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ABSTRACT: The success of the application of genetic algorithms (GA) or evolutionary 

optimization methods to the design and rehabilitation of water distribution systems has been 

shown to be an innovative approach for the water industry. The optimal design and 

rehabilitation of water distribution systems is a constrained non-linear optimization problem. 

Constraints (for example, the minimum pressure requirements) are generally handled within 

genetic algorithm optimization by introducing a penalty cost function. The optimal or near 

optimal solution is found when the pressures at some nodes are close to the minimum 

required pressure or at the boundary of critical constraints. This paper presents a new 

approach called the self-adaptive boundary search strategy for selection of penalty factor 

within genetic algorithm optimization. The approach co-evolves and self-adapts the penalty 

factor such that the genetic algorithm search is guided towards and preserved around 

constraint boundaries. Thus it reduces the amount of simulation computations within the GA 

search and enhances the efficacy at reaching the optimal or near optimal solution. To 

demonstrate its effectiveness, the self-adaptive boundary search strategy is applied to a case 

study of the optimization of a water distribution system in this paper. It has been shown that 

the boundary GA search strategy is effective at adapting the feasibility of GA populations. 

Thus a reliable least cost solution is guaranteed for the GA optimization of a water 

distribution system.  

 

 

Key Words: water distribution systems, messy genetic algorithms, boundary search, optimal 

design and rehabilitation. 

                                                           
1
Supervising Engineer, MW Soft Inc, 300 North Lake Avenue, Pasadena, CA 91101, USA, Phone: 1-626-568-

6637, Fax: 1-626-568-6870, Email: zheng.wu@mw.com; 

 
2
Senior Lecturer, Department of Civil & Environmental Engineering, University of Adelaide, SA 5005, 

Australia. 



 2 

INTRODUCTION 

The use of computer modeling techniques for the simulation of water distribution 

systems is based on a trial-and-error approach to the design of these systems. These 

simulation models solve the governing hydraulic equations for the flow behavior of a water 

distribution system. There are many user-friendly and menu-driven computer programs 

available today for modeling of a water distribution system. These models have become 

everyday tools for water engineers. Computer simulation models enable engineers to explore 

what-if questions for design, rehabilitation and operation of water systems, however, due to 

the extremely large search space of possible solutions, it is practically impossible to locate the 

lowest cost solution by a trial-and-error design approach. 

 Optimization of water distribution systems is considerably more difficult than 

simulation of these systems. It is a constrained non-linear search problem. Typical constraints 

include the minimum allowable hydraulic pressures at demand nodes. Continuity and energy 

must also be conserved for the network. The pipe friction loss is a nonlinear function of both 

pipe diameter and flow. Optimization of a water distribution system may require not only the 

sizing of pipe diameters, but also the selection of pump capacities, valve locations and 

setting, and also tank locations and sizes. Many of these decision variables are discrete 

variables. Thus the problem is a mixed continuous and discrete constrained non-linear 

optimization problem that is often highly dimensional. There may be many local optima in a 

search space. No single optimization model or a search algorithm has been able to solve the 

problem without compromising computational efficiency, solution accuracy and problem 

completeness.  

 During the past several years genetic algorithm (GA) optimization has been 

successfully applied to the optimization of water distribution system design (Murphy and 
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Simpson 1992; Simpson et al. 1994; Dandy et al. 1996; Savic & Walters 1997; Hahal et al. 

1997 and Lippai et al. 1999). Optimal or near optimal solutions for the design of water 

distribution systems occur when the pressures at some nodes are close to the minimum 

allowable pressures or at the boundary of critical constraints. These nodes are often called 

critical nodes. It is not possible, a priori, to predict the number or location of critical nodes. 

The GA technique uses a penalty function approach to penalize the fitness of solutions when 

a constraint is violated. The selection of penalty factors for computing the penalty cost is 

usually determined by trial and error. If the penalty factor is too low, many infeasible 

solutions will dominate the genetic algorithm population. If the penalty factor is too high, 

good solutions that have just failed will be eliminated permanently from the GA search 

process. A new approach called a self-adaptive boundary search strategy is developed in this 

paper for the selection of penalty factors within the framework of genetic algorithm 

optimization. The strategy co-evolves and self-adapts the penalty factor such that the GA 

search is guided to the boundary of feasible and infeasible solution spaces. In this paper the 

boundary search strategy is applied to a case study of the optimization of a water distribution 

system to demonstrate its efficiency and effectiveness. 

 

PREVIOUS OPTIMIZATION MODELS 

The development of simulation modeling software has provided a sound basis for the 

optimization of water distribution systems. Different models have been developed in the 

literature for the optimization of water distribution systems. The optimization problem is 

posed as minimizing the cost of water distribution systems or maximizing the benefits by 

searching for a set of variables (e.g. pipe diameters) subject to system constraints (e.g. the 

minimum allowable pressure requirements). Various optimization techniques have been 
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applied to solving the problem. Optimization models may be classified depending on whether 

or not a hydraulic network solver is incorporated within the formulation.  

 An optimization model that does not incorporate a hydraulic network solver may be 

formulated into a two-stage (or an outer-inner) optimization procedure (Alperovits and 

Shamir 1977). The outer problem solves for the optimum flow status for a given network and 

is a nonlinear optimization problem. The inner problem determines the optimum solution of 

the network variables for a given flow distribution and is a linear optimization problem. An 

iterative process of solving the outer and inner problems is required to improve the solution. 

This formulation has been adopted and improved by a number of researchers (Quindry et al. 

1981; Fujiwara et al. 1987; Fujiwara & Khang 1990, Eiger et al. 1994 and Loganathan et al. 

1995). 

 In contrast, the optimization models that incorporate a hydraulic network solver are 

formulated by taking advantage of well developed and widely used hydraulic simulation 

models. A hydraulic network solver is integrated within the optimization technique and used 

to simulate each alternative design of water network systems during the optimization process. 

The simulation results are passed to optimization routines to check the feasibility of the 

solution. Thus this approach is able to optimize any of system components that can be 

modeled in a simulation model. In addition, multiple demand loadings and different types of 

constraints can be handled within the formulation. Su et al. (1987) integrated a generalized 

reduced gradient (GRG) technique with the simulation model KYPIPE. Lansey and Mays 

(1989) extended the methodology of Su et al (1987) for optimizing pipe sizes and also pumps 

and tanks under multiple demands. Duan et al. (1990) developed an optimization model that 

also considered system reliability. Kim and Mays (1994) proposed a mixed integer non-linear 

programming formulation for optimal rehabilitation of water distribution systems. 
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More recently, genetic algorithms (GA) and simulated annealing have been integrated 

with hydraulic network solvers for the optimization of water distribution systems (Simpson et 

al. 1994, Dandy et al. 1996, Savic & Walters 1997, Hahal et al. 1997, Lippai et al. 1999, 

Cunha & Sousa 1999). It has been shown that the GA is robust at searching for optimal 

combinations of pipe diameters and rehabilitation actions for water distribution systems. The 

GA technique has many advantages over traditional mathematical optimization approaches. 

One disadvantage is that the GA technique requires the large number of hydraulic simulation 

evaluations. 

 

CONSTRAINED EVOLUTIONARY OPTIMIZATION 

 Genetic algorithms or evolutionary optimization techniques are global search methods 

for solving complex objective and constraint functions that may be both non-differentiable 

and discontinuous. A constrained non-linear optimization problem is often solved by a 

penalty method within evolutionary algorithms. 

 

Penalty Methods 

 A penalty method is designed to penalize infeasible solutions and to force the search 

towards the feasible solution region. The penalty cost for an infeasible solution is calculated 

based on constraint violations or the distance away from the feasible region. A weighted sum 

of a network cost plus penalty cost is computed. The weight on the penalty term is usually 

referred as to a penalty factor. Different penalty methods have been developed for genetic and 

evolutionary optimization (Michalewicz and Schoenauer 1996). A common situation for a 

constrained optimization is that some constraints are active at the optimal solution. An 

optimal or near optimal solution lies at the active constraint boundary between the feasible 

and infeasible regions within a solution space. It is difficult, however, to predict active 
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constraints for a constrained non-linear optimization problem. To improve the efficacy of 

constrained non-linear optimization, the search for the optimal solutions should be restricted 

to the boundary of a solution space. 

 

Boundary Search Methods 

For a constrained optimization problem given as (Zhu et al. 1984): 

  search for x = (x1, x2, ..., xn)  R
n
 

  minimizing   obj x x xi i in

i

n

n(x) = i   

1

1

2
1 2



      

  subject to gj(x)  0,  j = 1, ..., J. 

 

where i, ij = constant coefficients in an objective function and ij  0. It has been proven 

(Zhu et al. 1984) that the optimal solution is at the boundary of a constraint set if there is an 

optimal solution. A boundary search method (Zhu et al. 1984), based on the complex method 

of Box (1965), was proposed for the optimization problems in the case of the optimal solution 

at the boundary. Wu and Wang (1992) extended the method for solving structural 

optimization problems in the formulation of fuzzy logic that quantified the subjective 

uncertainties of active constraints. 

Evolutionary optimization methods have recognized the need for searching the 

boundary between feasible and infeasible regions within the solution space. Two evolutionary 

algorithms (Schoenauer and Michalewicz 1996) have been designed for searching the 

solution boundary of two continuous numerical functions. The algorithms start with 

initializing feasible solutions and then generate the new population of individuals by using 

specific crossover and mutation operators that keep the offspring on the boundary surface of 

constraints. The results obtained showed that the algorithms designed specifically for these 
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two numerical functions are very effective and efficient at reaching the global optima. 

Schoenauer and Michalewicz (1996) also considered the design of generic evolutionary 

operators for searching the boundary, however, it is not possible to construct such operators 

using an analytical approach for highly non-linear and implicit constraints. This situation is 

often the case in real-world engineering optimization problems.  

 

SELF-ADAPTIVE BOUNDARY OPTIMIZATION 

A new evolutionary optimization strategy is introduced in this paper. The method is 

referred to as self-adaptive boundary optimization. Although it has been realized that 

evolutionary computation techniques have the potential for incorporating genetic operators 

that search the boundary of the feasible and infeasible regions, a method has not yet been 

developed to be generally effective for constrained non-linear optimization. A penalty method 

is often applied for evolutionary algorithms to solve constrained non-linear optimization 

problems. Each of the penalty methods, however, involves one (or more than one) penalty 

factor that is employed to construct a weighted sum of the constraint violations and an 

objective function. The augmented term of penalty cost distorts the landscape of the original 

objective function. It is the penalty factor that defines the degree of the distortion, and 

consequently has a major influence on the performance of a search algorithm. Different 

values of a penalty factor may lead a search process to different solution regions and thus 

different solutions. Therefore the penalty factor needs to be tuned to achieve the best 

performance for a constrained non-linear optimization problem. Tuning the penalty factor 

may require a large number of trial and error runs, thus it may be a time consuming process. It 

also produces a dilemma, in that, too small a penalty factor leads the search towards an 

infeasible region, but too big a penalty factor restricts the search inside the feasible region and 
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prevents any acceleration of the search process from using the infeasible region. As a result 

the search algorithm may fail to reach the optimal solution. The self-adaptive boundary search 

method as developed in this paper is to adapt and co-evolve the penalty factor within a 

genetic algorithm such that the GA population is adjusted (or forced) to search the boundary 

of the feasible and infeasible regions. Thus it is believed that the performance of a GA search 

can be improved for constrained non-linear optimization problems. The self-adaptive search 

method also relieves the need for tuning the penalty factor for solving a constrained non-

linear optimization problem.  

 

Co-evolutionary Penalty Factor 

 The co-evolutionary concept was originally introduced by Bäck et al. (1991) within 

evolutionary strategy to evolve a mutation probability. A similar approach is employed in this 

paper to co-evolve a penalty factor to preserve the population around the boundary between 

feasible and infeasible solution spaces. Along with the original decision variables that are 

being optimized, a penalty factor is treated as an additional decision variable and optimized 

within a genetic and evolutionary algorithm.  

 The implementation of a co-evolutionary penalty factor in a genetic-based search 

algorithm is now considered. For any given constrained optimization problem, Each string of 

a genetic algorithm population encodes a solution of original decision variables and the 

penalty factor that is to be applied the solution when a constraint is violated. As shown in 

Figure 1, the sub-string representing a penalty factor is included as part of a problem solution 

string. The penalty factor sub-string is mapped onto a prescribed penalty factor in a range of 

[min
, max

]. The mapping is given by: 
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where n = the penalty for string n; min
 = the lower bound of the penalty factor; max

 = the 

upper bound of the penalty factor; an dex
r
,  = the dex-th bit of the sub-string encoding the 

penalty factor for string n; rr = the number of the bits encoding the penalty factor; b = 2 for a 

binary string or 10 for a real number string. The mapped penalty factor is then used for 

computing the penalty cost of the solution when constraints are found being violated. The 

fitness of a string is evaluated by the sum of a network cost and a penalty cost. Thus the 

fitness is contributed to not only by the decision variable string, but also by the penalty factor 

sub-string. The strings that have encoded penalty factors and produce better solutions will 

survive longer, consequently, the preferred penalty factor will spread through the population 

and be evolved over generations. In this way, a penalty factor is allowed to co-evolve as the 

GA search proceeds. 

 The co-evolutionary penalty factor concept has been applied to the optimization of a 

water distribution system to investigate its effectiveness. A detailed description is given in a 

later section. The initial results of the application indicated that the genetic algorithm search 

favored the lower bound of the penalty factor min
. After a few generations, the lower bound 

of the penalty factor dominated the population. However, a small value of min
 leads the 

population far away from the feasible region. In contrast, a large value of min 
forces the 

population to converge to local optima within the feasible region. Ideally, the lower and 

higher bounds of a penalty factor are adapted in such a way that the search is maintained 

around a constraint boundary, and also that a genetic algorithm is allowed to approach the 

optimal or near optimal solutions from both feasible and infeasible regions. 
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Self-adaptive Penalty Factor 

 A heuristic rule has been developed for adjusting the lower and higher bounds of a 

penalty factor to adapt the GA population towards and around the boundary according to the 

GA population feasibility. The population feasibility is defined as the ratio of the number of 

feasible solutions to a population size (the sum of feasible and infeasible solutions in one 

generation). This serves as a feasibility measure of the GA population referred to as . For 

instance, if the ratio in a population is 0.6, it means that 60% of the population are inside the 

feasible region boundary, and that the other 40% are outside the boundary in the infeasible 

region. The lower the ratio is, the more the infeasible solutions are in a population. The 

penalty factor bounds are adapted to maintain the population feasibility measure within a 

certain range, which preserves the GA population around the boundary during the genetic 

algorithm optimization. The rule that has been developed for adapting the penalty factor 

bounds min
 and max

 is as follows. 

Increase the penalty factor bounds if the population feasibility  is less than the 

minimum feasibility ratio min; 

Or 

Decrease the penalty factor bounds if the population feasibility  is greater than the 

maximum feasibility ratio max. 

The population feasibility is checked every T generations. More precisely, the heuristic rule 

can be given as: 

A Self-Adaptive Penalty Rule: 

   If (Nt – Nt-1  T and t  < min) then 
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   If (Nt – Nt-1  T and t > max) then 

    
;)0.1(

;)0.1(

1

1

min

t

max

t

min

t

min

t












 

where Nt-1 and Nt = the numbers of generations at penalty adaptation step (t - 1) and t 

respectively; T = 20 ~ 40, the number of generations, over which a penalty range is adapted; 

t = the ratio of feasible solutions to the total number of solutions between adaptation step (t - 

1) and t; min = 0.3 ~ 0.2, the minimum feasibility ratio; max = 0.6 ~ 0.8, the maximum 

feasibility ratio; min

t 1 and max

t 1 are the lower and upper bounds of penalty factors at adaptation 

step (t - 1); min

t and max

t are the lower and upper bounds of penalty factors at adaptation step 

t;  = a coefficient with 0 <  <1.0, typically it is approximately 0.2.  The initial upper and 

lower bounds of a penalty factor can be specified with quite a large range since they are self-

adapted along the optimization process. 

 The self-adaptive boundary search strategy has been employed in conjunction with the 

fast messy genetic algorithm (fmGA) (Goldberg, Deb, Kargupta and Harik 1993) and applied 

to the optimization of water distribution systems. Detailed descriptions of a messy genetic 

algorithm are given in Goldberg et al. (1989, 1990). Its applications to the optimization of 

water distribution systems can be found in Wu and Simpson (1996, 1997). The main features 

of the fast messy genetic algorithm are given below. 

 

FEATURES OF FAST MESSY GENETIC ALGORITHM 

 A messy genetic algorithm (mGA) (Goldberg, Korb and Deb 1989, 1990) was carefully 

designed to solve problems more efficiently and effectively than standard genetic algorithms. 
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A standard GA uses a fixed-length string representation, simple recombination operators and 

appropriate GA control parameters. It has demonstrated a capability in solving non-linear 

optimization problems, however, it requires an exponential number of function evaluations to 

achieve a reliable solution to highly dimensional problems or problems with bounded 

difficulty. This has been overcome, in the messy GA, by introducing paired-value strings of 

variable length and by splitting the artificial evolution process into two phases namely 

identifying building blocks or partial strings contained in good solutions to a problem and 

exchanging them effectively. The main features of the fast messy GA are described as 

follows. 

 

Messy GA Representation 

A messy GA represents a gene bit by a pair of bit tag and bit value, noted as (bit tag, 

bit value), in a string of variable length. A bit tag is the sequential order of a gene bit in a full-

length string. For binary string representation, each bit takes a value of either 0 or 1. For 

instance, a binary string 0 1 1 0 is represented as a messy GA string given as (1, 0), (2, 1), (3, 

1), (4, 0). The first value in the bracket is the bit tag while the second is the bit value. It is the 

tag that allows a pair to be located in any order and that enables a bit value to be identified by 

its tag. A variable-length string may result in either an under-specified string in which some 

bits are missed or an over-specified string in which multiple values are specified for one bit. 

For an under-specified string, missing bits are filled in by using a competitive template or a 

better fit full-length string, while the redundant bit values in an over-specified string are 

removed by applying first-come-first-served rule. The variation of a string length permits the 

messy GA to uncover building blocks and also to exchange them effectively.  

 

Building Block Filtering 
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 A building block is a short partial string, defined as a similarity template of gene bit 

values that contribute above-average fitness to a string. Identifying building blocks in messy 

GA was originally achieved by completely enumerating all the combinations of a desired 

length of strings. The disadvantage of the complete enumeration is that an exponentially large 

number of function evaluations are required (Goldberg et al. 1989). It is computationally 

costly even for a small problem. This bottleneck of the original messy GA has been overcome 

by introducing gene filtering in the fast messy GA (Goldberg et al. 1993) to replace the 

complete enumeration procedure. During the gene filtering stage, a string is selected, half of 

the current genes in the string are randomly deleted, which reduces the string length to just 

half of the original string. The shortened strings are evaluated and then the same procedure of 

string selection and gene deletion is applied until the string length is equal to a desired length.  

 

Messy GA Reproduction 

Exchanging building blocks is the so-called juxtapositional phase in a messy GA. 

During this phase, a messy GA starts with a selection and follows by a string reproduction. It 

is similar to the action of a standard GA, but uses different genetic operators including 

thresholding selection, cut and splice (Goldberg et al. 1990). Thresholding selection is a 

tournament selection except that a string is not allowed to compete with another string unless 

it has, at least, a threshold number of bits from the same bit locations. Cut acts to cut a string 

into two strings while splice concatenates two strings to form one individual. Both cut and 

splice operations are designed to effectively exchange the building blocks to reproduce a GA 

population of solution strings.  

 The fast messy GA combines two evolutionary phases of building block filtering and 

justapositional operations into one artificial evolution process. It iterates over a number of 

outer loops that are referred to as eras (era = 1, 2, 3, …, n). In each era, the fast messy GA 
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starts with an initialization and continues with a building block filtering and the 

juxtapositional operations. The outer iterations are repeated until the optimal or near optimal 

solutions are found in a population. 

 

AN APPLICATION TO WATER DISTRIBUTION SYSTEMS 

 The self-adaptive boundary search strategy has been implemented within a fast messy 

genetic algorithm (fmGA), and integrated with a hydraulic network solver EPANET 

(Rossman 1994) for the optimization of water distribution systems. The optimization is 

undertaken to search for the least cost solution of pipe sizes )(D


 subject to the minimum 

allowable pressure requirements at demand nodes. A penalty function is introduced for 

calculating the penalty cost of infeasible solutions. A penalty cost is defined as a function of 

the maximum pressure deficit and given as: 

   
























jiji

J

j

I

i

D HHpenalty maxmax
min

11

,0)( 


   (2) 

where D  = the vector of pipe diameters of one solution; Hji and min

jiH are the pressure and the 

minimum allowable pressure at node j under demand loading case I, respectively; I = the 

number of demand loading cases; J is the number of demand nodes and  is the penalty factor 

that is to be adapted and co-evolved during the GA optimization. The New York City Water 

Tunnels problem has been chosen for this application. Although this problem may not 

represent all the characteristics (i.e. pumps, tanks, valve selection) of the optimization of 

water distribution systems, it has been thoroughly studied in the literature and provides an 

excellent example to investigate the performance of the self-adaptive boundary GA search 

strategy. 
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New York City Water Tunnels Problem 

The problem was first posed in 1969 by Schaake and Lai to determine the optimal size 

of the pipes to be added to the system as shown in Figure 2. A set of existing tunnels needs to 

have pipes added, referred to as duplication pipes, in parallel to the existing pipes to meet 

increased demand conditions. Details of the existing pipe system are given in Table 1. Pipe 

costs for the new duplicate pipes were given by a fitted cost function cf = 1.1D
1.24

, where D = 

the diameter of pipe. The available pipe sizes as listed in Table 2 are discretized from the cost 

function. The minimum allowable hydraulic grades are given in Table 3 for all nodes. This 

problem has been used as a case study by many researchers (Schaake and Lai 1969; Quindry 

et al. 1981; Gessler 1982; Bhave 1985; Morgan and Goulter 1985; Dandy et al. 1996; Savic & 

Walters 1997 and Lippai et al. 1999). 

To apply the boundary GA search strategy, four binary bits were used to code the 

possible sizes for each of the 21 duplicate pipes, and an additional four bits were used to code 

the penalty factor. Thus a total of 88 binary bits were used for the application of the self-

adaptive boundary genetic algorithm. To investigate the performance of the self-adaptive 

boundary search strategy, a maximum era size of 10 and a population size of 200 were used in 

the fast messy GA optimization. The Hazen-Williams equation used for solving this problem 

is given as (Dandy et al. 1996): 

 

8704.4729.4 








 D

C

Q
Lh

1.852

f       (3) 

where L represents the length of a pipe; Q is the flow rate of a pipe and C designates the 

Hazen-Williams coefficient. 
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Results Comparison 

The New York city water tunnels problem for the case study presented in this paper has 

been solved by using the fast messy GA both with and without the self-adaptive boundary 

search. For the fmGA without the self-adaptive boundary search, four different penalty factors 

of $2.0, $5.0, $7.0 and $11.0 million per ft ($6.6, $16.4, $23.0 and $36.1 million per meter) 

of hydraulic grade deficit have been used. The penalty factor is treated as a constant over one 

GA run. The self-adaptive boundary search has been investigated by using three initial 

penalty factor ranges including [1.0, 10.0], [1.0, 50.0] and [0.2, 10.0] million per ft ([3.3, 

32.8], [3.3, 164.0] and [0.7, 32.8] million per meter) of HGL deficit. The fast messy genetic 

algorithm optimization identified the same critical nodes (nodes 16, 17 and 19) as many other 

studies in literature. The results obtained by both approaches with and without the self-

adaptive penalty approach are compared in Table 4. All the other nodal hydraulic grades are 

greater than the minimum required hydraulic grades. The pipe sizes for the optimal or near 

optimal solutions are given in Table 5. 

As shown in Tables 4 and 5, the results obtained by the fast messy GA without the 

self-adaptive boundary search indicate that a constant penalty factor of about $7.0 million/ft 

($23.0 million/m) is the best value. For the larger penalty factor of $11.0 million/ft (36.1 

million/m), the genetic algorithm search appears to be trapped at a local optimal solution, that 

is not the least cost solution. Conversely, for smaller penalty factors such as $2,000,000/ft 

($6.6 million/m), the optimal solution was found to be infeasible as shown in Table 4. Thus 

the value of a penalty factor has a great impact on the efficacy of the solution technique. A 

reliable solution cannot be guaranteed for the optimization of water distribution systems by 

using GA optimization with a constant penalty factor.  
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On the contrary, the self-adaptive boundary search genetic algorithm has been shown 

consistently effective and efficient at reaching the least cost solution as shown in Table 4. 

Initially, a penalty factor range of [1.0, 10.0] million/ft ([3.3, 32.8] million/m) was used to 

test the boundary GA optimization strategy. The optimal solution has been achieved after 

22,508 evaluations. The other two runs, one with a scaled-up upper bound of the penalty 

factor range [1.0, 50.0] million/ft ([3.3, 164.0] million/m) and the other with the scaled-down 

lower bound of the penalty factor range [0.2, 10.0] million/ft ([0.7, 32.8] million/m), have 

also been tested. The results show that the same optimal solution of $38.80 million has been 

achieved for all three different penalty factor ranges. The optimal solution is not sensitive to 

the initial values of the penalty factor ranges. Thus the self-adaptive boundary search provides 

a more effective approach in contrast to the constant penalty factor.  

The optimal solution of $38.8 million has been found by the self-adaptive boundary 

search after an average of 30,000 evaluations. The same optimal solution was obtained by 

Dandy et al. (1996) after approximately 125,000 evaluations. More recently, Lippai et al 

(1999) integrated Evolver 4.0 (Evolver 1998), a commercial genetic algorithm optimizer, with 

EPANET and solved the New York city water tunnels problem with a cost of $37.8 million 

after an average of 50,000 evaluations. The optimal solution of $37.8 million, however, has 

been found to be infeasible as shown in Table 6 when using the Hazen-Williams equation 

Eq.(3). The self-adaptive boundary search approach is shown to be more efficient than any of 

previously reported genetic based methods for the optimization of water distribution systems. 

 

Convergence Behavior for a Constant Penalty Factor 

For the fast messy GA optimization with a constant penalty factor, the GA improves 

the search process very quickly in the early stages of the optimization and then slowly 

converges to a final solution. The feasibility and optimality of the final solution, however, 
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depend on the penalty factor value being used for the GA run. Figure 3 shows convergence 

rates of the GA optimization for three different constant penalty factor values for solving the 

New York city water tunnels problem. Figure 4 shows the patterns of the population 

feasibility traced into the GA optimization process using different penalty factors. 

As shown in Figure 4(a), a large penalty factor distorts the objective function in such a 

way that the GA favors solutions within the feasible region. Initially, there is a variation of 

population feasibility due to the random initialization and gene filtering. After about 12,000 

evaluations, the ratio of feasible solutions to population size, is greater than 0.8 as the GA 

optimization proceeds. The population feasibility is consistently high. Thus the GA appears to 

be trapped within a feasible region, which leads to a non-optimal solution. With small penalty 

factors such as 2.0 and 5.0 million/ft (6.6 and 16.4 million/m), the GA favors solutions within 

the infeasible region. As shown in Figure 4(b), the population feasibility is consistently low 

and the ratio of feasible solutions to population size is less than 0.2 for some of the 

optimization process. The GA consequently reaches an infeasible solution as shown in Figure 

3 and Table 4. Thus a constant penalty factor approach requires a well-tuned penalty factor to 

achieve the least cost solution for this particular case study. 

 

Convergence Behavior of the Self-Adaptive Boundary Search 

The self-adaptive boundary optimization has been effective and efficient at searching 

for the optimal solution for the New York city water tunnels problem. Two different 

convergence patterns have emerged as shown in Figure 5, 6 and 7. Figure 5 compares the 

convergence for each of the three initial penalty factor ranges, in terms of the least cost 

solution in each generation versus the cumulative number of evaluations. When the initial 

upper limit of the penalty factor is $10.0 million/ft ($32.8 million/m) the GA overshoots 

resulting in network costs that are far below the optimal network of $38.80 million. 
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Adjustment of the penalty factor range then occurs bringing the GA back towards the 

minimum cost network from below. In contrast, when the initial upper limit of penalty factor 

is $50.0 million/ft ($164.0 million/m) the GA converges on the optimal solution from above. 

Figure 6 compares the average penalty factor in each generation versus the total number of 

generations while Figure 7 illustrates the cumulative proportion of feasible solutions that have 

occurred since the last penalty factor was set or adjusted. 

The self-adaptive boundary search approach co-evolves the penalty factors along with 

the solutions, and also self-adapts the range of the penalty factors after every 20 generations 

(or 5,000 evaluations). The self-adaptation of the penalty factor ranges was controlled with 

the minimum feasibility ratio min = 30% and the maximum feasibility ratio max = 80%. For 

the initial penalty factor range [1.0, 10.0] million/ft ([3.3, 32.8] million/m), the GA search 

started with a highly feasible initial population as shown in Figure 7(a). The feasibility ratio 

was about 0.9 and the average penalty factor was about 5.0 million/ft ($16.4 million/m) as 

shown in Figure 6. After 20 generations (or 5,000 evaluations) the upper and lower bounds of 

the penalty factor were reduced by 20% of the lower bound of 1.0 million/ft (3.3 million/m) 

based on the heuristic rule introduced earlier. Thus the average value of penalty factors 

decreased as shown in Figure 6, however, the penalty factor was reduced too much to enable 

the GA to penalize and trade off infeasible solutions. Consequently, the GA selected 

infeasible solutions and the population feasibility became very low as shown in Figure 7(a). 

The cost of the best solution, at this stage, was dramatically reduced as shown in Figure 5, but 

the solution was infeasible. The penalty factor range was then adjusted by the self-adaptive 

penalty rule. The lower and upper bounds of penalty factors were now increased by 20% of 

the upper bound of the previous penalty factor range. The result was an increase in population 

feasibility that enabled the GA to disregard infeasible solutions. Thus the GA search was then 

adapted across the constraint boundary towards the feasible solution region. As the penalty 
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factor was adapted according to population feasibility, the GA search reached the optimal 

solution. 

For the initial penalty factor range [0.2, 10.0] million/ft ([0.7, 32.8] million/m), the 

GA search followed the same pattern as the GA run using the initial penalty range [1.0, 10.0] 

million/ft ([3.3, 32.8] million/m). By using the self-adaptive penalty rule, the GA has been 

adapted towards the boundary of hydraulic pressure constraints. The same optimal solution 

was found in this case of the scaled-down (for the lower limit) penalty factor range. 

A different convergence pattern was observed for the self-adaptive boundary search 

when the upper limit of the initial range of penalty factors is scaled-up. For the scaled-up 

penalty factor range of [1.0, 50.0] million/ft ([3.3, 164.0] million/m), the GA search started 

with an average penalty factor of about 30.0 million/ft (98.4 million/m) as shown in Figure 6. 

Due to a high initial population feasibility, the penalty factor bounds were reduced until the 

feasibility ratio was less than the minimum feasibility ratio. Then the population feasibility 

increased as the penalty factor was adapted to be slightly greater and greater as shown in 

Figure 6. The best solution (see Figure 5) is improved while the penalty factor is increased 

according to the self-adaptive penalty rule. The optimal solution of $38.80 million has also 

been found for the case of the scaled-up penalty factor range.  

The convergence patterns observed for the New York city water tunnels system 

indicate that the self-adaptive boundary search strategy is able to adapt a GA to search the 

boundary of the solution space. Different initial ranges of a penalty factor have been adapted 

by following the self-adaptive penalty rule. A population is either maintained around or 

adapted towards a constraint boundary to reach the optimal solution. The optimal solution 

does not seem to be sensitive to the initial range of a penalty factor. The self-adaptive 

boundary search strategy has been effective not only at adjusting the penalty factor and 
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consequently adapting the search process, but also improved the efficiency and effectiveness 

of the GA optimization.  

 

CONCLUSIONS 

A self-adaptive boundary search technique has been developed within a framework of 

genetic algorithms for solving constrained non-linear optimization problems. For constrained 

non-linear optimization problems, the optimal solution is found at the boundary between the 

feasible and infeasible regions of a solution space. Conventional genetic or evolutionary 

algorithms using a constant penalty factor are not effective at searching the boundary of a 

solution space in terms of being able to consistently find low cost feasible solutions. A 

constant penalty factor results in either high or low population feasibility depending on its 

magnitude. To achieve the optimal solution at the boundary, the penalty factor needs to be 

carefully tuned for a specific case study. The approach of the self-adaptive boundary search as 

presented in this paper has successfully preserved a GA population around or adapted a GA 

population towards the boundary between feasible and infeasible regions of a solution space. 

The adaptation of a GA population is achieved by co-evolving a penalty factor and 

automatically adjusting the penalty factor range. The penalty factor for one solution is coded 

as a sub-string that is included within a solution string. A string that encodes a penalty factor 

and produces better offspring survives longer. The preferred penalty factor spreads through 

the population and co-evolves over the generations. Meanwhile, the penalty factor range is 

adjusted according to population feasibility. A heuristic rule has been developed for adapting 

the penalty factor range in such a way that a population of water network designs is forced 

towards the boundary of feasible and infeasible regions. Thus the population can be either 

maintained around or adapted towards the constraint boundary. 
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In this paper, a self-adaptive boundary search has been implemented within the fast 

messy GA and applied to the optimization of water distribution systems. The New York city 

water tunnels problem has been used as the case study. The results obtained by using the 

boundary GA search strategy have been compared with the conventional GA optimization 

using constant penalty factors. It has been shown that the solution by the conventional 

approach is sensitive to the value of a penalty factor. Too large a penalty factor value enables 

the GA to select feasible solutions, but the search is trapped at a local optimum within a 

feasible region, which is not the least cost solution. Too small a penalty factor value forces 

the GA to select the solutions outside the feasible region that eventually leads the search to an 

infeasible solution. The boundary GA search strategy has been shown to be effective at 

adapting the feasibility of GA population within a wide range of penalty factors. It 

automatically adjusts penalty factor ranges and co-evolves penalty factors during the GA 

optimization procedure. Although the bench mark problem of New York City water tunnels 

may not represent all the complexity of a water distribution system, the results obtained 

shows that the boundary search strategy guarantees a reliable solution and improves the 

efficacy of the GA optimization of water distribution systems. It is believed that the approach 

is effective at optimizing a more complex water distribution system with pumps and control 

valves. Meanwhile, the boundary search strategy developed in this paper should have broader 

applications beyond the optimization of water distribution systems to other types of 

constrained non-linear optimization problems. 
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 Figure 1 String Representation of Co-evolution of Penalty Factor 
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Figure 2 New York City Water Supply Tunnels (as of 1969)  
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Figure 3 Convergence Behavior of Genetic Algorithm Optimization of New York 

Tunnel Problem by Using Constant Penalty Factors 
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Figure 4 Population Feasibility Trace of Genetic Algorithm Optimization of New York 

City Tunnel Problem by Using Constant Penalty Factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Feasibility of GA population with penalty factor of 7 and 11 million/ft (23.0 and 36.1 
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(b) Feasibility of GA population with penalty factor of 2 and 5 million/ft (6.6 and 16.4 

million/m 
 

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

Evaluation numbers

R
a
ti

o
 o

f 
fe

as
ib

le
 s

ol
u

ti
on

s penalty factor = 2 million/ft

penalty factor = 5 million/ft

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

Evaluation numbers

R
a
ti

o
 o

f 
fe

as
ib

le
 s

ol
u

ti
on

s

penalty factor = 11 million/ft

penalty factor = 7 million/ft



 31 

 

Figure 5 Convergence Behavior of Genetic Algorithm Optimization of New York 

Tunnel Problem by Using the Self-adaptive Boundary Search Strategy  
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Figure 6 Average Penalty Factor of Self-adaptive Genetic Algorithm Boundary Search 

for Optimization of New York Tunnel Problem 
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Figure 7 Population Feasibility Trace of Self-adaptive Genetic Algorithm Boundary 

Search for Optimization of New York Tunnel Problem 
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(a) penalty factor range = [1.0, 10.0] million/ft ([3.3, 32.8] million/m) 
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(b) penalty factor range = [0.2, 10.0] million/ft ([0.7, 32.8] million/m) 
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(c) penalty factor range = [1.0, 50.0] million/ft ([3.3, 164.0] million/m) 
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Table 1 Pipe Data for the Existing Tunnels of New York City Water Supply System (as 

of 1969) 

Pipe Start End Hazen 

Williams C 

Length Existing Diameters 

No. Node Node Values ft (m) inch (mm) 

[1] 1 2  11600 (3536) 180 (4570) 

[2] 2 3  19800 (6035) 180 (4570) 

[3] 3 4   7300 (2225) 180 (4570) 

[4] 4 5   8300 (2530) 180 (4570) 

[5] 5 6   8600 (2621) 180 (4570) 

[6] 6 7  19100 (5822) 180 (4570) 

[7] 7 8   9600 (2926) 132 (3350) 

[8] 8 9  12500 (3810) 132 (3350) 

[9] 9 10   9600 (2926) 180 (4570) 

[10] 11 9  11200 (3414) 204 (5180) 

[11] 12 11  14500 (4420) 204 (5180) 

[12] 13 12  12200 (3719) 204 (5180) 

[13] 14 13  24100 (7346) 204 (5180) 

[14] 15 14  21100 (6431) 204 (5180) 

[15] 1 15  15500 (4724) 204 (5180) 

[16] 10 17  26400 (8047) 72 (1830) 

[17] 12 18  31200 (9510) 72 (1830) 

[18] 18 19  24000 (7315) 60 (1520) 

[19] 11 20  14400 (4389) 60 (1520) 

[20] 20 16  38400 (11704) 60 (1520) 

[21] 9 16  26400 (8047) 72 (1830) 

All pipes including existing and new pipes are assumed to have a Hazen Williams C = 100. 
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Table 2 Available New Pipe Sizes and Costs for New York City Tunnel Expansion (as of 

1969) 

Diameter  

inch     (mm) 

Pipe Cost 

$/ft       ($/m)* 

36 (910)   93.5 (306.8) 

48 (1220) 134.0 (439.6) 

60 (1520) 176.0 (577.4) 

72 (1830) 221.0 (725.1) 

84 (2130) 267.0 (876.0) 

96 (2440) 316.0 (1,036.8) 

108 (2740) 365.0 (1,197.5) 

120 (3050) 417.0 (1,368.1) 

132 (3350) 469.0 (1,538.7) 

144 (3660) 522.0 (1,712.6) 

156 (3960) 577.0 (1,893.0) 

168 (4270) 632.0 (2,073.5) 

180 (4570) 689.0 (2,260.5) 

192 (4880) 746.0 (2,447.5) 

204 (5180) 804.0 (2,637.8) 

*based on cost function c = 1.1D
1.24
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Table 3 Node Data for New York Water Supply Tunnel Problem (as of 1969) 

 

Node 

 

Demand 

       ft
3
/s      

(m
3
/s) 

Minimum HGL 

     ft              (m) 

1 Reservoir 300 (91.4) 

2 92.4 (2.62) 255 (77.7) 

3 92.4 (2.62) 255 (77.7) 

4 88.2 (2.5) 255 (77.7) 

5 88.2 (2.5) 255 (77.7) 

6 88.2 (2.5) 255 (77.7) 

7 88.2 (2.5) 255 (77.7) 

8 88.2 (2.5) 255 (77.7) 

9 170.0 (4.81) 255 (77.7) 

10 1.0 (0.03) 255 (77.7) 

11 170.0 (4.81) 255 (77.7) 

12 117.1 (3.32) 255 (77.7) 

13 117.1 (3.32) 255 (77.7) 

14 92.4 (2.62) 255 (77.7) 

15 92.4 (2.62) 255 (77.7) 

16 170.0 (4.81) 255 (77.7) 

17 57.5 (1.63) 273 (83.2) 

18 117.1 (3.32) 255 (77.7) 

19 117.1 (3.32) 255 (77.7) 

20 170.0 (4.81) 255 (77.7) 
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Table 4 Hydraulic Grades at Critical Nodes for the New York Tunnel Problem by 

Genetic Algorithm Optimization with Constant and Self-adaptive Penalty Factors 

 

Node 

Minimum 

Required 

HGL 

fmGA with Constant Penalty Factors  

million/ft 

(million per meter) 

fmGA with Self-Adaptive Penalty Factors  

million/ft 

(million per meter) 

ID ft 

(m) 

2.0 

(6.6) 

5.0 

(16.4)  

7.0 

(23.0)  

11.0 

(36.1)  

[1.0, 10.0] 

([3.3, 32.8]) 

[1.0, 50.0] 

([3.3, 164.0]) 

[0.2, 10.0] 

([0.7, 32.8]) 

16 

260.00 

(79.25) 

259.15 259.84 261.29 260.40 260.53 260.53 260.53 

(78.99) (79.20) (79.64) (79.37) (79.41) (79.41) (79.41) 

Excess = 
-0.85* -0.16 1.28 0.39 0.52 0.52 0.52 

(-0.26) (-0.05) (0.39) (0.12) (0.16) (0.16) (0.16) 

17 

272.80 271.46 272.64 272.80 272.83 272.87 272.87 272.87 

(83.15) (82.74) (83.10) (83.15) (83.16) (83.17) (83.17) (83.17) 

Excess = 
-1.35 -0.16 0.00 0.07 0.07 0.07 0.07 

(-0.41) (-0.05) (0.00) (0.02) (0.02) (0.02) (0.02) 

19 

254.99 254.23 254.82 255.48 254.99 255.71 255.71 255.71 

(77.72) (77.49) (77.67) (77.87) (77.72) (77.94) (77.94) (77.94) 

Excess = 
-0.75 -0.16 0.46 0.00 0.72 0.72 0.72 

(-0.23) (-0.05) (0.14) (0.00) (0.22) (0.22) (0.22) 

Cost ($million) 32.33 37.62 39.42 39.69 38.80 38.80 38.80 

Achieved at 

Evaluation No. 
15,500 44,500 21,200 18,800 22,500 22,500 51,400 

*A negative value of the pressure head excess means a constraint violation. 
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Table 5 Comparison of Optimal Parallel Pipe Sizes for the New York City Tunnel 

Problem by Fast Messy Genetic Algorithm with and without Self-adaptive Boundary 

Search 

Pipe Dandy et al. Self-adaptive 

Boundary 

fmGA with Constant Penalty Factors 

million per ft    (million per meter ) 

ID (1996) fmGA 2.0     (6.6) 5.0  (16.4) 7.0   (23.0) 11.0    (36.1) 

 Diameter 

in     (mm) 

Diameter 

in     (mm) 

Diameter 

in       (mm) 

Diameter 

in     (mm) 

Diameter 

in      (mm) 

Diameter 

in       (mm) 

1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 72 (1830) 

7 0 (0) 0 (0) 0 (0) 120 (3050) 108 (2740) 108 (2740) 

15 120 (3050) 120 (3050) 0 (0) 0 (0) 0 (0) 0 (0) 

16 84 (2130) 84 (2130) 84 (2130) 96 (2440) 108 (2740) 96 (2440) 

17 96 (2440) 96 (2440) 96 (2440) 96 (2440) 108 (2740) 96 (2440) 

18 84 (2130) 84 (2130) 84 (2130) 84 (2130) 72 (1830) 84 (2130) 

19 72 (1830) 72 (1830) 72 (1830) 72 (1830) 60 (1520) 72 (1830) 

21 72 (1830) 72 (1830) 72 (1830) 72 (1830) 84 (2130) 72 (1830) 

Cost 

($ million) 
38.80 38.80 32.33* 37.62* 39.42 39.69 

Average 

Evaluations 
125,000 30,000 15,500 44,500 21,200 18,800 

*An infeasible solution. 
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Table 6 Comparison of Hydraulic Grades of Optimal Solutions for the New York City 

Water Tunnels Problem 

Node Minimum Lippai et al. (1999) fmGA Boundary Search 

ID Grades  

ft         (m) 

HGL 

ft         (m) 

Excess 

ft         (m) 

HGL 

ft         (m) 

Excess 

ft         (m) 

2 255.0 (77.7) 294.2 (89.7) 39.2 (12.0) 294.6 (89.8) 39.6 (12.1) 

3 255.0 (77.7) 286.2 (87.2) 31.2 (9.5) 287.2 (87.5) 32.2 (9.8) 

4 255.0 (77.7) 283.8 (86.5) 28.8 (8.8) 285.0 (86.9) 30.1 (9.2) 

5 255.0 (77.7) 281.8 (85.9) 26.8 (8.2) 283.2 (86.3) 28.2 (8.6) 

6 255.0 (77.7) 280.2 (85.4) 25.1 (7.7) 281.7 (85.9) 26.7 (8.2) 

7 255.0 (77.7) 277.6 (84.6) 22.6 (6.9) 279.5 (85.2) 24.5 (7.5) 

8 255.0 (77.7) 276.4 (84.2) 21.4 (6.5) 276.4 (84.2) 21.4 (6.5) 

9 255.0 (77.7) 273.6 (83.4) 18.5 (5.7) 274.2 (83.6) 19.2 (5.9) 

10 255.0 (77.7) 273.5 (83.4) 18.5 (5.6) 274.2 (83.6) 19.2 (5.8) 

11 255.0 (77.7) 273.7 (83.4) 18.6 (5.7) 274.4 (83.6) 19.3 (5.9) 

12 255.0 (77.7) 274.9 (83.8) 19.9 (6.1) 275.8 (84.1) 20.8 (6.3) 

13 255.0 (77.7) 277.9 (84.7) 22.9 (7.0) 279.0 (85.0) 24.0 (7.3) 

14 255.0 (77.7) 285.5 (87.0) 30.4 (9.3) 287.0 (87.5) 32.0 (9.8) 

15 255.0 (77.7) 293.3 (89.4) 38.3 (11.7) 295.3 (90.0) 40.3 (12.3) 

16 260.0 (79.3) 259.8 (79.2) -0.2* (-0.1) 260.5 (79.4) 0.5 (0.2) 

17 272.8 (83.2) 272.6 (83.1) -0.2 (-0.1) 272.8 (83.2) 0.0 (0.0) 

18 255.0 (77.7) 260.9 (79.5) 5.9 (1.8) 261.8 (79.8) 6.8 (2.1) 

19 255.0 (77.7) 254.8 (77.7) -0.2 (-0.1) 255.7 (77.9) 0.7 (0.2) 

20 255.0 (77.7) 260.5 (79.4) 5.5 (1.7) 261.2 (79.6) 6.1 (1.9) 

*A negative value of the pressure head excess means a constraint violation. 

  


