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Abstract: In the North Sea, an array of wind profiling wind lidars were deployed mainly 

on offshore platforms. The purpose was to observe free stream winds at hub height. Eight

lidars were validated prior to offshore deployment with observations from cup 

anemometers at 60, 80, 100 and 116 m on an onshore met mast situated in flat terrain. The 

so-called “NORSEWInD standard” for comparing lidar and mast wind data includes the 

criteria that the slope of the linear regression should lie within 0.98 and 1.01 and the linear 

correlation coefficient higher than 0.98 for the wind speed range 4–16 m·s
!1

. Five lidars 

performed excellently, two slightly failed the first criterion and one failed both. The lidars 

were operated offshore from six months to more than two years and observed in total 

107 months of 10-min mean wind profile observations. Four lidars were re-evaluated post 

deployment with excellent results. The flow distortion around platforms was examined

using wind tunnel experiments and computational fluid dynamics and it was found that at 

100 m height wind observations by the lidars were not significantly influenced by flow

distortion. Observations of the vertical wind profile shear exponent at hub height 

are presented.
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1. Introduction

There is need for accurate information on ocean winds for offshore wind farms and turbine clusters 

in the Northern European Seas. In large offshore wind farm projects the economic risk is considerably 

reduced when accurate wind data are available at hub height for a minimum of one year. For a 

decrease in uncertainty on the predicted mean wind speed at hub height of 0.1 m·s
!1

there is an 

estimated saving worth around £10 million per year for 25 years for a large offshore wind farm project 

according to industry experts. The cost of installing and operating tall meteorological masts has 

increased in recent years and has a price tag around £10 million for a two-year campaign, thus 

alternatives are desirable.

The motivation for choosing lidar remote sensing technology is to provide ocean wind data at 

higher levels than meteorological masts’ typical span and at the same time to ensure high accuracy 

wind speed measurements at relatively low cost. The need for improved knowledge on winds at higher 

levels is twofold: Firstly modern wind turbines, especially offshore, are increasing in dimension and

the flow across their large rotors is not well-explained by hub height winds alone [1]. Secondly the 

marine atmospheric boundary layer and its temporal behavior at higher levels are poorly known. There 

is a need for improved parameterizations of the marine vertical wind profiles in order to improve 

modeling of offshore winds for wind energy [2] and to experimentally evaluate atmospheric wind 

resource model predictions against offshore winds [3].

Wind lidar remote sensing has had a very rapid growth and dissemination within the wind energy 

community in recent years. The early experiments at DTU Wind Energy (formerly Risø) with a 

focused continuous wave (cw) Doppler wind lidar took place onshore over flat terrain at Høvsøre near 

the tall meteorological mast in 2003 [4]. This was followed by an experimental deployment offshore 

on the Fino-1 platform in 2005 [5], the Nysted 1 offshore wind farm transformer platform in 2006 [6]

and the Horns Rev 1 offshore wind farm transformer platform in 2007 [2]. At all three offshore sites 

meteorological masts were located nearby and the concurrent meteorological observations were used 

for comparisons to the lidar observations. The data analysis from these early offshore experiments 

gave promising results. This fact stimulated the idea for using an array of wind profiling lidars in the 

Northern European Seas where the majority of European offshore wind farms are planned but where 

the knowledge of the wind resources is limited.

In the EU FP7 Northern Sea Wind Index Database (NORSEWiND) investigation from 2008 to 

2012 [7] nine lidars were deployed on offshore platforms in the North Sea and one lidar was deployed 

near the coast of the Norwegian island of Utsira. The research objectives of the NORSEWiND project 

included systematic analysis of the marine wind shear observed from the lidars [8] and investigation of 

the flow distortion around the offshore platforms [9]. It was important to investigate the platforms’ 

influence on the free stream wind speed profiles at hub height. Other results from the project included 

a wind atlas based on numerical modeling and satellite data [3,10–15]. The wind atlas is public 

available from the project web-site.
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The purpose of this article is to present the lessons learnt on the lidar measurement technique, 

deployment strategies and pre- and post- deployment validation including the definition of data quality 

acceptance levels: the so-called “NORSEWiND standard”. Also the requirements for installation setup, 

the data availability, system consistency and multi-year performance are described. The work 

demonstrates the data management strategy for reliable application of lidar data. The measurement of 

flow distortion by the platforms using sub-scale models in a wind tunnel and computational fluid 

dynamics is described with the aim to clarify the level of flow distortion influence on the lidar wind 

profile observations at hub height. A total of 77.491 h, approximately 107 operational months of wind 

profile data from 10 lidars in the period July 2009 to April 2012 were recorded. The data are stored 

as 10-min values in a MySQL database. Selected results of the wind shear at hub height are presented 

and discussed.

2. The NORSEWInD Study Area

Nine lidars were deployed on offshore platforms. One lidar was deployed on the coast of the island 

of Utsira. Figure 1 illustrates the locations.

Figure 1. Map of lidar positions and the Høvsøre test site.

The lidars were operated on the platforms over the period from July 2009 to April 2012. Only 

during a short period in the summer of 2011 did all lidars but one operate simultaneously. An overview 

of the periods of operation is given in Figure 2. The reasons for the different start times and durations 

of observations were due to practical issues and logistics.
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Figure 2. Overview of observation period from the lidars.

3. Deployment Strategies at Offshore Platforms

All lidars in the NORSEWiND project were planned to provide stand-alone wind profile 

observations offshore over many months of operation, i.e., there would not be nearby meteorological 

masts for comparison during the offshore deployment. This prompted a need for careful pre- and 

post-deployment validations. Access to the lidars at the offshore platforms is limited thus it was 

necessary to plan carefully.

The lidars were selected by the industrial partners and encompassed focused cw Doppler wind 

lidars of the type ZephIR
®

[16,17] and pulsed wind lidars of the type WindCubeWLS7
®

[18,19].

Dependent upon the height of the platform at which each lidar would be installed there were specific 

deployment plans for the two types of lidars. The key aim was to observe wind profiles without 

significant flow distortion from the platforms and to observe winds at several heights in free stream 

conditions. It was decided as most important to observe winds at 100 m above mean sea level (AMSL) 

as it is expected to be close to the hub heights of future offshore wind turbines. A wind turbine with a 

rotor diameter of 120 m will sweep from 40 to 160 m AMSL. The wind profiles were planned to be 

observed within these height ranges in steps of 20 m, typically at 5 or 6 heights for the ZephIRs and at 

10 heights for the WindCubes.

The deployment requirements for each platform or rig included technical and legal considerations. 

From the technical perspective it was important to clarify the access to the platform and to ensure the 

installation would be at a suitable location with a level and vibration-free position and the mounting 

would be with free view for all laser beam directions. The free view may potentially be disturbed by 

the rig, cranes, derricks, building, etc. As an example Figure 3 shows photographs of some lidars in 

situ to demonstrate the selected installation spots. On oil and gas rigs the installation location was 

selected to be as far as possible from exhausts and flares. It was important to avoid high aerosol 
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concentrations that could either corrupt the measured wind speed or cause complete extinction of the 

laser light and thus prevent valid measurements.

Figure 3. Photograph of selected lidars on platform.

The lidars need a power supply and a communication network. Thus it was important to ensure a 

suitable and uninterrupted power supply and to check if un-regulated or un-buffered power supply 

could occur. Furthermore, the communication network was required to allow remote control, data 

retrieval access and time synchronization. At some platforms cable line was hooked up at Ethernet and 

using VPN. The time synchronization was important since the internal clocks of unattended lidars may 

significantly drift if they are not actively synchronized (there were unfortunately examples of this). 

The drift is typically around one to three seconds per day; thus it needs update once per day or hour. 

A network time server (if available) or an onboard Global Positioning System (GPS) device can be 

used as reference time sources. NTP protocol was used once per day typically. On offshore platforms 

debris from birds is common. This should not fall on the lidar’s optical port. Therefore spikes or cages 

were established. Large amounts of the wiper fluids were provided and connected to keep the lidar 

windows/lenses clean. The wash and wipe systems were regularly revisited.

On the un-manned platforms theft protection was carried out. At manned platforms/rigs the 

personnel were instructed to perform operation and maintenance of the remote sensing instruments. In 

fact, it proved very important that this instruction/training was carefully undertaken to allow best 

operation of lidars. After installation a thorough on-site test was done. The systems were configured 

for immediate safe shutdown.
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4. Deployment Validation Strategies

As already stated, the lidars were planned to operate stand-alone offshore for many months. This 

prompted a need for pre- and post-deployment validations. Thus the NORSEWInD deployment 

validation strategies included three major steps: Pre-deployment validation onshore, data collection 

and operational performance validation at sea, and post-deployment validation onshore.

The pre- and post-deployment validations onshore took place at the DTU Wind Energy’s Høvsøre 

test site on the Danish North Sea coast next to a 116 m tall meteorological mast on flat terrain. The 

observations from the lidars were compared to the mast observations at the levels 60, 80, 100 and 

116 m. The local set up arrangement is shown in Figure 4.

Figure 4. Høvsøre mast and lidar set up sketch.

Prior to the pre-deployment validation a standard for the data quality acceptance levels for the 

NORSEWInD lidar systems was defined. This is the so-called “NORSEWInD standard” and the 

details are given in Table 1.

The pre-deployment validation included eight lidars. Figure 5 shows the comparison results 

between observed wind speeds from cup anemometer and lidar measurements at 100 m for one of the 

lidars. The observations are from the wind sector 200° to 300° at Høvsøre (see the sector in Figure 4). 

The linear regression slope and R
2

at all observational heights for the eight lidars tested for y = mx are 

listed in Table 2. Only three instruments (1, 7 and 9) did not fully pass the criteria. The poorer values 

are highlighted in grey. The results of the verification for these systems may be seen to be only slightly 

out of range except for the measurement at 60 m by Lidar 1. Lidars 1 to 5 are WindCubes. Lidars 6 to 

8 are ZephIRs. The pre-deployment validation showed excellent results for most of the lidars 

deployed. The slopes and correlation coefficients are slightly lower for the Zephirs than WindCubes 

except for Lidar 1. The reason may be due to comparison between point data from the mast to line 

scanning from pulsed lidars (WindCube) and volume scanning (Zephirs) from remote sensing data.
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Table 1. Data quality acceptance levels for NORSEWInD lidar systems. u stands for 

wind speed.

Parameter Criteria
Ranges 

(Height and Speed)

Absolute error 

<0.5 m·s!1 for 2 < u < 16 m·s!1

Within 5% above 16 m·s!1

Not more than 10% of data to exceed those values

All valid data

Data availability
Assessed case by case

Environmental conditions dependency
All valid data

Linear regression

Slope

Slope between 0.98 and 1.01

<0.015 variation in slope between 

u-ranges (b) and (c)

Heights from 60 to 116 m

u-ranges: (a) 4–16 m·s!1,

(b) 4–8 m·s!1, (c) 8–12 m·s!1

Linear regression

Correlation coefficent (R2)
>0.98

Heights from 60 to 116m

u-ranges: (a) 4–16 m·s!1,

(b) 4–8 m·s!1, (c) 8–12 m·s!1

Figure 5. Wind speed observed from cup anemometer and WindCube lidar at 100 m at 

Høvsøre. The vertical lines indicate the 4, 8 and 12 m·s
!1

levels.

Table 2. Pre-deployment validation results shown for eight lidars tested at Høvsøre: Linear 

correlation slope and R
2

for the wind speeds in the range from 4 to 16 m·s
!1

at four heights.

Lidar
Slope at R

2
at

116 m 100 m 80 m 60 m 116 m 100 m 80 m 60 m

1 0.991 0.976 0.977 0.948 0.999 0.976 0.974 0.915

2 0.988 0.992 0.991 0.993 0.999 0.999 0.998 0.998

3 0.993 0.997 0.997 1.000 0.998 0.998 0.998 0.997

4 0.996 0.999 0.998 0.998 0.999 0.999 0.999 0.998

5 0.985 0.993 0.992 0.993 0.999 0.998 0.998 0.997

6 0.983 0.986 0.986 0.990 0.996 0.996 0.996 0.995

7 0.978 0.983 0.984 0.992 0.994 0.994 0.995 0.995

8 0.976 0.980 0.977 0.989 0.995 0.996 0.996 0.995
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The post-deployment validation only included four out of the eight pre-deployment validated lidars. 

The post-deployment was done at the same location. The instruments at the mast had been changed 

due to normal maintenance of the high-quality instruments. The observational levels were the same as 

for the pre-deployment validation. Thus the NORSEWInD post-deployment performance consistency 

check is assumed to provide reliable statistics on the multi-year performances of the lidars. Table 3 

shows the pre- and post-deployment validation results.

Table 3. Pre-and post-deployment validation results and the differences (diff.) are shown 

for the four lidars tested at Høvsøre (DTU Wind Energy): Linear correlation slope and R
2

for the wind speeds in the range from 4 to 16 m·s
!1

at four heights. The number of 10-min 

observation (N) is given.

Lidar Time
Slope at R

2
at

N
116 m 100 m 80 m 60 m 116 m 100 m 80 m 60 m

2

Pre 0.988 0.992 0.991 0.993 0.999 0.999 0.998 0.998 3.606

Post 0.991 0.997 0.993 0.992 0.999 0.998 0.998 0.997 3.659

Diff. 0.003 0.005 0.002 !"#""$ 0.000 !"#""$ 0.000 !"#""$ -

4

Pre 0.996 0.999 0.998 0.998 0.999 0.999 0.999 0.998 5.065

Post 0.989 0.994 0.989 0.999 0.998 0.998 0.998 0.997 3.510

Diff. !"#""% !"#""& !"#""' 0.001 !"#""$ !"#""$ !"#""$ !"#""$ -

5

Pre 0.985 0.993 0.992 0.993 0.999 0.998 0.998 0.997 991

Post 0.983 0.987 0.984 0.992 0.999 0.999 0.998 0.998 2.791

Diff. !"#""( !"#""& !"#"") !"#""$ 0.000 0.000 0.001 0.001 -

8

Pre 0.976 0.980 0.977 0.989 0.995 0.996 0.996 0.995 1.547

Post 0.960 0.971 0.970 0.979 0.993 0.994 0.995 0.995 1.206

Diff. !"#"$* !"#""' !"#""% !"#"$" !"#""( !"#""( !"#""$ 0.000 -

The post-deployment validation statistics are similar to the pre-deployment validation to the second 

decimal except for Lidar 9 at 116 m. This consistency check on the lidar’s performance shows 

instruments with a high degree of repeatability and able to endure from several months to two years 

deployment on the offshore platforms. This is a comforting result as the aim of the NORSEWInD 

experimental campaign was to observe offshore winds with high accuracy over an extended period 

of time.

5. Data Collection and Operational Performance Validation at Sea

The lidars were mounted on nine offshore platforms and the island of Utsira. In Table 4 the height 

of the instrument mounting on the platforms and observational heights are listed in meters AMSL. The 

observational heights at or near 100 m are shown in italic type in Table 4. These heights are, for 

simplicity, described as at around 100 m hereafter. The ten lidars were deployed for a total of 91.603 h. 

For the 77.491 h of data the average data availability was 89%.

The system and data availability at around 100 m for the lidars is provided in Table 5. The system 

availability is defined as the time from the mounting to dismounting of the lidar. The downtime in 

system availability was due to different reasons. One was a mechanical failure of the rotation of 

lens/mirror in one instrument. In other cases the wiper motors and assembly had problems. They were 
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re-fitted when possible. The data availability is defined as the instrument is operational but may not 

(fully) observe data. One reason was that the wiper spraying was working fine but for some 

instruments the back and forth movement of the wiper caused sometimes a pull backward of water on 

the lens. For WindCubes there were less data to build up to the 10-min value during wipe. Very low 

aerosol concentrations may have resulted in lower data availability at the upper levels compared to 

lower levels but it was not often the case in the North Sea.

Table 4. The lidar deployment height and observational heights are listed in meter above 

mean sea level (AMSL). WC is WindCube, ZP is ZephIR.

Platform Babbage Beatrice Fino3 HornsRev2 Jacky ORP Schooner Siri Taqa Utsira

Lidar type ZP ZP ZP WC WC WC WC WC WC WC

Height 42 42.5 26 26 28 30 36 45 30 26 

1 60 52.5 51 66 60 70 76 85 70 67

2 80 75.5 71 86 80 90 92 105 90 80

3 100 90.5 91 106 100 110 99 125 110 100

4 130 105.5 101 126 116 130 102 145 130 120

5 160 130 146 130 150 107 161 150 140

6 160 166 160 170 116 175 170 160

7 196 200 190 126 205 190 180

8 226 250 210 152 245 210 200

9 256 300 230 182 295 230 250

10 286 216 345 250 300

Table 5. System and data availability in % and hours are listed during the offshore 

deployment. The values are for observations at around 100 m AMSL.

Lidar System Availability in % Operational Hours Data Availability in % Data Hours

Utsira 85 14,995 81 12,075

Horns Rev 2 98 18,433 98 18,019

Taqa 99 9,120 97 8,870

Siri 95 9,585 85 8,178

Fino3 98 4,304 88 3,778

ORP 100 792 73 581

Jacky 97 5,622 93 5,228

Beatrice 86 9,597 85 8,154

Babbage 99 6,255 97 6,070

Schooner 86 8,583 76 6,538

Total 87,286 77,491

The carrier-to noise ratio (CNR) and availability for some WindCube lidars is shown in Figure 6. 

The observations show the lower signal with higher observational height due to weaker signal and 

mainly because of lower aerosol content at the higher heights. The maximum CNR is around 100 m or 

slightly below. The CNR behavior with height shows a peak because of the focus of the system [20].

The observations at Siri were similar in quality to the other instruments from June 2010 to 18 

November 2010. After this time the lidar suffered from a still unknown issue preventing to record good 

data above its 40 m level during night time.
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Figure 6. Lidar observations offshore from four lidars. (a) The carrier-to-noise ratio (CNR) 

as a function of observations height above installation. (b) The average data availability as

a function of observations height above installation.

(a)

(b)

6. Flow Distortion due to Offshore Platform and Terrain

Nine of the lidars were deployed on offshore platforms. These platforms included large gas and oil 

drilling rigs with tall derrick structures (Beatrice, Siri, Taqa, ORP), smaller unmanned production 



Remote Sens. 2013, 5 4290

platforms (Jacky, Schooner, Babbage), wind farm transformer stations (Horns Rev 2 in the North Sea, 

Denmark) and a platform mounted meteorological mast (Fino3 in the North Sea, Germany). One lidar 

was deployed on the coast of the island of Utsira, see [8] for details. Common to all installations was 

the risk of flow distortion around the structures or influence from the surrounding landscape on the 

observed wind profile. The aim of the NORSEWInD project was to accurately observe free stream 

winds at hub height; thus it was desirable to minimize the flow distortion on the lidar wind profile 

observations by selecting the observational heights with care. In certain cases it could, however, 

become necessary to correct the wind profile observations.

To investigate the flow distortion around the platforms and to validate the Computational Fluid 

Dynamic (CFD) simulations, measurements in a low speed wind tunnel were made with a calibrated 

DANTEC Streamline constant temperature (CTA), triple wire anemometer mounted on a three 

dimensional traversing rig as shown in the diagram of Figure 7.

Figure 7. Diagram of constant temperature (CTA) probe traverse system showing the wind 

tunnel coordinate system and a plan view of wind tunnel layout.

By traversing the hot wire probe vertically above the location of the simulated lidar the velocity 

profile in a vertical line above the rig could be determined. This velocity profile was then compared 

with the results of the CFD simulation of the rig. Initially, to create a base line against which the effect 

of the rig on the flow field could be assessed, the flow in the wind tunnel was traversed without the rig 

model present in the tunnel. The measured vectors were then non-dimensionalised by a reference wind 

speed measured by a single hot wire probe upstream and to the right of the proposed model location, 
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with due care taken to ensure the reference speed was outside any likely flow disturbance that might be 

caused by the presence of the rig model. This provided the non-dimensional, undisturbed, free stream 

velocity at the measurement locations above the rig for neutral conditions.

Simulations were undertaken at model scale and full scale to identify any issues regarding Reynolds 

number effects in the subscale wind tunnel tests and none were found. Length scale for oil production 

platforms was typically between 0.5 m and 1 m and 1.5 m for models of the island. Tunnel free stream 

speed was 15 m·s
!1

in all cases. Platform models were typically 100th scale and 1,250th scale of the

platforms and island, respectively. The CFD simulations were carried out for turbulent flow and the 

turbulence intensity in the 1.5 m low speed wind tunnel is approximately 1%. The k-omega turbulence 

model was selected because the model is a mature and established algorithm intended for general use 

with external flows [21]. To confirm the validity of the CFD simulation and to evaluate the most 

appropriate turbulence model the data collected by the hot wire traverses above the rig were compared 

to the CFD data at the same locations using a range of turbulence models including the k-+ and the 

standard k-,-./012#

Figure 8. Non-dimensional velocity magnitude profiles measured above the platform with 

the flow approaching from four different azimuth angles.
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The rig was then placed in the tunnel and the velocity profiles above the rig measured. Comparing 

this data with the data acquired in the empty tunnel the effect of the presence of the rig on the 

undisturbed flow field was determined. Figure 8 shows the results of four traverses above a rig with 

the flow approaching the rig from different azimuthal angles. The X on the plan form view of the rig 

shows the location above which the probe was traversed in the positive Z direction. Probe heights were 

normalised by the height of the rig deck and the speed was normalised by the free stream velocity of 

the wind tunnel [22].

The data from the wind tunnel tests served two purposes: to assess the height above the platform 

that a point measurement device, such as a cup and vane anemometer, might be affected by flow 

distortion, and to verify CFD simulations which were required to assess the effect of flow distortion on 

the measurements made by lidars. By rotating the platform 360° in the wind tunnel and measuring the 

velocity profiles, the boundary where the flow velocity magnitude was within a certain percentage 

of the free stream velocity could be determined, see Figure 9. The result of this analysis for a number 

of platforms is shown in Table 6. The CFD model results compared well with the wind tunnel 

experiment [9,23] and were used to determine the effect of flow distortion on the measurements made 

by the lidars both onshore and offshore. The effect of flow distortion on the cup and vane type 

anemometer, being essentially a point measurement, is easily understood and measured. However, 

remote sensing devices, such as lidars and sodars, determine the wind vector from a spatially averaged 

set of measurements.

Figure 9. Height above rig required for 99% free stream velocity magnitude as a function of 

the azimuth angle from wind tunnel and Computational Fluid Dynamic model (CFD) results.

Some attempts have been made to measure the effect of flow distortion on lidars in complex terrain 

as might be found when measuring in hilly or mountainous terrain [2,5,19,24–27]. In the WAsP 

Engineering software [28], a program for wind site assessment, a script is available that accounts for 

the error due to the flow distortion created by orography when scanning conically with two types of 
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lidars [25]. The authors of [8] investigated the influence of the landscape to the wind profile observed 

by the lidar on the island of Utsira and found significant influence to the wind profile at all levels and 

with clear azimuthal dependence. However, the effect of the flow distortion on lidars in close 

proximity to large structures, such as buildings and oil rigs, had not been investigated to date. To 

understand the difficulty of estimating the effect of flow distortion on the measurements made by a 

lidar it is necessary to understand the fundamental difference between the point measurement of a cup 

anemometer and the spatially averaged velocity measurement of a lidar.

Table 6. Height above lidar installation level and AMSL for undisturbed flow 

measurement from wind tunnel and CFD point measurement and by lidar based simulation 

from CFD where u is the magnitude of the wind velocity and ! is flow angle in the 

horizontal plane. The values in the columns are height in meters AMSL at which this 

measurement is unaffected (±2.5% free-stream) by distortion. Numbers in brackets are the 

height at which distortion is negligible non-dimensionalised by the platform height.

Height above Lidar in m

(Height Normalized by Rig Height)

Height AMSL for 

2.5% Free-Stream

Platform

Rign

Height

(m)

Lidarm

Height

(m)

Wind Tunnel CFD Results CFD Results

Point Point Lidar Lidar

u u ! u ! u !

Babbage 42 42 33 (0.8) 75

Beatrice 62 42.5 64 (1.0) 30 (0.5) >64 (1.0) 34 (0.5) 59.5(1.0) 76.5 102

HornRev 2 26 26 30 (1.2) 44 (1.7) 57 (2.2) 25 (1.0) 55 (2.1) 50 80

Jacky 28 28 20 (0.7) 19 (0.7) 10 (0.4) 18 (0.6) 38 46

Schooner 38 36.25 24 (0.6) 24 (0.6) 35 (0.9) 9 (0.2) 24 (0.6) 39 54

Taqa 31.4 30 37 (1.2) 30 (1.0) 36 (1.1) 33 (1.1) 27 (0.9) 63 57

Utsira 26 26 108 (4.2) 192 (7.4) 150 (5.8) 300 (11.5) 176 326

The measurement technique employed by lidar systems relies on spatially averaged line of sight 

velocity measurements of the flow field. To measure a 3D velocity vector three or more line of sight 

velocity vectors are required. Depending on the instrument and the technique employed the number of

line of sight vectors can be as low as 4 (WindCube) or as high as 150 (ZephIR). In order to assess the 

likely impact of an inhomogeneous flow field on such measurement techniques it was necessary to 

simulate more than a single point in the flow and assess any interference that might exist at each 

measurement point. Only when this interference at every measurement location had been found the 

effect on the final velocity vector could be determined.

To assess the effect of a platform’s flow distortion on the lidars, the flow field over each platform 

was simulated using CFD and so the measurements performed by a scanning lidar. In this way the 

extent to which the platform affected the measurements made by a lidar mounted on that platform 

could be determined. The CFD data also provided information on the distortion observed by a point 

measurement device such as a cup anemometer.

As shown in Table 6 the height to which the platforms caused distortion was not the same. Horns 

Rev 2, a transformer platform, caused distortion in the magnitude of the velocity vector in the 

horizontal plane, Umag, up to a height equivalent to that of the rig whereas Schooner created distortion 
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up to 0.2 times the rig height only. The extent to which distortion was created appeared to be a 

function of the solidity of the rig. The open lattice type structures created significantly less distortion 

than the more solid structures such as Horns Rev 2. It should be noted that the CFD simulations 

indicated that the lidar measurements were less susceptible to flow distortion than a point measurement 

at the same height. Also of note was the height to which the island of Utsira created distortion.

From the simulation of the lidar measurements in the distorted flow field it was possible to calculate 

correction factors and addends that could be applied to the data measured by the lidars situated on the 

offshore platforms. To correct the magnitude and direction of the free stream velocity vector in the 

horizontal plane, u and ! respectively, to the undisturbed free stream values Equations (1) and (2) were 

derived. In the simulation the values of u-free stream and !-free stream in the undisturbed flow were 

known and the measurements made by a lidar, u-lidar and !-lidar in the distorted flow field could be 

determined from the lidar simulation. Substituting these values into Equations (1) and (2) allowed the 

corrections, cffu and cff!, to be determined.

u!"## $%"#&' = cff( × u)*+&" (1)

,!"## $%"#&' = ,)*+&" + cff- (2)

Correction factors were a function of height and free stream flow angle as shown in Figure 10. Flow 

corrections were only applied to data where the correction required was greater than 2.5%, for the flow 

magnitude and 0.5° for the flow direction as this was considered to be the limits of the accuracy of the 

CFD simulation data. Corrected and uncorrected data were stored separately in the database so that 

either version of the data could be analysed as required.

Figure 10. Correction added to the azimuth angle in the horizontal plane up to 50 m above 

rig height over 360° free stream azimuth flow angle in 30° steps.
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7. Database Architecture and Quality Control Implementation

The data from the lidar array was maintained on a Microsoft (MS) SQL Database Server. The 

database was stored on an externally attached high performance Dell RAID storage platform and 

backed up at regular scheduled intervals to disk and tape media. Data was transferred to the main 

database server via the standard File Transfer Protocol, either by manual transfer or automated 

scripting techniques. Upon successful transfer the data was then parsed onto the main MS SQL 

database. For reasons of security and data integrity, the MS SQL database was not directly accessible 

for data downloads or interrogation by end users. Secure database views determined by user ID were 

mirrored from the main MS SQL database to a separate MySQL database. This was accessed by user

login ID and secured via an SSH connection through the University of Strathclyde’s firewall, see 

Figure 11.

There were four tables of data within the database containing node definition, ZephIR, Windcube 

and meteorological mast data. Each lidar was assigned a node number against which information about 

the installation such as latitude and longitude of installation, installation height AMSL, type of device 

(ZephIR, Windcube, metmast), scan heights, filtering and verification, etc. was stored.

In order to upload data on to the database a user was required to log on to an FTP server with a 

node number specific login ID. Each node had a secure directory allocated and the user uploaded the 

data files into the relevant directory. A node specific login ID allowed access only to data belonging to 

that single node, access to additional node data was only allowed on the explicit instruction of the 

project coordinator or relevant node data owner.

Figure 11. Database structure and security implementation.

The SQL database created a transaction log (LogID) when data was uploaded and parsed into the 

database which contained node number, filename, login ID, and date and time of upload. This LogID
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was used to tag the data for all future reference and allowed any single piece of data to be traced back 

to its original raw data file upload.

From the node number the format of the input data was known and the data was parsed into the data 

tables in a standard format for each lidar type. Data fields which contained data which signified poor 

data, such as 999,999, in the case of the Windcube, were replaced with null characters. Time and date 

stamping was also modified to follow the standard SQL date and time format.

Data integrity was checked by taking a random single time sequence of data or group of time 

sequenced data, and comparing the database data stored with the data sequence from the original 

uploaded raw CSV data file.

8. Selected Results of Hub Height Winds

One of the objectives of the NORSEWInD array of wind lidars was to evaluate the ability of 

numerical models to predict winds at hub height (~100 m) and, in particular, the vertical wind speed 

profile, since the final wind atlas was merely produced from the model outputs. Therefore, there was a 

need to compare the model results with observations on places where the wind resource at such levels 

had never been measured. Although most wind resource assessment software, such as the Wind Atlas 

Analysis and Application Program (WAsP) [29], estimate the wind turbine/farm energy production 

based on wind speed distributions at hub height and with that respect the outputs of a mesoscale model 

are rather good [30], the mesoscale models have shown difficulties to reproduce the wind profiles and, 

therefore, the vertical wind shear [31]. The latter becomes more important for wind turbines with large 

rotor areas as the difference between the below and above hub height winds might have a great impact 

on the loads and energy yield. Thus, we decided to concentrate on the analysis of the vertical wind 

shear observed by the wind lidars.

All NORSEWInD wind lidars were able to observe winds at 100 m and higher. Most of them were 

WindCube systems (Table 4), i.e., pulsed lidars; thus the availability of data decreases with height 

(Figure 5). In order to maximize the amount of data we decided to estimate the wind shear from the 

two closest wind speed observations to the 100 m height. The wind shear is estimated as the value of 

the shear exponent " of the power law:
./
.0 = 12/203

4
(3)

where u is the magnitude of the wind speed, z the height, and 1 and 2 referred to two levels. " can then 

be estimated as:

5 =
2
. 1
6.
623 7

2
. 1
8.
823 (4)

Equation (4) is important because one can relate " to Monin-Obukhov similarity theory and will 

find that (see [8,32]):

5 =
9:

ln ; 22<= > ?:
(5)

where z0 is the surface roughness length and #m is the dimensionless wind shear, which is a function 

of the dimensionless stability parameter z/L and also some sort of the derivative with respect to height 

of $m and L is the Monin-Obukov length. Based on Equation (5), we therefore expect that within the 
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surface layer " is a function of height and will vary as z0 increases with wind speed (among others) 

over the sea and $m depends on the atmospheric condition. The relationship of "% and stability was 

investigated from offshore mast data Fino-1 at heights below 80 m and compared to Large Eddy 

Simulation results [33] and the dependence of the power-law exponent on surface roughness and 

stability in a neutrally and stably stratified surface boundary layer was described by [34]. Recently [35] 

compared one year of lidar data to Fino-1 meteorological data, and [36] studied wind shear from the 

wind lidar observations at Fino-1 as a function of stability, and [37] compared data to meteorological 

data in upland terrain.

Figure 12 illustrates the distribution of " at a height close to 100 m, estimated using Equation (4), 

for all the NORSEWInD nodes where data is available in the database. The graph is based on 10-min 

observations from Beatrice (9034), Jacky (5347), Horns Rev 2 (94,848), Schooner (28,572), Siri (20,243),

Taqa (47,317) and Utsira (59,908), the number of observations is given in brackets. There has not been 

any filtering related to the data in the sense that we have not used for example a minimum or 

maximum threshold of wind speed to be analyzed. The only filtering criteria used are related to the 

quality of the signals of the lidar; for the WindCubes the CNR and availability parameters and for the 

ZephIR we use the points of fit-figure, the degree of activity of the cloud correction algorithm and the 

precipitation signal, see [8]. If we start to look at particular conditions, the amount of data highly 

reduces. We need to maximize the amount of data for the analysis of the wind shear. As we have many 

pulsed lidars where the amount of data decreases with height, then we need to make a compromise 

between how much data we want to have and how high we want to observe. Since we want to see the 

shear at 100 m then we selected the two heights closest to it. Fitting a curve would bias the alpha 

estimation to the form of the fitted curve (the ideal will be to have two measurements very close to 

each other since alpha is in fact a very local parameter).

Figure 12. 3/4.526710-068946:;96/<-/=->-values from the power law at around 100 m for a 

number of NORSEWInD wind lidar nodes for all wind speed ranges.
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It is noticed that:

" For all the nodes, there is a broad range of "-values, mostly in the positive side of the 

distribution, which contrasts with the common value of 0.2 used for load calculations offshore.

See [32] for further discussion of the "-value.

" A higher amount of positive "-values is found since wind speeds are generally higher above 

than below 100 m, as expected, but at all nodes it is also observed a good amount of negative 

"-values. The latter are normally found either under conditions where the atmosphere is very 

unstable and the wind speed does not change much with height (and so due to the nature of the 

atmosphere dynamics higher wind speeds are observed below 100 m) or conditions where the 

atmosphere is very stable and so low-level jets or shallow boundary layers influence the wind 

profile so that it bends backwards. It can straightforward be seen that predictions of the 

distribution of " using Equation (3) might only fit a range of positive values (no negative 

values can be estimated from it, although the conditions are very unstable and the sea 

roughness is high).

" Most distributions peak on a positive value between 0 and 0.05. The clearest exception is Horns 

Rev 2, which observes most of the time the wake of the wind farm that increases the wind shear 

at this particular height [8].

" Most distributions lie on each other; the greater exceptions are those at Jacky and Beatrice (the 

two with the fewest high-quality data for the analysis by far), and Schooner that shows a bump 

at about " = 0.2 which might not be real since we found a systematic problem with data, 

although the data here shown should be “correct” according to the NORSEWInD standards (see 

Table 1).

9. Discussions

The joint effort of the NORSEWInD team has resulted in new knowledge and lessons learnt 

in regard to observation of hub height wind measurements for wind energy using wind profiling 

lidars on offshore platforms and at the coast. The new knowledge includes three major issues on the 

device performance:

" The long term performance consistency for the wind profiling lidars employed is good. The 

so-called “NORSEWInD standard” pre-deployment validation showed excellent results for 

most of the lidars. Eight lidars were tested. The post-deployment validation tested four lidars 

and showed only minor deviations from the pre-deployment results. The results are very 

encouraging. They indicate that the devices have a high absolute accuracy after 6 to 26 months 

of deployment in the harsh offshore environment. Considering that the need for new bankable 

wind data for offshore wind farm projects is high wind profiling lidars appear to be a suitable 

candidate for this task in the future.

" The system consistency of the two types of lidars used is encouraging. There are several 

differences in two types of lidars including the number of observational levels, the difference 

in volumes of air observed and the sensitivity to cloud and fog, see [8] for further details. 

Despite the differences both types of lidars passed the “NORSEWInD standard” and had 
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similar post-deployment validation results. For winds at hub height both systems appear to 

perform well.

" The system availability for the devices when deployed offshore was lower than is typical on 

land. Offshore it ranged from 85% to 100% with an average of 95% but is typically higher at 

sites with better power supply. The data availability offshore ranged from 73% to 97% with an 

average of 89%. Data availability is typically higher at sites with higher aerosol concentration. 

System availability may be improved by providing better training to the rig personnel in 

operating and maintaining the devices. However, on some platforms there were no personnel. 

Otherwise it is recommended to improve the system reliability by the manufacturers designing 

future devices which require reduced operational care. Without some type of improvement on 

the system and data availability there is risk of insufficient long term observations necessary 

for accurate wind resource assessment when based on unmanned platforms offshore.

The new knowledge gained on flow distortion around the offshore platforms using both sub-scale 

models in a wind tunnel and CFD modeling indicates that the practical use of even rather bulky 

offshore structures is acceptable for observing free stream winds with lidars at hub height and below. 

A rough guide is that the flow is not significantly distorted above 2.4 times the deck height. It is clear 

that neither the wind tunnel experiments, nor CFD modeling is a final proof. It is therefore important to 

recognize that a critical analysis of the specific wind profiles observed on the platforms should always 

be performed in order to further verify that the wind information is trustworthy [8].

Although the hub heights and rotor diameters are growing, the lower tip height is not changing.

This is fixed by the consenting authority and is usually in the order of 30 m AMSL. At this height it is 

unlikely a pulsed system (unless inclined and hence well outside potential flow distortion effects) will 

be able to acquire a signal. A cw system would be able to acquire a signal, however, if a larger host 

platform is used, then the observation would most likely be higher than the lowest tip height. In short 

we would not expect to correct for lower tip height values even using flow correction factors for wind 

lidar observations.

The major lessons learnt from the offshore deployment are technical and legal issues. In a research 

and demonstration project such as NORSEWInD legal issues with the platform owners took a while in 

several cases. However, it is the technical lessons learnt that will allow improved data collection for 

the future. So even with new generation lidars, for which several improvements were implemented,

partly as a result of the experiences from NORSEWInD reported to the manufacturers, a device may 

need some care. The final wind observations are the 10-min mean values stored in the MySQL 

database. The aim of the NORSEWInD project was to observe offshore hub height winds for wind 

energy and to investigate the wind shear in the marine atmospheric boundary layer. It is easy to 

imagine many other research applications for which the observations could be useful. The data are 

available for research upon acceptance by the data owners (contact andy@oldbaumservices.uk for 

further information).

As discussed in [8] the wind profile lidar observations are stand-alone. No other types of 

observations are available from the platforms. Often information on air temperature, air temperature 

differences, humidity, boundary-layer height and other parameters are used for in-depth analysis of 

atmospheric boundary-layer behavior and structures. This is unfortunately not possible with this 
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dataset except if combined with other data sources such as numerical model results, satellite data or 

other sources as in [38,39].

10. Conclusions

The long-term performance consistency of wind profiling lidars used for offshore wind energy 

application has proven excellent. The devices operated offshore from around six months to more than 

two years. The so-called “NORSEWInD standard”, where part of the criteria is that the slope of the 

linear regression should be within 0.98 and 1.01 and the linear correlation coefficient (R
2
) should 

be >0.98 for the wind speed range 4–16 m·s
!1

, was used for the pre-deployment validation at Høvsøre 

comparing wind profiling lidar data to observation from a tall meteorological mast at 60, 80, 100 and 

116 m. Five lidars passed the standard, two failed slightly whereas one device failed on several criteria. 

The post-deployment validation of four lidars showed excellent performance. The maintenance 

offshore was sparse but despite this and the harsh environment, the system availability was on average 

95% out of a total of 127 months. The data availability was on average 89%. The system and data 

availability will have to be improved to obtain bankable offshore wind resource data. This is work for 

the future and most likely will be reached with a combination of improved devices and improved 

installation, operation and maintenance offshore.

The flow distortion on the offshore platforms was estimated to be insignificant for the lidar wind 

profile observations at hub height. Both CFD modeling and wind tunnel experiments with sub-scale 

models indicated this. The deployment of wind profiling lidars on large offshore structures appears 

suitable when the aim is to observe hub height winds at around 100 m AMSL. In contrast, the lidar 

wind data observed on the coast needed correction for the influence of the terrain as estimated by the 

flow model in WAsP Engineering and comparing the results to the lidar observations.

We were able to estimate the vertical wind shear distributions, based on the shear exponent of the 

power law, at several NORSEWInD wind lidar nodes and found a very broad range of values, peaking 

very close to zero, which contrasts with the commonly used constant value offshore of 0.2. This broad 

range of values is partly due to variation of the vertical wind shear with height, surface roughness (and

thus sea state), and atmospheric stability, and partly to the atmosphere dynamics, which is not 

accounted for in many wind prediction models.
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