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Forecasting LV distribution network demand profiles using a pattern 

recognition based expert system 

 

Abstract 

The advent of distributed renewable energy supply sources and storage systems has placed a greater 

degree of focus on the operations of the Low Voltage (LV) electricity distribution network. 

However, LV networks are characterised by having much higher variability in time series demand 

meaning that modelling techniques solely relying on iterative forecasts to produce a next day 

demand profile forecast are insufficient. To cater for the complexity of LV network demand, a novel 

hybrid expert system comprised of three modules, namely, correlation clustering, discrete 

classification neural network, and a post-processing procedure was developed. The system operates 

by classifying a set of key variables associated with a future day and refining a recalled historical 

demand profile as the forecast. The expert system exhibited high hindcast accuracy when trained 

with a residential LV transformer’s demand data with R2 values ranging from 0.86 to 0.87 and 

MAPE ranging from 11% to 12% across the three phases of the network. Under simulated real 

world conditions the R2 statistic reduced slightly to 0.81-0.84 and the MAPE increased to 12.5-

13.5%. Future work will involve integrating the developed expert system for forecasting next day 

demand in an LV network into a comprehensive distributed energy resource management algorithm. 
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1. Introduction  

As the region-wide electricity generation and supply system steps down to the  low voltage (LV) 

distribution network, the number of customers serviced by a transformer decreases, which in-turn, 

correlates with an increase in  variability of time series electricity demand. Over short time periods 

(intraday to intraweek), demand is observed to have a greater degree of randomness, increased 

frequency of  ‘shocks’ and less continuity between daily demand profiles of sequential days. The 

increase in variability can be attributed to the greater relative weighting of the behaviours of 

individual customers and influences of local phenomena e.g. weather, special events, etc. 

The increase in demand variability poses a resource management problem for the operation of 

microgrids and distributed energy resources (DER). As an example, a time based heuristic energy 

management control system for an energy storage system would not be able to adequately meet its 

objectives due the times at which the system should optimally charge and discharge would be 

changing on a daily basis. Similar to the operation of the conventional electricity generation and 

supply system, to overcome this resource management problem, control systems will need to rely 

on demand forecasts. Demand forecasts will enable the derivation of information such as how much 

power is required, the scheduling of charging and discharging of energy storage systems, and 

whether or not remedial measures are required to be employed. 

This current research focusses on the development of a forecasting component for an energy 

management control algorithm for the purposes of scheduling DER in residential LV distribution 

networks. For the energy management control algorithm to achieve the optimal scheduling of DER, 

it is necessary for the demand profile for the next and subsequent days to be forecast as well as its 

key features, such as the time(s) of day when peak demand occurs and associated values.  

Autoregressive Integrated Moving Average (ARIMA) modelling techniques have been shown to 

provide adequate forecasts when applied to systems with greater customer aggregation or longer 

forecast time intervals [1-6]. However, conventional modelling techniques such as ARIMA are 



sensitive to LV network prevalent uncharacteristic daily profiles and random shocks which will 

increase these models’ propensity to produce naïve predictions. Applying iterative forecasting 

alone, the residuals of the random shocks would bias subsequent forecasts.  To overcome some of 

the deficiencies of traditional time series forecasting techniques, forecasting researchers have begun 

to explore the application of Artificial Neural Networks (NN) to forecast demand and demand 

profiles [7-10]. The main benefits of the use of NNs include their ability to generalize, identify non-

linear relationships and applicability to a wide range of applications [7].  

To achieve the research goal to forecast demand profiles for high variance LV residential 

distribution networks, an expert system based on pattern recognition which incorporates a clustering 

algorithm and NN was developed. This paper describes the development and validation process for 

the expert system when applied to three phases of an LV transformer supplying power to 128 

residential customers located in Brisbane, Australia. 

2. Research background 

Griffith University, Elevare, Ergon Energy and Energex are working on a joint project to assess the 

feasibility of the installation of Static Synchronous Compensators (STATCOM) with battery energy 

storage systems (BESS) in the LV distribution network. Funding for this project has been provided 

by the Queensland State Government 2012 – 2014 Research Partnership Grant. STATCOMs are 

four quadrant synchronous inverters with the ability to correct frequency distortions and dampen 

harmonics. The combination of STATCOMs and BESS will enable the reduction of peak demand on 

network infrastructure and the active maintenance of power quality. The installation of this 

technology has the potential to reduce network expenditures through the replacement or deferral of 

other expenditures such as replacing transformers and/or upgrading lines. 

The assessment of the feasibility involves the design and quantification of the effectiveness of 

STATCOMs with BESS. A number of subprojects were initiated to achieve the project’s goals 

including determining the technical parameters, developing a STATCOM with BESS energy 



management control algorithm and performing economic analysis. The research reported in this 

paper denotes the completion of the demand forecasting component of the energy management 

control algorithm. Information generated from the determination of technical parameters, simulation 

of the STATCOM with BESS in the LV distribution network and physical trialling will be used as 

input variables in the economic analysis. 

3. Literature review 

3.1 Short-term electricity demand modelling 

The most notable publications apply conventional modelling techniques including ARIMA, 

multivariate regression and machine learning techniques (e.g. support vector machines, fuzzy 

inference systems, NN, etc.). ARIMA(p,d,q) is the general model of the Box Jenkins set of time 

series modelling techniques. The ‘p’ represents that number of lagged parameters (autoregressive 

parameters); the ‘d’ represents the number of discrete differences; and the ‘q’ represents the number 

of lagged forecast error parameters in the model to account for a moving average in the time series. 

Regression models in the electricity demand space involve the addition of deterministic parameters 

to the use of the lagged forecast parameters. Additional parameters may include weather, economic, 

behavioural and time dependent variables. Many regression models can be considered ARIMAX 

models due to the combination of the ARIMA model with exogenous variables. NNs mimic how 

biological neural networks model systems. NNs are composed of two or more layers of artificial 

neurons with synapse (weights) linking each neuron of the previous lay to the next. Signals (inputs) 

are multiplied by weights connected to the neuron, summated, inputted into the neuron’s activation 

function and the output is sent to the neurons of the next layer. A training algorithm adjusts the 

weights throughout the network in order to model the desired system. 

Engle et al. [1], Taylor [4], Mirasgedis et al. [5] and Taylor [6] developed network demand time 

series models based on the ARIMA or regression modelling techniques. Taylor [4] and Taylor [6] 



developed ARIMA models using the exponential smoothing, double seasonable exponential 

smoothing and triple seasonal algorithms. Taylor [4] used 30 minute demand data from England and 

Wales. Taylor [6] used demand data from Britain and France. The research showed that the 

developed models were accurate and that accuracy increases as more seasonalities are included in 

the models. Engle et al. [1] and Mirasgedis et al. [5] developed time series models with 

autoregressive parameters and additional variables including heating and cooling days, relative 

humidity (RH) and day of the week dummy variables. It was noted that models performed well and 

models with weather variables performed better than models without.  

Kassaei et al. [11], Darbellay and Slama [2], Abraham and Nath [12], Ringwood et al. [3] and 

Cavallaro [13] developed short-term electricity demand forecast models using NN. Darbellay and 

Slama [2] used Czech Republic demand data and Ringwood et al. [3] used Ireland’s Electricity 

Supply Board’s data to construct univariate NN models. The autocorrelation function was used to 

identify cyclical components in the demand time series and to structure the models accordingly. The 

models achieved a high level of accuracy and performed better than univariate ARIMA models. 

Cavallaro [13] constructed a multivariate NN with variables such as day of the week and average 

temperature and noted a high accuracy. Kassaei et al. [11] and Abraham and Nath [12] combined 

NN with fuzzy logic. Kassaei [11] used a univariate NN to model normal loads and fuzzy logic 

model to model weather dependent loads. The forecast is generated by the output of the NN and 

fuzzy logic model. It was found that the NN and fuzzy logic model performed better than the 

singular NN model. Abraham and Nath [12] applied an ARIMA, evolving fuzzy NN (EFuNN) and 

a NN to Victoria’s demand data. The EFuNN approach differs from a conventional NN since the 

neurons in the network are performing functions such as ‘fuzzification’ of inputs, rule based 

transformations and defuzzification. The weights in the network are altered by a training algorithm. 

The EFuNN performed the best out of the set of developed models.  



The above mentioned models were all short-term electricity demand models applied to networks 

with a large number of consumers. All achieved high levels of accuracy and there were not any 

clear distinctions regarding which modelling method yields the best results. The work conducted by 

Taylor [6] provided evidence that the greater number of seasonality variables included in the model 

accounted for increases in model accuracy. Engle et al. [1], Darbellay and Slama [2] and Mirasgedis 

et al. [5] indicated that the inclusion of deterministic variables such as weather variables improves 

model accuracy. An inference may be drawn from these studies that the inclusion of both ARIMA 

variables and deterministic variables would derive higher model accuracy. However, this inference 

becomes less applicable as the forecast period shortens due to the relationship between demand and 

deterministic variables not being apparent [4].  Forecast windows such as a day ahead or greater are 

more responsive to deterministic variables. 

3.2 Demand profile forecasting 

For the case of short-term demand forecasting models (i.e. 30 minutes ahead, an hour head, etc.)  

iterative forecasting techniques are essential. Iterative forecasting is where the forecast at time t is 

used as an input variable in the model to forecast at time t+1. This process repeats itself until the 

desired number of forecasts has been made. A shortcoming of this technique to forecast demand 

profiles is that the forecast errors in the initial forecast and each iterative forecast are compounded. 

Alternate modelling approaches have been developed including multivariate forecast NNs and 

ensembles of models and pattern recognition [7]. Multivariate forecast NN forecast the next day’s 

demand profile through the use of multiple output neurons for each time interval of the next day’s 

demand profile. The ensemble of models approach entails that there are independent models for 

each time interval of the next day’s demand profile.  

Beccali et al. [8], Hippert et al. [9] and Sousa et al. [10] used a multivariate forecast NN 

methodology in the development of short-term demand profile forecast models. Beccali et al. [8] 

used a self-organising map (SOM) algorithm to cluster similar demand profiles in order to provide 



demand profile indices and a NN with 24 output neurons for each hour of the day. Additional NN 

inputs to the indices included historical load data, historical weather data and day of the week 

dummy variables. Hippert et al. [9] developed a multivariate forecast NN and compared it against 

alternative techniques such as naïve forecasts, ensembles of smoothing filters and ensembles of 

regression models. Hippert et al. [9] found that the NN model performed better than the alternatives. 

Sousa et al. [10] adapted a demand profiling technique to a NN with 24 output neurons. 

The NN short-term load forecast (ANNSTLF) system described by Khotzanzad et al. [14] utilizes 

both an ensemble of models and NNs capable of producing multiple forecasts. The ANNSTLF 

system is comprised of four NNs. Each NN forecasts distinct multiple hours and are sequentially 

combined to produce the next day’s demand profile. Input variables of the NNs include historical 

and forecasted temperature, historical and forecasted RH and historical demand data. The 

temperature is forecasted using an ensemble of NN models with multiple outputs and are combined 

using an adaptive scaling algorithm. RH is forecasted by the use of a moving average algorithm. 

The system was applied to data from ten utilities and displayed a high level of accuracy. Fan and 

Chen [15] developed a more advanced system which relied on a SOM to cluster demand profiles 

according to exogenous variables and multiple sets of 24 support vector regression models. When 

input variables are inputted into the trained SOM, it calls a specific set of 24 support vector 

regression models to forecast the demand profile. 

Pattern recognition approaches involve an algorithm analysing a set of input variables and 

classifying according to a set of known or trained relationships. The SOMs employed by Beccali et 

al. [8] and Fan and Chen [15] are examples on the use of pattern recognition in the process of 

forecasting demand profiles. Beccali et al. [8] used the output of the SOM as an input variable for 

the NN; whereas Fan and Chen [15] used the output of the SOM to call a specific set of support 

vector regression models. Espinoza et al. [16], Konjic et al. [17] and Sousa et al. [10] clustered 

demand profiles of customer demographics and applied the known demand profiles to other 



customers in order to produce short-term demand forecasts. As noted by Hippert [7], machine 

learning techniques such as NNs can be used specifically for pattern recognition. Dai and Wang 

[18] furthered the use of NNs and pattern recognition to forecast the demand profiles of future days 

through load classification based on their associated input variables. The load sets are identified 

through clustering demand profiles against input variables. Each load set has a characteristic 

demand profile which in turn is used as the forecast. 

3.3 Formulation of the expert system 

An expert system is a program which has decision making capabilities based on reasoned 

knowledge. Many of the NN based demand forecast models discussed fulfil some properties of an 

expert system due to the way in which NNs model systems (i.e. self-learning features). Systems 

containing pattern recognition faculties such as Beccali et al. [8], Fan and Chen [15] and Dai and 

Wang [18] best fulfil the criteria of being expert systems due to decision making vis a vis 

classification being central. 

In order for the demand profile of residential LV transformers to be forecast, the modelling method 

employed must not be sensitive to high variance, low continuity of demand profile patterns of 

sequential days and presence of shocks. This biases the selection of a modelling method away from 

the iterative, ensemble modelling and some derivations of the multivariate NN forecast methods due 

to their reliance on historical demand data. Pattern recognition approaches are more versatile due to 

their ability to classify demand profiles based on their association with exogenous or deterministic 

variables. 

To advance the approach, demand profile properties such as total load or total energy use (TEU), 

peak demand and morning peak can be used as input variables to better the classification of future 

demand profiles and post-processing. These properties can be forecast for future days using 

conventional techniques such as ARIMAX variables due to relatively lower variance in the TEU, 

peak demand and morning peak time series and greater response to exogenous variables. Their role 



in post-processing is to modify the characteristic demand profile such that the most accurate 

forecasts are produced. 

4. Research objective 

The core research objective was to develop an expert system to forecast the next day’s demand 

profile for the LV residential distribution network. 

5. Data 

5.1 Source 

Energex (i.e. the power distribution company supplying South East Queensland, Australia) provided 

the data for the three phase LV transformer and the 128 residential customers the transformer 

supplied (i.e. case study area). The transformer is located in an inner northern suburb of Brisbane, 

Queensland, Australia. The metering of the transformer involved recording the voltage, current and 

power factor for each phase at 10 minute intervals. The phases of the transformer are unbalanced. 

The provided data set contains data for the period covering the middle of January 2012 to the 

middle of February 2013. Weather statistics used in this research, such as temperature and RH, were 

collected by the Brisbane City weather station and made available online from the Australian 

Bureau of Meteorology. The data from 2012 was used as input variables of the coefficient 

estimation of ARIMAX models and input variables for the training of the NN.  

Brisbane has a subtropical climate and experiences mild winter and hot humid summers. Data 

sourced from the Australian Bureau of Meteorology [19] displays that the hottest month of the year 

is January which has average maximum and minimum temperatures of 29.0o and 21.2o. The coldest 

month of the year is July which has average maximum and minimum temperatures of 20.8o and 

9.0o. Brisbane has a mean annual precipitation of 1028.2 mm with the greater amount of 

precipitation occurring over the months of November to March. 



5.2 Overview 

Figure 1 displays 168 hour (7 day) subsections of phase 1’s smoothed demand time series denoting 

summer (a), autumn (b), winter (c) and spring (d) demand profiles. What is observed is that the 

shape of the demand profile changes throughout the year according to changes in customer 

behaviour in response to changes in temperature. Three types of demand profiles can be identified. 

The first which typically occurs during summer is characterised by a small or no peak during the 

morning and a large peak in the evenings. The second which occurs during autumn and spring 

periods has a small peak in the morning and a larger peak in the evenings. The third which occurs 

during winter has a large peak in the morning and a large peak in the evening. 

[FIGURE 1] 

Figure 2 displays phase 1’s demand profile properties such as daily TEU (a), daily peak demand (b) 

and daily morning peak (c) for the 2012 component of the time series. The trend in the TEU time 

series is such that the greatest amount of energy is consumed during the summer and winter periods 

of the year. Winter has a consistently greater level of consumption in comparison to summer which 

is more volatile. The yearly peak energy consumed of 1.3 MWh occurred in winter, on day 179. The 

peak demand time series follows a similar pattern with the greatest demands occurring in summer 

and winter. The yearly peak demand of 108 kW occurred in winter, on day 179. The morning peak 

time series exhibits a different pattern. The morning peak is constant for the first third and last third 

of the year. As daily temperature starts to decrease in the middle third of the year, the daily demand 

profile begins to exhibit the two large peak demand profile patterns. These time series reaffirm the 

observation that the shape of the demand profile changes due to customers’ responses to changes in 

temperature. 

[FIGURE 2] 



6. Method 

6.1 Overview 

6.1.1 Formulation 

It was noted that the transformer’s demand profiles for consecutive days are inconsistent; differing 

in the profile’s shape and magnitude. What was observed throughout the year is that a finite group 

of patterns in the demand profiles repeat themselves according to repetitions in the set of external 

variables that affect demand such as temperature and day of the week. Periods where the demand 

profiles are more consistent are generally due to the set of exogenous variables on each day being 

similar. Due to the coincidence of the finite set of patterns and the respected sets of exogenous 

variables, a pattern recognition solution is feasible for forecasting future demand profiles. The 

general operation of the pattern recognition solution is such that a future day will have a set of 

exogenous variables. Based on this set of variables an algorithm will select a pattern from the group 

of patterns which will best represent the demand profile which will occur on that day. The 

development and the operation of the solution are distinct processes. To develop the solution the 

following steps are required: 

1. Identify repeating patterns within the time series by clustering demand profiles by how well 

they correlate with one another. The cluster that a demand profile is a member of is that 

demand profile’s classification. The mean of each cluster and the characteristic demand 

profile (CDP) form the underlying repeating patterns. 

2. The exogenous variables associated with each demand profile are to be associated with the 

group that the demand profiles are classified under. 

3. A pattern recognition algorithm is to be trained to associate sets of exogenous variables to 

respected groups of demand profiles. The trained pattern recognition algorithm takes a set of 



exogenous variables as input variables and selects a cluster which the set most likely occurs 

under. 

Following the listed steps, the expert system based on pattern recognition was developed using a 

correlation clustering algorithm and a feed forward back propagation NN.  

6.1.2 Expert system development and operation 

Figure 3 displays the steps involved in the development and operation of the expert system. The 

development process begins with data pre-processing. The data is then passed into a correlation 

clustering algorithm that produces a set of identified clusters and variables associated with each 

cluster. This information is passed into a multivariate forecast NN. The NN is structured with an 

output vector with k number of elements matching the number of clusters. The first element 

represents cluster 1 and the kth element represents cluster k. The NN is trained under the back 

propagation algorithm. From the identification of clusters, the demand profiles for each cluster are 

averaged to produce the set of CDPs. There’re k number of characteristic demand profiles. 

Characteristic demand profile 1 corresponds to cluster 1 and characteristic demand profile k 

corresponds to cluster k. 

The operation of the expert system to forecast the demand profile for a future day starts with the 

acquisition of the weather forecast for that day. This data is then supplied to three ARIMAX 

demand profile property forecast models. The weather forecast data and demand profile property 

forecast are supplied to the NN as input variables. These are combined with additional “known” 

variables such as day, week, month, public holiday, etc. The NN produces the output vector with n 

number of elements. Each element will have a value ranging from 0 to 1. This is analogous to 

estimations of the likelihood of a given set of input variables to be classified under a specific 

cluster. The set of input variables are classified under the corresponding cluster with the element 

which contains the highest value or value closest to 1. If element x has the highest value then the set 

of input variables will be classified under cluster x. The associated characteristic demand profile 



with cluster classification is then used as the demand profile forecast. The demand profile forecast 

is then improved by augmenting it according to the forecasted demand profile properties. 

[FIGURE 3] 

6.2 Pre-processing 

Pre-processing of the data involved the following steps: 

1. Removal of demand profiles from the set which contained 10 or more data points with 

missing data points. 

2. Conversion of the 10 minute average power recordings to 30 minute average power 

recordings. 

The removal of demand profiles with 10 or more missing points reduced the number of demand 

profiles from 366 to 349. The conversion from 10 minute average power recordings to 30 minute 

averages dampens the effect that random shocks have on the time series. This reduces the number of 

elements in the demand profile from 144 to 48. In turn, the demand profile forecast will be 

comprised of the average power value for 48 half hour intervals. Half hour intervals are sufficient to 

achieve the ultimate goal of this research. 

6.3 Correlation clustering 

The correlation clustering algorithm operates by clustering a set of vectors based on how well they 

correlate with different subsets of vectors. Correlation is calculated by the use of Pearson’s 

correlation equation (eq. 1). The output of the equation will range from 0 to 1. A value of 1 denotes 

a perfect correlation and a value of 0 denotes no correlation. 

𝜌(𝑋,𝑌) = 1
𝑛−1

∑((𝑥−𝑢𝑋)(𝑦−𝑢𝑌))
𝜎𝑋𝜎𝑌

                                                                                                            (1) 



where ρ is the correlation statistic, X and Y are vectors, n is the number of elements in each vector, x 

is an element within vector X, y is an element in vector Y, ux is the mean of X, uy is the mean of Y, 

σX is the standard deviation of X and σY is the standard deviation of Y. 

Given k (user defined) set of clusters C={C1,C2,…,Ck}, there will be k number of cluster means 

CDP={CDP1,CDP2,…,CDPk}. The calculation of the cluster means represent the underlying trends 

with the clusters that demand profiles DP can be correlated with. There’re n number of demand 

profiles. For each iteration of the clustering process, where t is the iteration number, the algorithm 

calculates the cluster means (eq. 2) and assigns demand profiles to each cluster (eq. 3 and eq. 4). 

The algorithm continues until user defined number of epochs has been reached. 

𝐶𝐶𝐶𝑖
(𝑡) = 𝑚𝑚𝑚𝑚�𝐶𝑖

(𝑡)�                                                                                                                      (2) 

calculated for all clusters CDPi for i = 1,2,…,k. 

𝐶𝑗 = �𝜌�𝐶𝐶𝑗 ,𝐶𝐶𝐶1�,𝜌�𝐶𝐶𝑗 ,𝐶𝐶𝐶2�, … , 𝜌�𝐶𝐶𝑗 ,𝐶𝐶𝐶𝑘��                                                                    (3) 

where P is a set of correlation statistics between demand profile j and the set of cluster means. This 

is calculated for all demand profiles DPj for j=1,2,…,n. 

𝐶𝑖
(𝑡+1) = �𝐶𝐶𝑗:𝐶𝑖,𝑗 = max (𝐶𝑗) 𝑓𝑓𝑓 1 ≤ 𝑗 ≤ 𝑚�                                                                                (4) 

which states if correlation statistic Pi,j equals the maximum of the set then demand profile j will be 

classified under cluster  i. This is calculated for all clusters CDPi for i = 1,2,…,k. 

After the correlation clustering algorithm has completed, the clusters are subdivided by magnitude. 

In order to derive the demand profiles within each cluster they are integrated, z-scored and 

separated by arbitrary intervals of deviations from the mean. The final number of clusters is k 

multiplied by the number of intervals of deviations from the mean. 



6.4 Artificial neural network 

6.4.1 Algorithm 

The NN is constructed by layers of artificial neurons interconnected by synapse (weights) from one 

layer to the next. The NN chosen for discrete classification is a sigmoid activation back-propagation 

network. Each neuron receives input signals from a set of synapse and performs a function 

described by equations 5 and 6. The NN is trained, with adjustments of the weights throughout the 

network to achieve the optimal forecast, according to equations 7 to 10. Equation 7 is the training 

algorithm for weights connected to the output layer and equation 8 is the training algorithm for 

weights of preceding layers. For the network to operate the input and output data was normalized. 

To prevent over fitting the algorithm randomly selects and separates 20% of the data in order to 

validate the model. The algorithm continues until user defined number of epochs has been reached. 

𝑣𝑗 = ∑ 𝑤𝑗ℎ𝑥ℎ𝑚
ℎ=1                                                                                                                                 (5) 

where vj is the summation of the weights multiplied by the outputs of each neuron (or inputs of the 

NN) respectively for neuron j. There’re m number of neurons or inputs in the previous layer. 

 𝑌𝑗 = 𝜎�𝑣𝑗� = 1
1+exp (−𝑣𝑗𝛼)

                                                                                                                  (6) 

where Yj is the output of neuron j, σ(vj) is the sigmoid function and α is a constant which affects the 

gradient of the sigmoid function. 

𝛿𝑗 = 𝜎′(𝑣𝑗)(𝑌𝚥� − 𝑌𝑗)                                                                                                                           (7) 

𝑤𝑖𝑗
(𝑡+1) = 𝑤𝑖𝑗

(𝑡) + 𝜔𝛿𝑗𝑌𝑖                                                                                                                      (8) 

where wij is the weight connecting neuron i to output neuron j, ω is the training rate, vj is the result 

of the summation function for neuron j, 𝑌𝚥�  is the forecasted value, Yj is the observed value, 𝛿𝑗 is the 

local gradient at neuron j, Yi is the output of neuron i of the previous layer and t is the training 

epoch. 



𝛿𝑖 = 𝜎′(𝑣𝑖)∑ 𝛿𝑗𝑤𝑖𝑗𝑘
𝑗=1                                                                                                                        (9) 

𝑤ℎ𝑖
(𝑡+1) = 𝑤ℎ𝑖

(𝑡) + 𝜔𝛿𝑖𝑌ℎ                                                                                                                    (10) 

where whi is the weight connecting neuron h to output neuron i, vi is the result of the summation 

function of neuron i, 𝛿𝑖 is the local gradient at neuron i and Yh is the output of neuron h of the 

previous layer. 

6.4.2 Variable selection 

The input variables of the NN are selected by a combination of prior statistical analysis and directed 

trial and error. Prior statistical analysis involves observing how demand changes for different 

external variables. It has been observed that variables such as temperature and humidity have 

effects on demand [1, 5]. Directed trial and error involves the addition and removal of variables 

according to whether or not they increase the accuracy of the model. When a variable is added or 

removed the network is retrained multiple times to establish accuracy baselines for the training and 

validation sets. Each time the network is retrained, a new validation set is selected randomly from 

the data set. The variable is added or removed depending on whether or not the baseline accuracies 

improve. 

6.5 Forecasting 

Each element Yi of the output vector of the NN Y corresponds to a cluster Ci within the set of 

clusters C. The future day’s input variables are classified under the cluster i where Yi equals the 

element with the maximum value within the vector Y. The forecasted demand profile DPf will equal 

the cluster mean CDPi. 

6.6 ARIMAX Models 

To improve forecast accuracy, forecasted demand profile properties such as next day peak demand 

(NDPD), next day morning peak (NDMP) and next day TEU (NDTEU) can be used to augment the 



forecasted demand profile. The three forecast models, NDPD, NDMP and NDTEU, are ARIMAX 

models that were developed for each phase of the network and validated. The ARIMAX models are 

populated with exogenous variables (e.g. temperature, RH, day of the week, etc.), autoregressive 

terms and the double exponential smoothing algorithm. The peak demand, morning peak and TEU 

time series contain data for 403 days. The first 190 days of the time series were used for model 

training (coefficient estimation via regression) and the remaining 201 days were used for model 

validation. 

The morning peak and the peak demand forecasts can be used to adjust the amplitudes of the 

morning peak and peak demand of the demand profile forecast. The area under the forecasted 

demand profile curve can be adjusted to match the TEU forecast. The morning peak and peak 

demand adjustments of the demand profile forecast will alter its integral. To mitigate the likelihood 

of greater deviations from observations for the NDPD and NDMP adjustments, the morning peak 

and peak day demand values will be adjusted first then the TEU forecast. 

6.7 Post processing 

6.7.1 Peak adjustment 

The adjustment of the morning peak and peak demand follow the same algorithms. The first is the 

peak decrease algorithm set denoted by equations 11 to 13. The second is the peak increase 

algorithm set denoted by equations 14 to 16. Both algorithms initialize by halving the demand 

profile forecast into two vectors; one containing the morning peak and one containing the evening 

peak. The following discussion outlines the steps for calculating both vectors.  

The peak decrease algorithm finds elements which have a higher value than the peak forecast 

described by equation 11: 

𝐸𝐸 = �𝑗:𝐶𝐶𝑗,𝑓 = 𝐶𝐶𝑗,𝑓 > 𝐶𝑓 𝑓𝑓𝑓 1 ≤ 𝑗 ≤ 𝑚�                                                                                  (11) 



where EL is a set of element locations where the element has a greater value than peak forecast Pf, 

where j is an element number and n is the length of the vector. The third step, equation12, in the 

algorithm set is to find the difference between the peak of the demand profile vector peak and the 

peak forecast: 

∆𝐶 = max�𝐶𝐶𝑗,𝑓� − 𝐶𝑓                                                                                                                   (12) 

where ∆P is the difference between the element with the maximum value in DPj and the peak 

forecast Pf. The forth step of the peak decrease algorithm involves the adjustment of the values in 

the demand profile which are greater than the peak forecast: 

𝐶𝐶𝐸𝐸,𝑓 = 𝐶𝐶𝐸𝐸,𝑓 − ∆𝐶                                                                                                                     (13) 

which describes that the elements which have a value greater than the peak forecast Pf that were 

adjusted downwards while maintaining the prior shape of the demand profile curve. 

The peak increase algorithm calculates the difference between the peaks of the demand profile 

forecast and the peak forecasts using equation 14: 

∆𝐶 = 𝐶𝑓 − max�𝐶𝐶𝑗,𝑓�                                                                                                                    (14) 

where the variables are described above. The algorithm proceeds to create a vector with values 

ranging from 0 to 1 and 1 to 0 and multiplies it with ∆P as per equation 15: 

∆𝐶𝐶 = [0,0.1, … ,1,1, … ,0.1,0] × ∆𝐶                                                                                              (15) 

where ∆DP is the peak adjustment vector which has a scaled response to maintain the shape of the 

peak period of the original demand profile forecast. The peak adjustment vector is then added to the 

peak period (pp) according to equation 16: 

𝐶𝐶𝑝𝑝,𝑓 = 𝐶𝐶𝑝𝑝,𝑓 + ∆𝐶𝐶                                                                                       (16) 

which describes that the peak periods of the demand profile are adjusted according to the 

adjustment vectors. The adjustment vectors highest value overlaps with the peak demand element. 



6.7.2 Total energy demand adjustment 

The adjustment of the demand profile forecast according to the forecasted TEU follows a series of 

steps. These steps include: (1) calculate the integral of the forecasted demand profile; (2) calculate 

the difference between the integral and the TEU forecast; and (3) convert the difference value 

∆TEU to an average power drawn over a 24 hour time period and add it to the demand profile 

forecast. These three calculation steps are described by equations 17 to 19, respectively, as follows: 

∆𝑇𝐸𝑇 = 𝑇𝐸𝑇𝑓 − ∫𝐶𝐶𝑓                                                                                                                   (17) 

where ∆TEU is the difference between the forecast TEUf obtained from the NDTEU model and the 

integral of the demand profile forecast DPf. 

∆𝐶𝑓𝑤𝑚𝑓����������� = ∆𝑇𝐸𝑇
𝑟

                                                                                                                               (18) 

where ∆𝐶𝑓𝑤𝑚𝑓����������� is the average difference in power drawn over a 24 hour time period and r is the 

number of discrete time intervals in the demand profile.  

𝐶𝐶𝑝 = 𝐶𝐶𝑓 + ∆𝐶𝑓𝑤𝑚𝑓�����������                                                                                                                    (19) 

where DPp is the post-processed forecast.  

7. Results and discussion 

7.1 ARIMAX models 

The variables contained within the NDPD, NDMP and NDTEU models are outlined in Table 1. The 

variables which populate the models were selected on the basis that their inclusion improved 

accuracy statistics for both the training and validation sets. Demand t-1, Demand t-2, Temp., 

Temp.^2, RH and DES forecast variables are included in all models. The double exponential 

smoothing algorithm accounts for the changing local mean throughout the times series and is 

analogous to a ARIMA(0,2,2) model. The two autoregressive terms mitigate autocorrelation in the 

error terms and make the ARIMA components ARIMA(2,2,2) within the ARIMAX models. Temp. 



and Temp.^2 variables account for the parabolic response to temperature. NDPD and NDTEU 

models contain day of the week dummy variables and RH-temperature interaction terms. The 

morning peak time series was observed as not being responsive to different days of the week. 

NDPD has one additional variable which is the intercept. 

[TABLE 1] 

Table 2 displays the models’ coefficient of determination (R2) and mean absolute percentage error 

(MAPE) accuracy statistics for both the training and validation sets. The NDTEU models displayed 

the highest level of accuracy for the both the training and validation sets. The NDPD and NDMP 

models were less accurate than the NDTEU models. A possible explanation for this deviation in 

model accuracy could be that the peak demand and morning peak time series were more variable 

and had greater instances of random shocks than the TEU time series. The post-processing 

algorithm adjusts the demand profile forecast according to the TEU forecast after the morning peak 

and peak demand adjustments have been made. This enables a more accurate forecast to mitigate 

potential NDPD and NDMP forecast errors.   

[TABLE 2] 

Figure 4 presents Phase 3’s ARIMAX models’ hindcasts and forecasts. For the majority of the 

training and validation time series, the hindcasts and forecasts follow the pattern of the observed 

data. In line with the accuracy statistics displayed in Table 2, the NDTEU hindcasts and forecasts 

exhibit a better fit to observed data than the NDPD and NDMP models. The NDPD and NDMP 

models display instances where the hindcasts and forecasts significantly deviate from observations. 

Divergences on days 29, 58, 59 and 155 were attributed to spikes in demand on the day after a 

period of heavy rainfall. The Queen’s Diamond Jubilee public holiday, day 163, had an abnormal 

spike in demand. The significant deviation on day 395 occurred the day after a period of heavy 

rainfall and minor flooding. The NDTEU models were observed to be less sensitive to the 

exogenous shocks. 



[FIGURE 4] 

7.2 Correlation clustering 

Table 3 displays the number of demand profiles classified under each cluster. The correlation 

clustering algorithm was run until the most optimal clustering solution was found by minimising the 

number of low correlations within each cluster. This was achieved by an initial selection of 3 cluster 

nodes and further subdividing the clusters according to where z-scores of demand profiles are 

located (i.e. z<-1, -1<z<1 or z>1). This resulted in a total of 9 clusters per phase. The number of 

demand profiles per cluster ranged from 21 to 24. 

[TABLE 3] 

7.3 Neural network 

Table 4 contains the NN classification accuracy statistics. Each phase of the network has a separate 

NN with 9 output neurons corresponding to each cluster. ‘Accuracy’ is the percentage of correctly 

made classifications. ‘Miss’ represents the number of invalid or incorrect classifications. The higher 

the accuracy percentage and lower the miss percentage entails the better the NN is at correctly 

classifying a set of input variables. The accuracy percentage ranges from 0% to 100%. The miss 

percentage ranges from 2.15% to 11.11%. The overall accuracy and miss percentages for each NN 

range from 70.66% to 77.98% and 4.69% to 6.04% respectively. A possible explanation of the low 

classification accuracy of some clusters is that the cluster is too similar to another in terms of 

magnitude, shape and associated input variables. Post-hoc analysis of clusters having very similar 

characteristics resulted in some cluster mergers. 

[TABLE 4] 



7.4 Hindcast accuracy statistics 

Table 5 highlights the accuracy statistics of the expert system applied when using the training data 

set. The accuracy statistics include root mean square error or standard error (RMSE), R2, correlation 

and MAPE. The RMSE displays the 1 σ confidence interval related to each phase. Each phase’s 

expert system had high levels of accuracy. Phase 1’s expert system had the least accuracy with an R2 

of 0.86, correlation of 0.93 and MAPE of 12%. Phase 2’s expert system had the highest accuracy 

with an R2 of 0.88, correlation of 0.94 and MAPE of 11%. These reported high levels of accuracy 

indicate that the expert system’s sensitivity to miss-classifications is low. 

[TABLE 5] 

Figure 5 displays the R2 statistic distribution for each phase’s expert system when the accuracy of 

each day’s hindcast is calculated independently. It is to be noted that after pre-processing of the 

data, the number of days used to train the systems were reduced to 349. Phase 2’s expert system had 

the greatest number of high accuracy forecasts with 143 days having R2 statistics greater than 0.9. 

Phase 1’s and Phase 3’s expert systems had a similar number of high accuracy hindcasts with 97 

and 91 days with R2 statistics being greater than 0.9, respectively. As the aggregated R2 statistics 

increases the performance of the models coincide. For each phase’s expert system there were 

between 6 and 14 days (approx. 2-4% of sample) where the accuracy of the forecasts deviated from 

observations such that the forecasts were considered to be of low accuracy (R2 < 0.5). 

 [FIGURE 5] 

Figure 6 displays a 7 day period comparing Phase 1’s observations verses hindcast. Each day, 

highlighted by vertical lines, is an independent hindcast. What can be observed is that the expert 

system is able to classify a set of input variables and use the characteristic demand profile of the 

corresponding cluster to produce a hindcast with a reasonable degree of accuracy. Differences 

between the expert systems’ hindcasts and observations can be attributed to randomness in the 

observation and the smooth curve of the characteristic demand profiles. 



[FIGURE 6] 

7.5 Validation accuracy statistics 

To simulate real world performance, forecasted information was used as input variables over the 

training set period. Each of the forecasts incorporated as input variables contain error. This 

necessitates that the performance of the expert system will be hampered due to the compounding 

effect of the errors. Table 6 contains the accuracy statistics for simulated real world performance. In 

comparison to the expert systems’ hindcasts, its accuracy decreased slightly which is in line with 

expectations. The R2 statistics decreased by 4 to 5 points; the RMSE increased by 500W to 900W; 

correlation decreased by 2 to 3 points; and, MAPE increased by 1.5%. Nonetheless, with R2 

statistics ranging from 0.81 to 0.84, correlations ranging from 0.90 to 0.92 and MAPE ranging from 

12.5% to 13.5%, the expert systems exhibit a reasonable level of accuracy. 

[TABLE 6] 

Figure 7 displays the R2 statistic distribution for each phase’s expert system when the accuracy of 

each day’s forecast is calculated independently. There were 349 forecasts per phase. As expected, 

the number of high accuracy forecasts (R2>0.9) decrease by 46 to 60 in the simulated real world 

performance. The number of low accuracy forecasts increased by 23 to 34.  

[Figure 7] 

The ability of the expert system to correctly forecast a demand profile for a future day is dependent 

on the accuracy of the forecasted information. Figure 8 compares the normalised error of Phase 2’s 

NDPD model against R2 statistics of the demand profile forecasts for the last 50 days of 2012. As 

the error of the forecasted information increases (days 334 to 340) the ability for the system to 

select a characteristic demand profile and post-processes it such that it produces a reasonable 

forecast decreases. In turn, it can be stated that the forecast accuracy of the expert system can be 

improved if the error of the forecasted information decreases.  



 [Figure 8] 

8. Conclusion 

This paper presented an expert system that was developed to forecast demand profiles in residential 

LV distribution networks in order to overcome potential issues created by high variance and 

frequent random shocks. The expert system was constructed by the combination of demand profile 

property connection forecasts (i.e. TEU, peak demand and morning peak), correlation clustering, 

NN discrete classification and post-processing. The expert system operates by classifying input 

variables and calling a corresponding characteristic demand profile as the forecast. The post-

processing component adjusts the forecast to better conform to demand profile property forecasts. 

The expert system was trained using demand data from an LV residential transformer supplying 128 

customers located in Brisbane, Australia. The expert system exhibited high hindcast accuracy with 

R2 ranging from 0.86 to 0.87 and MAPE ranging from 11% to 12% across the network’s phases. An 

overlay (Figure 5) of the hindcasted demand profiles and actual observations displayed that the 

expert system can correctly replicate the shape and magnitude of observed data. When analysing 

simulated real world performance by using forecasted input variable information, the R2 statistic 

was reduced to a respectable 0.81 to 0.84 and MAPE increased to 12.5% to 13.5%. The accuracy of 

the expert system only slightly decreased in comparison to the hindcast, which is typical. When 

analysing the contributors to the accuracy decrease, it was noted that the system was susceptible to 

instances of poor demand profile property connection forecasts. This effects both the NN discrete 

classification and post-processing components of the system. 

To improve the expert system’s future accuracy requires increases in accuracy of the demand profile 

property forecasts. This process would involve further detailed analysis of the existing data and 

further collected information to ascertain whether or not periods of poor property connection 

demand profile forecasts are due to exogenous shocks or anomalous behaviour. The authors intend 



to collect further data from the LV transformer and the 128 residential smart meters to provide a 

more comprehensive dataset for refining the expert system.  

Future work will integrate the demand forecasting expert system into an energy management 

control algorithm to schedule the charging and discharging of BESS in LV residential distribution 

networks. 
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Tables 

Table 1: ARIMAX model variables 

NDPD NDMP NDTEU 

Intercept Intercept - 

Demand t-1 Demand t-1 Demand t-1 

Demand t-2 Demand t-2 Demand t-2 

Temp. Temp. Temp. 

Temp.^2 Temp.^2 Temp.^2 

RH RH RH 

RH*Temp. - RH*Temp. 

RH* Temp.^2 - RH* Temp.^2 

Sunday - Sunday 

Saturday - Saturday 

Monday - Monday 

Tuesday - Tuesday 

Wednesday - Wednesday 

Thursday - Thursday 

Friday - Friday 

DES Forecast DES Forecast DES Forecast 

 

 

 

 

http://www.bom.gov.au/climate/averages/tables/cw_040842.shtml


Table 2: Next day forecast models’ accuracy statistics 

 Training 

 R2 MAPE 

Phase 1 2 3 1 2 3 

NDPD 0.72 0.70 0.72 7.05 7.12 7.81 

NDMP 0.80 0.60 0.66 8.12 9.05 8.65 

NDTEU 0.84 0.77 0.87 4.51 4.21 4.44 

 Validation 

 R2 MAPE 

Phase 1 2 3 1 2 3 

NDPD 0.58 0.56 0.65 7.90 7.48 8.13 

NDMP 0.75 0.44 0.66 10.12 12.88 13.21 

NDTEU 0.74 0.80 0.78 6.97 6.30 7.33 

 

Table 3: Correlation clustering results 

Cluster 1 2 3 4 5 6 7 8 9 

Phase 1 33 38 33 37 34 30 57 54 33 

Phase 2 21 23 36 36 43 32 51 64 33 

Phase 3 58 67 36 34 46 29 27 25 27 

 

Table 4: NN classification accuracy 

Cluster   1 2 3 4 5 6 7 8 9 Overall 

Phase 1 
Accuracy (%) 42.85 77.41 89.28 77.41 68.00 100.00 86.36 87.50 73.07 77.98 

Miss (%) 6.45 3.58 2.15 5.01 3.22 2.86 5.73 9.31 3.94 4.69 

Phase 2 
Accuracy (%) 0.00 61.90 93.75 74.19 89.47 74.07 100 85.41 95.65 74.93 

Miss (%) 9.31 5.01 2.15 4.30 2.50 2.50 7.88 7.16 4.30 5.01 

Phase 3 
Accuracy (%) 81.63 81.13 66.66 50 82.85 62.96 31.57 100 79.16 70.66 

Miss (%) 5.37 11.11 7.16 6.45 9.67 4.65 4.65 3.22 2.15 6.04 

 

Table 5: Hindcast accuracy 

 R2 RMSE (W) Correlation MAPE 

Phase 1 0.86 5210 0.93 12% 

Phase 2 0.88 4346 0.94 11% 

Phase 3 0.87 5231 0.94 12% 

 



 

Table 6: Expert system demand forecast validation statistics 

 R2 RMSE (W) Correlation MAPE 

Phase 1 0.81 6104 0.90 13.5% 

Phase 2 0.84 4990 0.92 12.5% 

Phase 3 0.82 6139 0.91 13.5% 



 

Figure 1: Seasonal demand profiles 



 

Figure 2: Seasonal demand profile properties 



 

Figure 3: Expert system construction and operation 



 

Figure 4: Phase 3 ARIMAX models 



 

Figure 5: Demand profile hindcast accuracy distribution 

 

 

Figure 6: Demand profile hindcast verses observation overlay 



 

Figure 7: Demand profile forecast accuracy distribution 

 

 

Figure 8: Error analysis 
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