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Abstract
The continuum theory of elasticity has been used for more than a centunasiagbplications in

many fields of science and engineering. It is very robust, well underastmdnathematically
elegant. In the isotropic case elastic properties are easily reprede but for non-isotropic
materials, even in the simple cubic symmetry, it can be diffxwitsualise how properties such as
Young's modulus or Poisson’s ratio vary with stress/strain orientation. Hl#éM (Elastic
Anisotropy Measures) code carries out the required tensorial operations (inversaiatian,
diagonalisation) and creates 3D models of an elastic property’s anisotroggn lalso produce 2D
cuts in any given plane, compute averages following diverse schemes apdaqieabase of

elastic constants to support meta-analyses.
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Program Summary
Program title: EIAMA4.1

Catalogue identifier:

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/

Program obtainable fromCPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisionsStandard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed progran3506

No. of bytes in distributed program, including test data, €td.47,257

Distribution format:.zip

Programming languagef-ortran90

Computer:Any

Operating systentinux, Windows (XP, Vista)

RAM: Depends chiefly on the size of the arrays representing elastic pesper8D

Nature of problemRepresentation of elastic moduli and ratios, and of wave velogiti&);
automatic discovery of unusual elastic properties

Solution method: Stiffness matrix (6x6) inversion and conversion to compliance tensor
(83x3%x3x3), tensor rotation, dynamic matrix diagonalisation, sinoplEmisation, postscript and
VRML output preparation

Running timeDependent on angular accuracy and size of elastic constabasktdrom a few
seconds to a few hours).

PACS:07.05.Rm 62.20.D- 91.60.Ba

Keywords:Elastic properties, Anisotropy, Visualisation, Database

1. INTRODUCTION

In materials science, engineering or physics, the theorlasti@ty is typical undergraduate fare:
it has been around for a very long time, works very well, isafin@and is really not very
complicated. It is also used to introduce interesting mathematipatts and, more often than not,
students in physical sciences discover the magic of tensorcaurae on crystalline elasticity.
Despite its familiarity, this old theory has been rejuvenatdte last two decades as materials with
odd elastic properties have been discovered and investigated.

When a sample is stretched, it usually gets thinner, and nisileelaaving so familiarly have a
positive Poisson’s ratio. While negative Poisson’s ratios (hefdBRR) are not theoretically
prohibited, materials exhibiting them have only been produced or reedgmisently. It is easy to



convince oneself of the theoretical possibility of NPR by congidethe now canonical re-entrant

honeycomb structure (see Figure 1a).

(@)

(b)

Fig. 1: (a) 2D structure with positive (top) andgagve
(bottom) Poisson’s ratio; (b) 2D illustration of en
mechanism of NTE, increasing thermal agitation of
linked, rigid squares reduces total area

The first NPR material to find wide recognition was of theem&ant type, a polymeric foam
which had been compressed to generate concavity[1]. Since thenpothanynaterials have been
observed or postulated, and it has been observed that many crybthlis PR, including many
cubic metals[2]. This last result is certainly striking, busieven more surprising that it was only
established in 1998.

Some even rarer materials exhibit another unusual elastic propbey subjected to hydrostatic
(isotropic) pressure, they expand in one direction[3, 4]. This propengfeérred to as Negative
Linear Compressibility (NLC). It has been observed in only 14 materials.

Finally, and even if not yet implemented in the present codendetastic properties can also be
surprising. Negative Thermal Expansion (NTE), where a mateoiadracts in one, two or three
directions as temperature increases, has received a lot tjeichse to possible technological
applications such as dental fillings that expand with the tooth ond#zat do not change shape at
all with temperatureMany mechanisms can generate it, and one of the simplesissated in
Figure 1b.

One of the problems with the full anisotropic elasticity thesrhat, while beautifully symmetric
and compact, it is not especially visualisable. First, the link dmtwthe interesting properties
(moduli and ratios) and the available data (usually the stiffneggxinis not evident (it can be
slightly more direct with the compliance matrix but only in tase of distortions on the principal
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axes). Worst, for distortions in less symmetric directions, Hieulations are too taxing to be
carried by hand on a regular basis, and even exceed the potenfialireadsheet automation (for
typical users). On the other hand, it is well adapted to progmagnis it is essentially linear
algebra, for which many efficient algorithm are available.

It is therefore very surprising to note that there is no easi#ylable code that would transpose
the somehow abstract numbers of the stiffness matrix into 32Dorepresentations of elastic
properties. 2D figures of Poisson’s ratio have been published, baimast certain that they have
been produced with spreadsheets (limitation to principal planes anehgenpar strains). There
are also examples in the literature of 3D plots for the youngislulus (by far the simplest
property), but the authors do not indicate how they were produced|6, 7].

There lies the main motivation behind the present work: to offeeeg asy to use program,
EIAM (Elastic Anisotropy Measures), capable of representiagous elastic properties in any
direction, for any crystal symmetry. A secondary goal isltmathe code to automatically query a
database of elastic constants (as can be found in reviews su¢8loa [9]), in order to
systematically investigate the occurrence of bizarre properties sibj@esorrelations and trends.

The Methodology section first introduces the tensorial formaltishind the crystalline theory of
elasticity and establishes the convention used for angles. It also presenis &geraging schemes.
It then details the algorithm used to compute the principal prepeniamely tensor rotation and
dynamical matrix diagonalisation. The slightly more subtle cdsthe Poisson’s ratio and shear
modulus, which requires some optimisation if the results are tosbligable in 3D, are treated
separately.

We then describe the keywords and input files and present four staséss, which illustrate
some of EIAM capabilities. The first two focus on the visadion aspect and show that the cubic
symmetry can still surprise and that some materialst@ralite, lanthanum niobate) have truly
astonishing elastic properties. The last two examples displajathbase facilities by revisiting the
NLC problem (identifying two new materials), and offering insighthow various definitions of

elastic anisotropy are related.

2. METHODOLOGY

2.1. Elasticity Theory

At its most basic, the theory of elasticity linearly refatstresses to strains. This section
introduces the various quantities, but without delving into subtleties.nidr@sted reader is invited
to consult standards text[10, 11].

The stress describes the surface forces acting on volumerglema continuum. It can be

represented by d%order tensor, with 6 independent coordinates.



The strain describes the state of deformation of a solid bodgn lakso be represented by"™d 2
order tensor, with 6 independent coordinates.
The stiffness tensor expresses the stress tensor in terms of theessam t

Oj = Cijkl &y - (1)

It is a property of the crystal, a tensor &F drder, and its coordinates depend on the choice of
axis. Eq. (1) is the generalised Hooke’s law.

The compliance tensor is the inverse of the stiffness tensor argrets the strain tensor in
terms of the stress tensor:

&jj =S o - (2)

Young’s modulus, or modulus of elasticity, is defined as the ratio of alostress to linear
normal strain (both in the direction of applied load).

The shear modulus, or modulus of rigidity, is defined as the ratibear stress to linear shear
strain.

Poisson's ratio is defined as the ratio of transverse strain ghtonthe applied load), to axial
strain (in the direction of the applied load).

When the crystal is submitted to hydrostatic pressure, the koeapressibility is the ratio of the
induced stretch, along a given line, by the pressure. Excepystakcof cubic symmetry, where
compressibility is isotropic, it depends on the direction of the line.

The long wavelength acoustic phonons, those which originatestfaagbation at the I'-point,
correspond to strains. It is therefore possible to establish deffal between the atomistic (force
constants, dynamical matrix) and continuum descriptions (stiffneSseistoffel equation). Out of
these three acoustic waves, one is longitudinal, the other two are transverse.

Due to translational and rotational symmetries, the number of indepeodordinates of the"4
order tensor reduces to 21 —from 81— for the least symmetricCastals (and more generally 3D
periodic structures or space groups) can be grouped into 7 csystains, and the associated
symmetries reduce the number of independent components fd? trdet tensors further: triclinic
(21), monoclinic (15), orthorhombic (9), trigonal (7), tetragonal (5), hexagonal (5) and8ubic

Six components are sufficient to describe stress and straimeiscdue to Voigt[13] uses this
fact and replaces the cumbersorfieahd 4" order tensors in a 3 dimension vector space by vectors
and matrices in a 6 dimension vector space.

Tensor notation 11 22 33 23,32 31,13 12,21
Voigt’'s notation 1 2 3 4 5 6 (3)
These transformation rules apply directly for stress anthes$$, but the use of corrective

coefficient is required for strain and compliances:



i =¢€p Sk =S, If pandg are 1,2,3 only
1 P : 1 e .

&j ZESD if i and | are Sy ZES"Q if eitherp orq are 4,5,6 (and the other is 1,2 or 3)

: 4)
different

Sk = %Spq if pandq are 4,5,6 only

2.2. Tensor rotation, Euler angles

A fourth order tensor transforms in a new basis set following the rule
T s=r.r.r.r.T )

aflys ol'ai'ao ikl
where Einstein’s summation rule is adopted and where,tlage the components of the rotation
matrix (or direction cosines). They are expressed as the comsliolathe new basis set vectors in

the old framework.

Fig. 2: Definitions of angles used to describedtions in EIAM

A direction in cartesian space, corresponding to an elastiigityficant distortion, for instance
uniaxial stress or response to isotropic pressure, can be r@pess a point on the unit sphere
(unit vector), and advantageously by two angles. We choose it to besthanit vector in the new
basis seta. It is fully characterised by the anglé$0, =) and¢ (0, 2x), as illustrated in Fig. 2. The
determination of some elastic properties (shear Modulus, Poissatity requires another,
perpendicular, direction. This is defined by another unit vettoperpendicular to the first, and
characterised by the angi€0, 2x).

The coordinates of the two vectors are

sind cosp COSA COSp CoSy —sindsin y (6)
a=| singsing |, andb=| cosfsinpcosy +cosdsiny
cosd —sin@dcosy

By definition, the components of the first two columns of the rotatiomixna@re the coordinates
of a andb. This is sufficient to obtain all the components of the fourth ordénensubvectorial

space defined by directions 1 and 2, for instance:



Sl =Sz ="y M2 S = aa;bb Sy, and (7)

/ /
Se6 = Si212 = Mil2j k2 S = &by Sy -
But by scanning, ¢, andy over the unit sphere, we can access all the components without

having to take into account the third unit vector.

2.3. Averaging schemes
Traditionally, and for ease of manipulation, the elastic properti@s @nisotropic material have

been replaced by those of an “equivalent” isotropic material. Thesmsses of averaging are
especially important to treat materials consisting of cryséagrains of random orientation. There
are four main schemes: Voigt[13], Reuss[14], Hill[15], and direct.

The Voigt averaging scheme is based on the stiffness nfagsuming a given uniform strain)

and the bulk moduluk and the shear modul@are given by

A+2B A-B+3C (8)
Ky = , _A-B+C
Y3 & 5
where
A= Ci1+Co+Cays B= Cos+Ci3+Cpy 9)
3 3
C= Caa+Coss+Coeo
3 :

Conversely, the Reuss averaging scheme is based on the compiatnise(assuming a given

uniform stress) and:

1
Koo L G- 5 10)
3a+6b 4a—4b+3c
where
a2511+522+333 b:SZ3+Sl3+SlZ (11)
3 3
c— Ssa+Sss+ Se6
3
In both cases, the Young’s modulus E and the Poisson’srrat®given by
-1 12
E-= i.,.i Vzl(l— 3G j (12)
3G 9K ' 2 K+G

The Hill average is the arithmetic average of the Voigt and Reuss values.
The direct averaging scheme is non analytical and based on acalraeerage of the calculated

properties, it converges slowly with the mesh accuracy.

2.4. Simple properties: Young’'s modulus and linear compressibility
Some properties can be simply expressed in terms of the compliance matrix.



The Young’s modulus can be obtained by using a purely normal stregs 2nitkits vector form
and is given by
1 1 (13)
S,(0.9) B 38,33 Sy -

The linear compressibility follows a slightly different scheme but is euapler to compute. It is

E(0.0)=

obtained by applying an isotropic stress (corresponding to prepsuretensor form, so that

g =— PG and by considering that the extension in directid® ¢; & a;, and that therefore
ﬁ(g’(”): Sj 8, - (14)

2.5. Shear modulus and Poisson’s ratio: optimisation

Other properties depends on two directions (if perpendicular this ponm@s to 3 angles), which
makes them difficult to represent graphically. A convenient poggibdithen to consider three
representations: minimum, average and maximum. For&aoldg, the angle is scanned and the
minimum, average and maximum values are recorded for this direction.

The shear ratio is obtained by applying a pure shear strédss wector form of Eq. 2 and results

in
; (15)
G(Q,gp,;() = /— .
4566(91(01;()
Poisson’s ratio can be obtained by using a purely normal stresp ik its vector form and is

given by

’ abhs a6
V(Q,Q,Z): — S_|_2(9,(D,Z) - _ a1 i kb| S]kl

31/1(9’ (0) 38,83 Sy -

2.6. Sound velocities: diagonalisation
The dynamic matrixM , which describes the vibrational modes (phonons) in a crystal can be
written in terms of the stiffness tensor (see for instance [12])

My = Cijkl kj kl 1 (17)
wherek(k,,k, .k, ) is the wave vector (coordinates).
The dynamic matrix can be diagonalised, and its eigenval@as the square of the frequencies.

From thew(k ) dependence, we can extract the sound wave velocities.

3. Code structure

The source code is written in Fortran90, makes use of modules ansgideddisomehow
artificially, in 6 files: elasticalculations.f90 , main.f90 , modules.f90 , ouvrir.fo0

printps.fo0 andsystem.fo0 . main.fo0  contains the main program, which controls the scanning
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loops and the calls to reading, calculating, and writing procedskgsicalculations.f90

contains procedures to calculate various elastic properties. @resmlled frommain.foo , and
make uses of linear algebra subroutines fegatem.fo0 . This last file contains diagonalisation
subroutines from J. Kopp[16], and matrix inversion routines from T. Pand[hé]subroutine in
ouvrir.fo0 interprets the input files. The procedurespiintps.fo0 deal with the creation of
postscript output files, and are calledrwyin.fo0 . Finally, modules.fo0  contains not only various
modules used for data transfer between procedures, but also the vrmémuelich creates the

vrml output files.

4. Operation and case studies

This section introduces various EIAM input files, discusses parasneied displays some of the
results. It is hoped that the following examples will prove sidgfitly explanatory for most users.
The full list of keywords is given in Appendix A.

4.1. Installation

The code is distributed as a .rar file, which uncompressessaueral directoriessource |,
examples , doc andbin .

Thebin directory contains a precompiled win32 executable for direct ysesndows user, and
an accompanyingat for direct execution.

The doc directory contains a copy of this article, and #xamples directory contains the
examples input and database files mentioned in section 4.2 and onward.

Compilation in thesource directory consist of a straightforwagds.exe -0 EIAM.exe *.f90
(with the gnu fortran 95 compiler for instance). The code has been davelager a windows
platform, and compiles under Compaqg Fortran and Silversfrost FTNB&s lalso been tested with
gnu g95.

For convenience under windows, the main input file must be called inpbutxscripts can of
course be used to allow command line or right-button control. In a@aliysmontaining an input.txt
file, the code will run by executinglAM.exe . The name for the output is controlled within the

input file, see next section.

4.2. Direct mode: basic operations

One of the simplest input files is given in Ex. 1. The first §ats the crystal system (symmetry),
the second line contains the corresponding stiffness constanite arder given by the Landolt-
Bornstein tables (G, Cu4, Ci2 for cubic, see appendix A for other crystal systems). Thd tinie
asks for Young's modulus to be graphically represented, and thenkaginlishes the inputtop

must be present). The program would still be running in the absemacproperty requirement. The
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order of the command is unimportant, with the obvious exception thatkéyaord requires

numerical values, these must be in the line immediately following it.

cubi
12.20 4.46 9.20

young
stop

Ex. 1: Basic EIAM input for Young’s modulus of sélk

As is, this input produces two output fil&aM.log andelAM_young.wrl . The first file is a text
summary of the calculations. It starts with the stiffness angptiance matrices, which is useful to
check that the order of elastic constants was correct. It tloatisréhe meshing parameters and
finally summarises the elastic properties in terms of averagmimum/maximum values and their
directions. The second file is in VRML (virtual reality modellitnguage) format and can be

visualised and explored with a VRML capable browser. A screen copy is shown & Fig

Fig. 3: 3D representation of Young’'s modulus ofesi| using default setup.

Fig. 3 is not an especially good figure, and for many reasorfacinthe previous input makes
use of many default values, which are perfectly fine to obtairagesrand quick indications in the
Jog files, but lack detail to produce good figures. This can beowegl as in Ex. 2 and the
resulting Fig. 4. The first four lines give a title and an output maote. While the title is relatively
unimportant, the output root name eases the organisation of files, ie@ &a fcclog  and
Ag_fcc_young.wrl . The main difference with Ex. 1 is the refinement of the angular scannpgy ste
thet andphi controls the steps for the calculations of optimum values and ayeradg3dth and
3dph define the grid used for the graphical representation. The defdudisvimr these are 24, 24,
12 and 12. Thedaxes keyword facilitates orientation by adding arrows and labelsherthree
cartesian axes. Finally, the background color is changed to wittliethe color_bg keyword.
Generally speaking, colour is coded in EIAM with four values @01, red, green, blue, and

transparency. Transparency being meaningless for the backgroundndredign that case.
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Title

Silver fcc

output

Ag_fcc

cubi

12.20 4.46 9.20

thet

200

phi

200

3dth

99

3dph

99

young

3daxes

color_bg
1.1.1.

Stop

Ex. 2: Improved EIAM input for Young’'s modulus ofiver, with title, named output, finer angle meshhite
background and axes.

Fig. 4: Improved 3D representation of Young's maubf silver, with finer angle mesh, white backgrdwand axes.

The other property codes aft@ar , poisson , compress andsound . The symmetry codes are self
explanatory and araibi , hexa, tetr , trig , orth , mono andtric . Each must be followed by a line
containing the appropriate number of elastic constant valuesc@ofor5 forhexa, 7 fortetr and
trig , 9 fororth , 13 formono and 21 fottric

By default, the code interprets the elastic constants followiagsymmetry keyword as being
components of the stiffness matrix. In order to force them to beaoemts of the compliance
matrix, one has to add thempli keyword to the input. It is also possible to input the elastic
constant directly in 6x6 matrix form, following the keywardr s (note the capital).

This type of input file is sufficient to explore the elastrogerties of a given materials and can

already shed light on some interesting phenomena.

4.3. Case study 1: Poisson’s ratio of cubic crystals
In 1998, Baughman et al. did show that around two thirds of cubic nfatalsalloys) do have

negative poisson’s ratios, in the (110) direction. Previously, this propadyeen considered very
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rare. Fig. 5a and 5b displays screen copies of the VRML reprasanté Poisson’s ratio for two
cubic metals, cesium and aluminium.

The default EIAM colour convention (transparent blue, maximum; greenmum if positive,
red, minimum when negative) makes it clear that these two niete¢sdifferent elastic behaviour.
Not only does aluminium appear much more isotropic, it also does notastyosign of auxeticity,
which is confirmed by the numerical summary in tbg file. The convoluted shape for cesium is
very interesting as it shows auxeticity, but also becausteoibgly hints that a visual inspection of
this sort, even without the colour scheme could have identified negatissoR’s ratio in cubic
metals a lot earlier than 1998.

The humble cubic symmetry is not without surprises, and the storyrswestop here. From
simple calculations, it was assumed that the extrema of Passio for the cubic symmetry were
along the [110] directions and permutations (for instance see [2]& tfonsider the AuCd alloy in
Fig. 5c, we can see that the negative minimum surface is coatt&0], and that therefore this
direction is not the one of minimum Poisson’s ratio. Recent anadgliculations[18, 19] have
tackled this problem and pushed it even further, and shown that in sontasase the optima can
occur in directions around [111]. Once again, this peculiarity (efero as the “Ting & Chen
effect”) could have been discovered much earlier, tipped off by grapt@presentations, such as
Fig. 5d and 6d for InTI alloy (27% TI).

(a) (b)

(c) (d)
Fig. 5: 3D representation of Poisson’s ratio famaihium (a), cesium (b), AuCd alloy (c) and InTlogl (d). maximum
(blue), minimum positive (green) and minimum negafjred).
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4.4. Fine tuning and 2D graphics

As previously mentioned, the simplest properties are easy tsesprand a two-colour scheme
is enough. The shear modulus and Poisson’s ratio are more complerjaximum, minimum and
average surfaces. EIAM produces all four surfaces in a singLVfe, which could lead to
overly rich 3D models. Control over which surfaces are represesitdone by using the colour
options. By default, the average surface colour is fully tramsp and only maximum and
minimum appear, minimum following the red/negative, green/positive otiove and maximum
being blue and semi-transparent (to reveal the minimum surface underneath) otheptbns are
color bg , color axis , color_ pos , color neg , color max , color_ minp , color_minn
color_aven , andcolor_avep . They are followed by a line containing RGB numbers, and, with the
exception of the first two, a transparency number (0 —opague- to 1 —transparent-).

It is also possible to plot sections of the curves, in postscriptaforiine principles are very
similar to those of the 3D curves. Whether a property is plottet is controlled by the following
keywords:2dyoun , 2dshea , 2dpois , 2dcomp and2dsoun . The plane in which the section is cut is
defined by eithemplane_xy followed by a line containing the miller indices, or pigine_an
followed by two angles defining the unit vector perpendicular to thieeplOther related keywords
are of the typedyoung_tick and2dyoung_circ ; they control the presence of ticks on the axes or

of circles to guide the eyes (see Ex. 3 and Fig. 6).

2dpoisson
2dpois_ticks
A1
2dpois_circle
2
2dpois_scale
A

2dshear
2dcompressi
2dyoung
2dsound
plane_xyz
101
2dtitlex
[110]
2dtitley

[001]

stop

Ex. 3 : Use of 2D keywords for postscript prodoctisee Fig. 6.
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(b)

(€) (d)

Fig. 6: 2D representation of Poisson’s ratio in #i€.0) plane for aluminium (a), cesium (b), AuGbwa (c) and InTI
alloy (d). maximum (blue), minimum positive (greemd minimum negative (red).

4.5. Case study 2: extreme crystalline auxeticity
Monoclinic lanthanum niobate is remarkable for being one of fewrratexhibiting negative

linear compressibility, but it is has also one of the lowest gbdePoisson’s ratio (-3.01). It also
has a very large maximum (3.96), interestingly in the saneetdin, along the y axis (see Fig. 7a).
a-cristobalite, a SiO2 polymorph, is also an auxetic crystalgass be seen from Fig. 7b. The
extreme values are more modest, at .10 and -.51, but for aimoseeliatis, the absolute value for

the minimum is larger than for the maximum (the reverseammsparency in Fig. 7b was achieved

with the EIAM input from Ex. 3).
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(€) (d)

Fig. 7: 3D representation of Poisson’s ratio lfarthanum niobate (a, ¢) and a-cristobalite (b, d). The top figures (a, b)
show the maximum and minimum curves for each dwacivhile the bottom ones (c, d) show the rotalbynaveraged
value. The scale, indicated by the length of thesais conserved for each material. The standdoicoonvention is
used (note the, forced, reverse in transparena—ireb).

color_max

0. 0..80.
Color_minp
.0.8.05
color_minn
8.0.05
stop

EX. 4 : Use of colour keywords for transparencyersal.

Both these crystals show extreme auxetic behaviour, yetgragerties are strikingly different.
Fig. 7c and 7d display the average Poisson’s ratio (using input shd# b). This value gives an
indication of whether the section perpendicular to the stretckdses or decreases in area. It can
be that while fora-cristobalite, stretches in any direction results in incrgasaction area,
lanthanum niobate follows a much more normal pattern as the section area ddoreasg stretch.
Both materials are certainly interesting, but would have different apphesat

Title

xtobal

tetr

59.4 42.467.2 25.7 3.8-4.40.0

poisson
3daxes
color_bg
1.1.1.
Color_max
0.0..81.
Color_minp
.0.8.01.
Color_minn
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.8.0.01.
Color_avep
.0.8.00.
Color_aven
.8.0.00.
Stop

Ex. 5: Use of colour keywds to reveal average curves (a-cristobalite).

4.6. Database mode

This mode is geared towards the systematic discovery of unuasat @roperties. It does not
use graphical representation; although the graphical keyword didcpsse@ously can still be
present, they will be ignored. The database mode requires aroaddiile, containing a list of
materials name and elastic constants, as well as a lwbpérties to be tabulated. A simple input
file is given in Ex. 6. Thelatabase keyword triggers the database mode and is followed by the
database file name. Thiata_prop keyword is followed (on the same line) by the number of
properties to appear in the output, and the next line contains thes.cdue codes list is detailed in
Appendix B. In this example, the minimum and maximum of Young's modulugarli
compressibility, Poisson’s ratio, as well as the bulk compresgifihverse of bulk modulus) are
requested.

Title

TST_DATABASE

database

exampledb.txt

data_prop 7

110 120 304 310 320 410 420
stop.

Ex. 6: Typical database mode input file.

Cristoballite C 5 59.4 42.4 67.2 25.7 3.8
-4.40.0

AuCd_Alloy C 7 110.8 40.7 104.9

Ag_FCC C712245592.0

Cd_HCP C6114.1 49.9 19.0 41.0 40.3
Aluminium_pentaiodate_sexahydrate C 6
429 38.7 16 15.7 21.9

stop.

Ex. 7: Database file

The syntax of the database file is simple and is illustrategix. 7. Each line contains first a
identifier, then the type of data (C if stiffnesses, S if caamgks), followed by a symmetry code
and finally by the data (following the order convention in appendix Ayti#ing after the last
elastic constant will be ignored by the program, but can be usedrfunents or references. The
last line must betop .

EIAM has no sorting or parsing facilities, and the entirety dt@base will be treated, which can

take some time. We advise the user to keep their masteadataiba spreadsheet format to benefit
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from superior editing and sorting capabilities, and to exportdleant section in a text file when
required.
Please note that the default value for the grid is used (24, 24). If increased accuracy is

desirablethet andphi can still be used.

4.7. Case study 3: negative linear compressibility

In a pioneering article[3], Baughmann and coworkers used a m@mtiethodology to scan a
database of known elastic constants in order to identify thoseiamatehich exhibit negative
linear compressibility. Out of around five hundred compounds, they suggestethirteen did
show negative linear compressibility: two trigonal, two tetrad, six orthorhombic and three
monoclinic, but no triclinic. The procedure was strangely indirect and consisted in looklimgér
compressibility that exceeds the bulk compressibility (sign ot area compressibility in the
perpendicular plane). The reasons for this choice are not cleacanrenly postulate that as this
method samples a full plane for the cost of one direction, ificsesft if only the principal axes are
investigated (which is implied, but never spelt out in the artigle.use EIAM to re-examine the
data, with a full directional scan. We focus on the lower symneeyrstals, and show that out of six
triclinic crystals present in the Landolt-Bornstein tables, twockiarly show negative linear
compressibility: ammonium tetraoxalate dihydrate and potassatraokalate dihydrate. These
compounds had been missed by the computationally simpler but less eonppétious
methodology. The linear compressibility for ammonium tetroxalatgddste is shown in 3D and
2D in Fig. 8 and 9.

Fig. 8: 3D representation of linear compressibiidy ammonium tetaoxalate dihydrate.

||||||||

Fig. 9: 2D representation of linear compressibilidy ammonium tetraoxalate dihydrate in the x-zpla
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4.8. Case study 4: anisotropy measures

The original motivation for (and reason for the acronym of) E¥Aptecursor was in fact an
article by Ledbetter and Migliori[20] describing an extensiorZéoer’'s anisotropy measure[21].
They describe a straightforward method where the anisotrapgsizibed by the ratio of maximum
transverse sound velocity to minimum transverse sound velocity (@alledthich corresponds to
the Zener measure for cubic crystals (ratio of shear moduli),

. Ve (18)

max

But what is meant by elastic anisotropy? The Ledbetter tiefinis attractive for historical
reasons as it links well with the Zener ratio, but also becduseoif relevance in the field of
geosciences, where transverse wave velocities in differektlayers help locating or predicting
earthquakes[22] for instance.

Other measures of anisotropy also suggests themselves, forcengtaratio of maximum and
minimum of Youngs or shear modulus. Are these measures correlated and does “elastio@riisot
means anything in the absence of reference to a given property”nApaper by Ranganathan and
Ostoja-Starzewski[23] argues it does, and they propose a anisotegsure based on the Reuss

and Voigt averages,
GY KY (19)
AJ = 5?+F—6
They also compare this measure with but their analysis is weakened by their inability to

computeA” for low symmetry crystal systems. As the analytical heatatical derivations are
feasible for the higher symmetry crystal systems, buvareg difficult for hexagonal onwards, the
database capabilities of EIAM provide a superior way to investtbatéopic of elastic anisotropy.
This general problem goes beyond the scope of this article, loieintonstrate EIAM capabilities
we plot A" vs A" for 438 crystals, of all 7 crystal systems. Fig. 10 demonsttag these two

measures are in general agreement, even for low symmetry cygtéahs.
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Fig. 10: Comparison of recent elastic anisotropy meag@\fremdA .
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5. CONCLUSION

In this paper we have detailed the fortran90 code, EIAM, for manipulanhd representation of
elastic properties of anisotropic frameworks (chiefly cig¥tae have presented the required
elements of theory of elasticity, and the conventions for 3D septation. We have also given
detailed installation and execution notes. The operations of the tadesbeen illustrated by
examples of increasing complexity, but also of direct relevanceontemporary problems:
direction for extreme values of elastic properties, identibcatbf materials exhibiting extreme

properties and elastic anisotropy.

6. Appendix A: List of Keywords/options

Keywords are either stand alone (SA), require data on the follokvias) (FL), or must be

accompanied by an integer on the same line AND data on following lines (I+FL)

6.1. A.1l Generic keywords

Keyword Use Default
titl FL, title of the study, only appears in .log file Tt
outpu FL, root name for output files ‘EIAM’
verbose SA, triggers verbose mode and outputs too muchrimdtion in .log False
stiff SA, elastic constants are read as componentsfioiests matrix True
compli SA, elastic constants are read as components gfl@me matrix False
thet FL, number of steps of angle theta (fig. 2) for ethproperties are calculated 24
phi FL, as above, for phi 24
cubi FL, 3 elastic constants for cubic crystal system,(Cys, C12) N/A
hexa FL, 5 elastic constants for hexagonal crystal $§gi@;1, Cs3, Cas, Ci2 Cro) N/A
tetr FL, 7 elastic constants for tetragonal crystaleys{Gi, Csz, Cas Cssr Croo Crz, N/A
Cio
trig FL, 7 elastic constants for trigonal crystal syst€n, Css, Cis, Cio, Ciz, Cisy Cis)  N/A
orth FL, 9 elastic constants for orthorombic crystateys (G, Cy, Css, Cagy Css, Cos,  N/A
Ciz Gz, Cp)
mono FL, 13 elastic constants for monoclinic crystalteys (Gi, Cr, Caz, Casr Css, Coser N/A
ClZy QL3; C\/231 0151 CZSa (:35’ C46)
tric FL, 21 elastic constants for triclinic crystal syt (G, Cia Ciz, Cia, Cis, Ciee N/A
C221 0231 0241 C251 0261 0331 0341 0351 0361 C441 C451 C461 C551 C561 C66)
C FL, stiffness matrix, 6 lines of 6 coordinates N/A
S FL, compliance matrix, 6 lines of 6 coordinates N/A
database SA, Triggers database mode False
data_prop FL, list of output codes (Appendix B) N/A
stop Last line of input N/A

6.2. A.2 3D keywords

Keyword Use Default
young SA, generates a 3d representation of Young’s msdul False
shear SA, as above, for Shear ratio False
compress SA, as above, for linear compressibility False
poisson SA, as bove, for Poisson’s ratio False
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2dshear_circ,
2dshear_scale
2dcomp

2dcomp _tick,
2dcomp_circ,
2dcomp_scale
2dpois
2dpois_tick,
2dpois_circ,
2dpois_scale
2dsound

2dsound_tick,
2dsound_circ,
2dsound_scale
2dtitlex

2dtitley

Sound SA, as above, for sound velocities False
3dth FL, number of steps of angle theta for which prtperare represented 12
3dph As above, see fig. 2 and fig.3 12
3daxes SA, includes XYZ axes in 3D files False
color_bg FL, 3 colour code (RBG), background colour (000)
color_front FL, 3 colour code, foreground colour (111)
color_pos FL, 4 colour code (RBG+transparency), for positieues of non optimised (0 .8 0 0)
elastic properties (Young’s modulus, compressifilit
color_neg As above, for negative values (.8000)
color_max FL, 4 colour code, for maximum values of compleaséit properties ( (00 .8.5)
color_minp As above, but for minimum positive (.8000)
color_minn As above, but for minimum negative (0.800)
color_avep As above, but for average positive (0001)
color_aven As above, but for average negative (0001)
6.3. A.3 2D keywords
Keyword Use Default
plane_xy FL, 3 coordinates of a vector, select the planeviich a 2D cut is preformed N/A
(plane perpendicular to coordinates)

plane_an As above, but vector described ®@andg N/A
2dyoung SA, a postscript plot of Young’s modulus in the st plane will be created False
2dyoung_tick FL, tick marks interval, output marks on axes ofi¥g’'s modulus plot 0
2dyoung_circ FL, circles interval, output circles on Young’s notus plot 0
2dyoung_scale FL, scale interval, output scale on axes of Youmgslulus plot 0
2dshear SA, a postscript plot of the shear modulus in thesen plane will be created False
2dshear_tick, As the2dyoung_ equivalents 0

SA, a postscript plot of the linear compressibility the chosen plane will beFalse
created

As the2dyoung_ equivalents 0
SA, a postscript plot of Poisson’s ratio in the s#1o plane will be created False
As the2dyoung_ equivalents 0
SA, a postscript plot of the sound velocities ia thosen plane will be created False
As the2dyoung_ equivalents 0

FL, character string, title of X axis
FL, character string, title of Y axis

7. Appendix B: Elastic property codes

The property codes used in the database modes range from 1 to 99%Weéxceptions, they

consist of a three figure code. The first number refers to the propertyatsei Table B1.

The second two numbers refine the definition, see Table B2.

The leading 0 must be omitted for the stifnesses and compliances Cade€21 comprise the

stiffnesses in order 11, ... 16, 22, ... 26, ...66. Codes 51 to 1 are the equivalent for the compliances.
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Table B1: First figure code definition, for a coafethe form Xnn
X=0 X=1 X=2 X=3 X=4 X=5

Stiffnesses  or Young's Shear modulus Compressibility Poisson'’s ratio Sowgldcity
compliances modulus

Table B2: Second part code definition, for a cofithe form Xnn

nn=00 nn=01 nn=02 nn=03 nn=04
Direct average Reuss  Voigt Hill Bulk compressibility

average average average (only 304)
nn=10 nn=11 nn=12 nn=13 nn=14 nn=15 nn=16 nn=17 18n=
minimum direction of direction of minimum: x,y,z Miller indices for mimum
(X=5:  minimum Minimum:é, ¢
transverse)
nn=20 nn=21 nn=22 nn=23 nn=24 nn=25 nn=26 nn=27 28n=
maximum direction of direction of maximum: x,y,z Miller indices for mamum
(X=5:  maximum Mmaximum:o, ¢
transverse)
nn=30 nn=33 nn=34 nn=35 nn=36 nn=37 nn=38
X=5 only: transverse direction at minimuntransverse direction at minimum
longitudinal (vectorb): x,y,z (only for X=2 or (vectorb): Miller indices (only for

4) X=2 or 4)

nn=43 nn=44 nn=45 nn=46 nn=47 nn=48

transverse direction at maximuntransverse direction at maximum
(vectorb): x,y,z (only for X=2 or (vectorb): Miller indices (only for
4) X=2 or 4)
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Figure Caption

Fig. 1: (a) 2D structure with positive (top) and negative (bot®aigson’s ratio; (b) 2D illustration
of one mechanism of NTE, increasing thermal agitation of linked, rigid squaheseas total area
Fig. 2: Definitions of angles used to describe directions in EIAM

Fig. 3: 3D representation of Young’s modulus of silver, using default setup.

Fig. 4. Improved 3D representation of Young’'s modulus of silver, witér fangle mesh, white
background and axes.

Fig. 5: 3D representation of Poisson’s ratio for aluminium (ajucegb), AuCd alloy (c) and InTI
alloy (d). maximum (blue), minimum positive (green) and minimum negative (red)

Fig. 6: 2D representation of Poisson’s ratio in the (-110) plangdaninium (a), cesium (b), AuCd
alloy (c) and InTl alloy (d). maximum (blue), minimum positivee@n) and minimum negative
(red).

Fig. 7: 3D representation of Poisson’s ratio torthanum niobate (a, ¢) and a-cristobalite (b, d).
The top figures (a, b) show the maximum and minimum curves &br digection, while the bottom
ones (c, d) show the rotationally averaged value. The scale, indpatbe length of the axes, is
conserved for each material. The standard colour convention is usedh@oterted, reverse in
transparency —red— in b).

Fig. 8: 3D representation of linear compressibility for ammonium tetaexdilaydrate.

Fig. 9: 2D representation of linear compressibility for ammonietraoxalate dihydrate in the x-z
plane.

Fig. 10: Comparison of recent elastic anisotropy meag\irasdA".
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Example captions

Ex. 1: Basic EIAM input for Young’'s modulus of Silver.

Ex. 2: Improved EIAM input for Young’s modulus of silver, with titlemed output, finer angle
mesh, white background and axes.

Ex. 3: Use of 2D keywords for postscript production, see Fig. 6.

Ex. 4 : Use of colour keywords for transparency reversal.

Ex. 5: Use of colour keywds to reveal average curves (a-cristobalite).

Ex. 6: Typical database mode input file.

Ex. 7: Database file
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