore accurate performance,
and is often used as an alternate objective function for mgti@nning in belief space.

the BRM and PRM planning strategies were executed and tHerpance of the
resulting plans compared. For a given start-goal comtmnasampling strategy and
sample set size, the experiment was repeated 30 times.

Figure 9 shows the advantage of planning with the BRM, anc$iagusing the
Sensor Uncertainty sampling strategy. This figure repbesperformance of each
of the sampling strategies and planning methods, using d it and goal for
all trials, over a range of sample set sizes, where perfocm@measured by the
percentage of trials that failed to find a feasible path (baphs), as well as the
average trace of the helicopter’s expected covarianceeajdhl after executing the
planned path (line graphs).

Table 3 shows a comparison of the sampling strategies acaoiesis initial start
and goal positions using 100 samples. An infeasible pathdefised as one where
the covariance of the state estimate was greater than antthdeS he results not
only suggest that the BRM substantially outperforms the FRIdroducing paths
with lower uncertainty, but also that the SU sampling sgatallows us to achieve
better paths with fewer samples. Regardless of the initiabitions, the SU sam-
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pling strategy consistently outperformed the other samgpditrategies, in terms of
both the percentage of paths found and the expected umtgrédithe goal. These
results emphasize that SU sampling is also not equivalesitriply sampling close
to obstacle boundaries.

Path1 |Path2 |Path3 |Path4 |Path5
Uniform % success 100 96.6 100 100 100
Final cov 17.87 (22.60 |2.22 19.11 |1.48
SuU % success 100 96.6 100 100 100
Final cov 12.38 [11.36 |1.99 12.39 |1.39
Gaussian  |% success 96.6 96.6 100 93.1 89.7
Final cov 23.89 (17.89 (17.2 22.16 (1.41
Bridge % success  |100 35 17.2 100 13.8
Final cov 21.58 [13.48 |[2.33 21.32 |[1.36

Table 3 Performance of different sampling strategies across differathispusing 100 samples.

Table 4 shows a comparison of the performance and time cbdiffevent com-
binations of sampling and planning strategies. The comweat PRM method is un-
surprisingly the fastest algorithm, but suffers from pamgdlization performance.
The BRM suffers from additional time complexity when buildithe graph; in par-
ticular, the BRM with SU sampling incurs the largest time @énin building the
graph because of the need to calculate the information gatrixyof every poten-
tial sample. However, the graph construction is a one-tiperation and can be
amortized across multiple queries.

Trace Cov. |Graph Build |Path Search
at Goal Time (s) Time (s)
PRM, Uniform Sampling 56.38 0.79 0.15
BRM, Uniform Sampling 19.11 110.75 0.38
BRM, SU Sampling 12.31 323.12 0.55
BRM, Gaussian Sampling [22.82 88.14 0.21
BRM, Bridge Sampling 21.92 178.58 0.30

Table 4 Performance and time costs of different planners.

Lastly, we replaced the sensor model with a more realisti@f@model, and a
more accurate map of a real environment (shown in figure 1A\ modeled the
RGB-D sensor model as a Microsoft Kinect withla max range and7° field of
view in the yaw andt3° in pitch directions and a Gaussian noise model that is a
function of depth, such that = 1.5 x 10~° x d (Khoshelham, 2011). Note that for
position estimation, we saw experimentally that the noiseleh of the individual
features had little effect — the dominant effect was the neinalh available features.
Figure 10 shows the performance of the different algoritbsisg the RGB-D cam-
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era model. Figure 10(a) is the relevant measure for ouregijin, the ability to find
paths that satisfy the constraint on the covariance and wé¢hsg even with very
few samples, the BRM is able to find a feasible path. For commparto figure 9,
we also provide the covariance at the the goal. We see th&RIMalgorithms are
consistently able to find lower covariance trajectories @hsolute values of the co-
variances between figures 9 and 10(b) are not comparableseetize sensor model
and state space are different, and so different overallrtainges are feasible.)

Number of Covariance-Bounded Paths Found Goal Unceraity for Diferet Sanpiing Statagies and Plarnsts

0 50 100 150 200 250 300 350
Number of Samples

(a) Paths Found (b) Goal Uncertainty

Fig. 10 Performance of the Kinect camera model in the environment shotigure 14. (a) The
number of 60 trials that found a feasible path, as a functioh@iumber of samples. The BRM
using the SU sampler found a feasible path 100% of the time excegt wbnstrained to using
10 samples. (b) For comparison to figure 9, we also provide a compaofstire trace of the
helicopter’s expected covariance at the goal (line grapld)tee percentage of feasible paths that
each algorithm was able to find (bar graph along the bottom).

4 Indoor Navigation Results

In addition to evaluating the visual odometry algorithmsaied in section 2.1, we
conducted a number of autonomous flight experiments in th®moapture system
and in larger environments. In these experiments, the leefimw autonomously
with state estimates provided by the algorithms presemtéuis paper.

Figure 11 shows an example where the MAV was commanded to hoadarget
point using the RGB-D camera, along with statistics about vell it achieved this
goal. The ground truth trajectory and performance measuees recorded with the

motion capture system.

Position Hold Trajectory

0.2
= Metric |
= 04 -
s Duration 90s
g 0 Mean speed 0.10m/s
3 Mean pos. deviatiof.2 cm
a Max pos. deviation|19 cm

-0.2

-02 -0.1 0 0.1 0.2

X-Deviation (m)
Fig. 11 A plot showing the ground truth trajectory of the vehicle dgrposition hold. The red dot
near the center is the origin around which the vehicle wagliog. The vehicle was controlled
using visual odometry, and its position measured with a motion cagitstem.
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4.1 Laser-based Validation of Belief Space Navigation

We performed a number of experiments onboard an actual otoadnelicopter
to demonstrate the properties of our navigation in beligfcep The vehicle was
commanded through the environment by a human operatortisglegestination
waypoints using a graphical interface. The purpose of tleeperiments were to
characterize the ability of the MAV to maintain a desiredipos and to follow a
planned trajectory. We initially validated our results hyilding on our previous
work (Bachrach et al., 2009b) that used a Hokuyo UTM-30L>¢taangefinder for
navigation and localization. The UTM-30LX is a planar lasmngefinder that pro-
vides a 240 field-of-view at40 Hz, up to an effective range 80m. The laser is
mounted in the X-Y plane of the helicopter and we modified #s®it to optically
redirect 20 of its field-of-view to provide a small set of range measuretsé the
(downward)z direction. In a single scan, the vehicle is therefore ablestimate
its position, yaw orientation and altitude with respectrtwimnmental features. We
have shown previously that the measurement of the groume [darelatively noisy,
although sufficient for altitude control.

We performed navigation experiments on two world environtseon the first
floor of MIT’s Stata center, which is a wide indoor walkway gonment (Fig-
ure 12(a)), and on the first floor of MIT's Walker Memorial kiiiig, an old gym-
nasium open space that is often used for banquets and foadfigure 13(a)).
For these two environments, we focused on demonstratin@® algorithm’s
ability to generate paths that will allow the helicopter éonain well-localized. We
did not compare the BRM’s performance to the PRM algorithravtoid potential
loss of control and crashes resulting from inaccurate sstienation. Instead, we
artificially limited the range of the laser rangefinder fotlbplanning and state es-
timation; we demonstrate the effect of different sensogealimits on the planned
paths and the need for incorporating sensor characteristien planning, before
moving to mapping using the RGB-D camera.

For each of these environments, we first generated a 2D mée efntvironment
using SLAM technology that has been reported previouslgBach et al., 2009b).
While it may appear that localization using a 2D map is diftiesthen the helicopter
pitches and rolls, we also reported previously that 2D iaatibn is relatively robust
to changes in pitch and roll (Bachrach et al., 2009b). Figd#b) and 13(b) show
the 2D map of both environments, as well as the SU field instigaireas of sensor
uncertainty, computed according to equation (3). Howewete that the SU field is
never actually constructed but SU samples are generatedjeion sampling.

For each environment, two different paths were generateeh eorresponding
to a different maximum range for the laser rangefinder. Beffié maximum ranges
affect the helicopter’s ability to localize itself, thudexdting the paths generated by
the BRM algorithm. Figures 12(c) and 13(c) show the heliedptrajectories based
on the paths generated by the BRM algorithm for the diffesensor configurations.
For the experiments along the office walkway, the cyan patioi@ds the trajectory
when the sensor range was sebto, while the pink path denotes the trajectory for
the 10m configuration. For the open indoor environment, the cyah pgpresents
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(a) Wide office walkway (b) SU field

(c) Executed paths for sensor with. (cyan) andLOm (pink) max range

Fig. 12 Helicopter experiments in an office environment (a) View ofiemvment (b) SU field
of the environment. The lighter regions indicate areas ofidrigsensor uncertainty. Grey regions
indicate obstacles in the environment (c) BRM paths executeehvthe laser range was set to
5m (cyan) andl0m (pink). The helicopter was able to successfully navigate btethned paths,
traveling44.05m and36.28m respectively. The red cross denotes where the state estimatidd wo
have failed if the 10m path were attempted using the 5m sensor.

the 8m configuration, while the pink path represents the trajgoidren the sensor
range was30m. Due to the absence of a motion capture system, all paths were
recorded based on the helicopter’s state estimate frorogdization module, and
the helicopter’s ability to reach the goal location was fiedi using the human eye.

In all of these scenarios, the helicopter successfully weetthe paths generated
by the BRM algorithm, and the actual and desired paths mdtclesely regard-
less of the range limits. In addition, the path generatedHeriaser with a shorter
maximum range was always longer than that of the laser wahdhger maximum
range. In general, when the sensor is of higher quality, rebtee environment is
well-localizable, and hence the planned path more clogglyaximates the shortest
path trajectory. In contrast, a low-quality sensor reciiteore careful planning to
ensure that the vehicle remains well-localized, oftenltiguin a longer path.

We examined how the helicopter would perform if the BRM hasbased a bet-
ter sensor than actually available, which allowed us tossste effect of the sensor
model on the planning process. To avoid potential crashegligvnot perform this
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(b) SU field (c) Executed paths for sensor with:
(cyan) and30m (pink) max range

Fig. 13 Helicopter experiments in a large open indoor environmenVigy of environment (b)
SU field of the environment. The lighter regions indicate am@ghigher sensor uncertainty. Grey
regions indicate obstacles in the environment (c) BRM patlesed when the laser range was
set to8m (cyan) and30m (pink). The helicopter was able to successfully navigate bthred
paths, traveling6.58m and32.21m respectively. The red cross denotes where the state estimation
would have failed if the 10m path were attempted using the 5m senso

analysis on actual hardware, but instead modified the raav tieta from the earlier
experiments. Specifically, we post-processed the raw ldatr from the experi-
ments shown in figures 12 and 13, truncating the laser datav® & shorter maxi-
mum range than was actually available or was known to the BRNhd planning.

We then re-estimated the vehicle’s state along the trajgating the modified laser
data, and evaluated whether the helicopter was able to nemdli-localized. In both

cases, the vehicle followed a trajectory that did not cenésiough information for
the vehicle to stay well localized, since the truncation gharter maximum range
removed a considerable amount of information from the sesigoal. Additionally,

in both cases, the state estimate became sufficiently @ancehiat the vehicle con-
trol would likely have become unstable. The crosses on bigilr&s 12(c) and 13(c)
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indicate the point at which the helicopter was no longer &blecalize itself, deter-
mined whentr(X') was greater than 1. Given the helicopter’s strict requirgsior
localizability, where it is essential to be well-localizatlevery step, the crosses ef-
fectively mark the points where the helicopter would hawashed given the planned
path and the modified sensor characteristics. It is thezafotical that sensor limi-
tations are accurately incorporated when planning undeertainty.

4.2 Belief Space Navigation using the RGB-D Camera

We also demonstrated the use of the BRM algorithm for naidgain the helicopter.
Figure 14(a) shows an example environment of an open spdezevthe center of
the environment is out of range of the RGB-D camera. Addéilynthe left side
of the environment (in the picture) is essentially featessl In figure 14(b), we see
that the sensor uncertainty field reflects the absence ahiation along this wall.

r

(b) SU field (c) Paths for RGB-D sensor withn
(pink) and30m (green) max range

Fig. 14 Helicopter experiments in a large open indoor environmenVigy of environment (b)
SU field of the environment (slice af yaw). The lighter regions indicate areas of higher sensor
uncertainty. Grey regions indicate obstacles in the enm@mt (c) BRM paths using the RGB-D
model (max rangem, pink) and laser (max rang®m, green).

Figure 14(c) shows the paths generated by the shortest |zathgp (green) and
the BRM planner using the RGB-D sensor model (pink), with ¢beresponding
covariances of the state estimator drawn on top of eactctoaje As expected, we
see that the covariances of the state estimate grow alorghtréest path, but stay
tightly bounded along the BRM trajectory.
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4.3 Mapping using the RGB-D Camera

Finally, we experimentally validated our mapping and motxanning algorithms
using the RGB-D camera. We have flown in a number of locatioogred the MIT

campus, and at the Intel Research office in Seattle. Two syperienents are shown
in figure 15. As the MAV covered greater distances, the RGBdppmng algorithm

limited the global drift on its position estimates by deiegtioop closures and cor-
recting the trajectory estimates. The trajectory histoas\when be combined with
the RGB-D sensor data to automatically generate maps thatsaful both for a
human operator’s situational awareness, and for autonsipailn planning and de-
cision making. While ground truth position estimates areawailable, the quality
of the state estimates computed by our system is evidengiretidered point cloud.

@ (b)

Fig. 15 Trajectories flown by the MAV in two navigation experiments.

@) (b)
Fig. 16 Voxel maps for the environments in Fig. 15. (a) Dense maximumiiked occupancy
voxel map of the environment depicted in Fig. 15a, false-cdlneheight. Unknown/unobserved
cells are also tracked, but not depicted here. (b) A voxel malpeoénvironment in Fig. 15b allows
the vehicle to plan a collision-free 3D trajectory (green).

Figure 16a shows an occupancy voxel map populated usingehseddepth
data provided by the RGB-D sensor. These occupancy mapsecasdul for au-
tonomous path planning and navigation in highly cluttenedrenments, enabling



32 Bachrach et. al.

flight through tight passageways and in close proximity tetables. Figure 16b
shows a rendering of the MAV'’s internal state estimate ag\t through the envi-
ronment depicted in Figure 15b. While these renderings areetessary for obsta-
cle avoidance, they would serve to provide a human operatbigreater situational
awareness of the MAV'’s surrounding environment.

5 Related Work

Visual odometry Visual odometry refers to the process of estimating a velsicl
3D motion from visual imagery alone, and dates back to Maraweork on the
Stanford cart (Moravec, 1980). The basic algorithm used lyraVec and oth-
ers since then is to identify features of interest in eacheranframe, estimate
depth to each feature (typically using stereo), match featacross time frames,
and then estimate the rigid body transformation that béghsilthe features over
time. Since then, a great deal of progress has been made aspatts of visual
odometry. Common feature detectors in modern real-timerikgns include Harris
corners (Harris and Stephens, 1988) and FAST featuresdRastd Drummond,
2006), which are relatively quick to compute and resiliegaiast small viewpoint
changes. Methods for robustly matching features acrossefsanclude RANSAC-
based methods (Nist et al., 2004; Johnson et al., 2008; Konolige et al., 206d) a
graph-based consistency algorithms (Howard, 2008). Imtbi&on estimation pro-
cess, techniques have ranged from directly minimizing ilaeh distance between
matched features (Horn, 1987), to minimizing pixel repctn error instead of 3D
distance (Nigtr et al., 2004). When computation constraints permit, lriadjust-
ment has been shown to help reduce integrated drift (Koaaigl., 2007).

Visual odometry estimates local motion and generally hasounded global
drift. To bound estimation error, it can be integrated wittmdtaneous localiza-
tion and mapping (SLAM) algorithms, which employ loop clggitechniques to
detect when a vehicle revisits a previous location. Mostmégisual SLAM meth-
ods rely on fast image matching techniques (Snavely et @62Newman et al.,
2009) for loop closure. As loops are detected, a common appris to construct
a pose graph representing the spatial relationships betpestions of the robot
during its trajectory and environmental features, crgationstraints that link pre-
vious poses. Optimization of this pose graph results in dajlg aligned set of
frames (Grisetti et al., 2007b; Olson et al., 2006; Kaess$. e2@08). For increased
visual consistency, Sparse Bundle Adjustment (SBA, Triggal., 2000) can be
used to simultaneously optimize the poses and the locatiboisserved features.
MAVs and Visual Navigation The primary focus in the visual odometry commu-
nities has been on ground vehicles, however, there has lggficant amount of
research on using visual state estimation for the contridlAfs. For larger outdoor
helicopters, several researchers have demonstratedisédeigels of autonomy using
vision based state estimates (Kelly and Sukhatme, 200kdset al., 2004). While
many of the challenges for such vehicles are similar to naildoor MAVS, the
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payload and flight environments are quite different. Forllm&AVs operating in
indoor environments, a number of researchers have usedaulancamera sensors
to control MAVs (Steder et al., 2008; Ahrens et al., 200%4gh et al., 2010; Ce-
lik et al., 2008). Ko et al. (2007) use the iMote2 technology the UKF for state
estimation in aerial vehicles, and Valenti et al. (2006)ewvide first to demonstrate
reliable navigation and position estimation on quadro#dicopters. However, these
algorithms require specific assumptions about the enviemifsuch as known pat-
terns) to obtain the unknown scale factor inherent in usimgomocular camera.
Previous work in our group used a stereo camera to stabiliz&\ain unknown in-
door environments (Achtelik et al., 2009), but the compatahad to be performed
offboard, and no higher level mapping or SLAM was performed.

Finally, there has been considerable work in using laseyadimders for MAV
navigation and control (He et al., 2008b; Bachrach et al920 Grzonka et al.,
2009; Shen et al., 2011) with the limitations discussedegair this paper. Laser
range finding on-board helicopters is also not a novel teldgyd Thrun et al., 2003;
Mejias et al., 2006), and more recently, a number of quadiemnfigurations have
been developed (Angeletti et al., 2008; Grzonka et al., A& are similar to the
design we first proposed by He et al. (2008a).

Visual Mapping Our objective is not only alignment and registration, babdluild-
ing 3D models with both shape and appearance informatidghelwision and graph-
ics communities, a large body of work exists on alignmentragéstration of images
for 3D modeling and dense scene reconstruction (e.g.,fBgdiet al., 2008). How-
ever, our focus is on primarily on scene modeling for robatgption and planning,
and secondarily for human situational awareness (e.ga, fimman supervisor com-
manding the MAV). Strobl et al. (2009) combine a ToF cameth wistereo camera
to build 3D object models in real-time. Kim et al. (2009) usedet of time-of-
flight cameras in a fixed calibrated configuration and with emgoral alignment
of sensor streams. Se and Jasiobedzki (2008) use a steresacaombined with
SIFT features to create 3D models of environments, but makgaovision for loop
closure or global consistency. Newcombe and Davison (28&0¢lop an impres-
sive system that does real-time dense 3D reconstructidnavihonocular camera,
although their system is still limited to small featurekrigcenes.

There has also been a large amount of work on dense recdiwtrfrom videos
(e.g., Pollefeys et al., 2008) and photos (e.g., Debevet,et296; Furukawa and
Ponce, 2009), mostly on objects or outdoor scenes. Onegiieg line of work (Fu-
rukawa et al., 2009) attacks the arguably harder problemddar reconstruction,
using a Manhattan-world assumption to fit simple geometiaciats for visualiza-
tion purposes. Such approaches are computationally déngpad not very robust
in feature-sparse environments.

Motion Planning under Uncertainty Modern approaches to planning with incom-
plete state information are typically based on the paytialiservable Markov deci-
sion process (POMDP) model or as a graph search through bptiee (Bonet and
Geffner, 2000). While the POMDP provides a general frameviorlbelief space
planning, the complexity of the solution grows exponeitiai the length of the
policy and the number of potential observations. Approxiomalgorithms exist
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to mitigate the problem of scalability (Pineau et al., 208&ith and Simmons,
2004), but these techniques still face computational sguaddressing large prob-
lems. Other papers have incorporated sensor charaatsifistiplanning (T et al.,
2008), though the algorithm assumes that a non-collisitimgeeady exists, and fo-
cuses on determining the best landmarks to associate topaachf the path. den
Berg et al. (2010) propose using a distribution over statienases with a conven-
tional RRT to generate motion plans, although this apprasacht complete and can
fail to find feasible plans. Bry and Roy (2011) proposed thpi&g-exploring Ran-
dom Belief Tree to track a distribution over state estimatesg with the conven-
tional Kalman filter covariance using an incremental sangptechnique to refine
trajectories, and is strongly related to the BRM algorithm.

The extended Kalman filter and unscented Kalman filter haea losed exten-
sively, especially for state estimation. The symplectiaf¢and related Hamiltonian
form) of the covariance update has been reported beford,ne@ently by Mourikis
and Roumeliotis (2006). Planning algorithms have alsoripoated these filters
to generate paths that are robust to sensor uncertaintyzBamand Stentz, 2007,
Brooks et al., 2006). However, without the efficient covace update presented
in this paper, the deterministic search performed by thésenmg algorithms is
computationally expensive.

6 Conclusion

This paper presented an experimental analysis of our apprtzaenabling au-
tonomous flight using an RGB-D sensor. Our system combinasaliodometry
techniques from the existing literature with our previouskwn autonomous flight
and mapping, and is able to conduct all sensing and compuategguired for local
position control onboard the vehicle. Using the RGB-D sensar system is able
to plan complex 3D paths in cluttered environments whilaireétg a high degree
of situational awareness. Additionally, we showed how tleéieB Roadmap algo-
rithm Prentice and Roy (2007, 2009) can be used to plan tajes that incorpo-
rate a predictive model of sensing, allowing the planner itwimrize the positional

error of the helicopter at the goal using efficient graph geafhe original BRM

algorithm assumed an Extended Kalman filter model for pmsiéstimation, and
we showed how this algorithm can be extended to use the Utest&alman filter

and provided a new sampling strategy for UKF position ediimna We concluded
with an experimental validation of our overall system fottbtaser- and RGB-D
based navigation and mapping.
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Appendix

A. The Extended Kalman Filter

For reference, we provide a description of the extended Halfilter equations.
Bayesian filtering is one of the most robust methods of laesiton (Leonard and
Durrant-Whyte, 1991), in which a probability distributiptix; |u;.¢, z1.¢) is inferred

over the (unknown) vehicle statg at timet following a series of noisy actions
u1.; and measurements.;. With some standard assumptions about the actions and
observations, the posterior distribution (or belief) carelpressed as

p(Xt|U1:t; Zl:t) Z%p(zﬂxt)/sp(xt\ut, Xt—l)p(xt—l)dxt—h (4)
whereZ is a normalizer. Equation (4), known as the Bayes’ filteryjates an effi-
cient, recursive way to update the state distribution.

The Kalman filter is a form of Bayes filtering that assumes #ilaprobability
distributions are Gaussian such thpgk;) = N(u, X;) with meany, and covari-
ancel;, and that the transition and observation Gaussians ararljnparameter-
ized by the state and control. The Extended Kalman filter (E&ews the same
inference algorithm to operate with non-linear transitiom observation functions
by linearizing these functions around the current meamesd. More formally, the
next statex; and observation; are given by the following functions,

Xt = g(Xt—lvutth% wy ~ N(07 Wt)a (5)
and ze = h(X¢, qt), gt ~ N(0,Q¢), (6)

whereu, is a control action, and; andg; are random, unobservable noise variables.
The EKF computes the state distribution at titmi two steps: a process update
based only on the control inpuy leading to an estimate(x;) = N(z,, ), and

a measurement update to complete the estimatéxgh = N (i, X;). The process
step follows as:
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Ty =glp—1.u), =G X 1G] + VWV, (7)

whereG, is the Jacobian of with respect tar andV; is the Jacobian of with re-
spect tow. For convenience, we denakg = V;W,V,”. Similarly, the measurement
step follows as:

pe = fig + Ko (Hefi, — 2¢), Xy =(I—-KH)Xy, (8)

where H, is the Jacobian of with respect tax and K; is known as the Kalman
gain, given by

—= —= -1
Ky =S H! (HZH] + Q) . (9)

An alternate form of the EKF represents the distribufior; |u1 ¢, z1.¢) by an infor-
mation vector¢; and information matrimtézgl. The information form may be
more efficient to compute in domains where the informatiofrixé sparse (Thrun
et al., 2004). The information matrix update can be written a

—1

0, =%, =(G,Z1GT + Ry) (10)
2 =0+ H?Q;lHt~ (11)

For convenience, we denold, = HtTQt‘lHt such that2, = 2, + M,.
B. The Unscented Kalman Filter

The critical step of the BRM algorithm is the constructiortloé transfer function,
which depends on ternmi®;, andM;, the projections of the process and measurement
noise terms into the state spaég.andM; also represent the information lost due
to motion, and the information gained due to measuremeespectively. When
using the Extended Kalman filter to perform state estimatioese terms are trivial
to compute. However, the EKF is not always a feasible form afdian filtering,
especially when linearizing the control or measurementtions results in a poor
approximation.

One recent alternate to the EKF is the Unscented Kalman lli&F) (Julier
et al., 1995), which uses a set®f + 1 deterministic samples, known as “sigma
points” from an assumed Gaussian density both to represemprobability density
of a space of dimensionality and to directly measure the relevant motion and
measurement covariances. These samples are generatedirag oo

Xto = Ht-1, (12)
ngut,lJr( (n—i—)\)Et), i=1,....n (13)

K=~ (VA VT i=n L on (14)
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Where( (n+ /\)Et) is theith column of the root of the matrix. Each sigma point
X% has an associated weight, used when computing the mean, am{l is the

weight used when computing the covariance, such¥hat, wi = 1, 327" w?, =

1. The weights and tha parameters are chosen to match the mean and variance of
the assumed Gaussian distribution; the mechanism for aiptisese parameters
can be found in Julier et al. (1995). The samples are propdgatcording to the

non-linear process model such that
X, = g(Xf,u,0), (15)

generating the process mean and covariance

2n .

py = Z w:—nyz (16)
1=0

- 2n L .

Etzzwé(xi_ﬁt)(xi_ﬁt)‘f'Rt- a7)
=0

The measurement function uses the process mean and coeat@moreate sigma
points in the measurement space, which are then used tcageltiee posterior mean
and covariancéy, X;), such that

2n

Z, = h(X,,0) =y w,Z, (18)
=0
2n . .
Sy = <Z wy, (2, — 117) (24 —uf)T> + Q: (19)
1=0
2n L .
K; = <Z we(Xy —1,)(Z24 — NE)T> s (20)
1=0
pe = Ty + Ko (20 — 57) (21)
2 =3 - K,S, KT (22)

Note thatR, £ V,W,; VT and Q, are the same process and measurement noise
terms from the EKF definition given in equations (5-9). Theaadage of the UKF
is that the process and measurement functions are not {@djexto the state space
by a linearization; instead, the Unscented Transform cdegpthe moments of the
process and measurement distributions in the state sjgatie As a result, the UKF
eliminates the need for linearization and captures theiloligion accurately up to
the second order, rather than the first order fidelity of thé&EK

Although the UKF provides a mechanism for efficiently tramckithe posterior
distribution as a Gaussian while avoiding linearizatioritef measurement model,
the UKF no longer calculates thd; matrix, which is a critical piece of the individ-
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ual transfer functionsg;. Nevertheless, we can still recovif; from the UKF update
directly by working in the information form and noticing th#/, is the information
gain due to measurement We can combine equation (11) and equation (22),

Qt - ﬁt + Mt (23)
= Mt = Qt — ﬁt (24)
_ -1
=31-% (25)
= _ -1
= - KSK)H)™ -3, . (26)

In order to calculate thé/, matrix for a series of points along a trajectory, we
therefore generate a prior covariance and compute thermstevariance as in
equation (22). The UKF is still a projection of the measuretmmise into the state
space, but is a more accurate projection than an expli@atimation of the mea-
surement model. Additionally, the UKF covariance updatesdoot depend on the
actual measurement received, exactly as in the EKF.



