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Abstract

We introduce and implement a reversible jump approach to Bayesian
Model Averaging for the Probit model with uncertain regressors. This ap-
proach provides a direct estimate of the probability that a variable should
be included in the model. Two applications are investigated. The first is the
adoption of organic systems in UK farming, and the second is the influence
of farm and farmer characteristics on the use of a computer on the farm.
While there is a correspondence between the conclusions we would obtain
with and without model averaging results, we find important differences,

particularly in smaller samples.



1. Introduction

The evaluation of the importance of explanatory variables based on measures
such as statistical significance, adjusted R-square or information criteria is a com-
mon practice. The literature is replete with discussions where the importance of
regressors are evaluated ostensibly by their statistical significance or lack thereof.
Commonly, investigators also exclude variables from their models because their
associated coefficients are not statistically significant or the exclusion of that vari-
able leads to improvements in a given criteria, and only those that are left in the
model are deemed important.

Faced with a large number of potential explanatory variables and limited sam-
ple sizes, there is often a need to choose a subset of the available regressors. This
is a requirement when using time series or cross sectional data and needs to be
addressed whether the aim is to estimate a purely predictive model, or to estimate
a model with structural interpretations. In some cases variable selection is auto-
mated, and in others investigators choose to adopt a more ‘hands on’ approach.

The pitfalls of automated model selection of the ‘stepwise’ kind are well doc-
umented (Millar, 1984). The ‘hands on’ approach is open to the criticism that
it is insufficiently objective. Problems exist regardless of whether the modelling
strategy is ‘specific to general’, ‘general to specific’ or a mixture of both. While
model selection has been the subject of extensive discussion going back many
years (e.g. Pagan, 1987) adequate solutions arguably remain absent from classical
perspective. Recent classical work automating model selection from a ‘general to
specific’ point of view notwithstanding (e.g. Hendry and Krolzig; 2005), sequential
reduction algorithms inevitably involve testing sequences that can pre-determine
the final selection. Though a search can sometimes be conducted over the entire
model space (e.g. Balcombe et al. 2005), investigators still face a difficult choice
between competing ways of evaluating one model (as defined by the set of regres-
sors included in the model) relative to many others, particularly if there are many
models that perform similarly according to a given criteria.

Even if the aim is not to conduct a specification search, investigators often
seek to establish whether a given variable belongs in the model on the basis of
statistical significance. Thus, a model is estimated and the resulting discussion is

then about which variables are significant and which are not. When conducting



this type of analysis, investigators often indirectly infer that a small p-value implies
a high probability of a non-zero coefficient. This makes sense to the extent that
a p-value of below 0.05 implies that a 95% confidence interval for the parameter
would exclude zero. Thus, in this limited sense, the investigator is at least 95%
certain that the variable should be in the model. Unfortunately, as simple as
this logic seems, it cannot be used to construct a formal argument that p-value
below 0.05 means that there is at least 95% probability that the variable should be
included the model. While investigators may know that a p-value cannot strictly
be interpreted in this way, in practice, statistical significance is used as an indicator
of the probability that regressor has an impact on the dependent variable. The
gulf between the formal meaning of a p-value and how it is used in practice is not
a mere curiosity. It may have a substantive impact on interpretation and findings.

An appealing alternative to estimating one very large model or searching for
a better performing submodel, is to take an average over many models. While
classical statistics struggles to give any formal basis for averaging over models!,
a Bayesian approach provides both a theoretical underpinning, along with clear
methodology for implementing model averaging. Final estimates can be obtained
by taking a weighted average of estimates over models, where a model that is
highly supported by the data will be given a higher weight than one which is less
supported by the data. Importantly, this approach can further deliver a measure
of the probability that a given variable enters the model.

The construction of the weights used for Bayesian model averaging (BMA) is
performed using the Bayesian ‘marginal likelihood’ (ML). Unlike the likelihood
function, the ML is not defined on parameters since these have been integrated
out of the expression.? Thus, it is a function of the data and the model but not the
parameters. Where two models are thought equally likely, a priori, the ‘posterior
odds’ for two models is equal to the ratio of their MLs (also known as the Bayes
factor or ratio). Therefore, the ML can be used to give a weight to a given model

with BMA.

!Sali-a-Martin et al. (2004) develop a hybrid approach to model averaging, but this could not
be strictly labelled Bayesian or Classical.

2The likelihood can be viewed as the probability of the data conditionally on the parameters.
The marginal likelihood can be viewed as the expected likelihood, given the model and model
priors.




BMA can be difficult to implement because the ML is often hard to compute.
Under these circumstances, BMA can practically take place only over a small
number of models. For the standard linear regression model, the ML can be
expressed analytically and computed quickly. Even so, where the set of models
is defined by all the combinations of regressors that can enter the regression, the
model space can be massive.® Therefore, it can still be impractical to estimate
every model and assign a weight to each model. Bayesian computation can solve
this problem by employing an algorithm where only a relatively small subset of
the models require estimation. The ML can provide a basis for choosing models
as part of the algorithm which ‘jumps’ between one model and another. This
class of algorithms are an extension of the Monte Carlo Markov Chain (MCMC)
algorithms that are employed to estimate many Bayesian models.

This paper uses and explains a Bayesian reversible jump (RJ) procedure for
Probit model selection in which the probability of regressors entering the model is
estimated along with the parameters that enter the Probit equation. The estimates
obtained from this procedure include the probability that a variable enters the
model along with model averaged estimates (and standard deviations) of the Probit
parameters. The RJ method is an approach to model averaging, that can be
applied to the selection of models where the number of potential models is very
large. The general RJ approach to estimation of models was developed by Green
(1995) and a general approach to the estimation of limited dependent variable data
was outlined in Holmes and Held (2005). The RJ approach was applied to a linear
time series model by Balcombe and Rapsomanikis (2010), but so far there have
been no applications of the reversible jump procedure for a Probit model within
the Agricultural Economics literature. Applications of the RJ Probit within the
Economics literature are few. An exception is Leon-Gonzalez and Scarpa (2007)
which applied this algorithm in a contingent valuation setting.

It is not our aim to compare Classical with Bayesian methods, but to compare
results with and without model averaging. In introducing the RJ approach, we are
mindful that agricultural economists will be less concerned with theoretical argu-
ments for BMA, but more concerned with its practicality, and how it may change

the inferences obtained from a given data set. BMA is certainly practical. The

3 A model with k variables has 2* submodels



models in this paper take less than half an hour to estimate on a modern computer,
even though the data sets would be regarded as relatively large. Moreover, there
is no doubt that BMA can sometimes have a substantive influence on inferences
draw from a given set of data. For example, Balcombe and Rapsomanikis (2010)
show that in the context of a time series model, the use of BMA lead to quite
different conclusions. Results from a Bayesian analysis (without model averaging)
are often very similar to a Classical analysis, albeit with some differences in the
way that the results are presented and interpreted. Non informative priors and
large sample sizes, Bayesian and Classical approaches often lead to comparable
point estimates and confidence intervals (see Mittelhammer, et al. 2000, pp. 661-
666). Therefore, we use Bayesian methods throughout this paper, since estimates
produced for a standard Probit model using a Bayesian or Classical methods do
not differ substantively.

The RJ approach to estimation model is applied to the analysis of two data
sets and the results are compared to the results obtained without model averaging.
First, the adoption of organic production in agriculture is analysed. This data set
has already been discussed and analysed by Rigby et al. (1999). Second, we apply
the Probit model to an original data set on the determinants of computer adoption
in UK agriculture. Agricultural producers have lagged behind other businesses in
computer ownership and use. Despite the rapid adoption of computer technology
by British farmers in recent years, there has been little in the way of formal
econometric analyses about why farmers purchase computers, what they use them
for, and whether computers are making a positive impact on farm profitability.

The paper proceeds by discussing the estimation of the Probit using the RJ
method in Section 2. Section 3 introduces the data and presents and discusses the
empirical results. Section 4 concludes. Mathematical details are contained in an

appendix.

2. Model and Estimation

A common Bayesian approach to estimation is to simulate the posterior distri-
bution for the parameters of a model using Monte Carlo Markov Chain (MCMC)
algorithms (e.g. Chib and Greenberg, 1995). The RJ approach is an extension of
the MCMC algorithms. The difference is in that, when using the RJ approach,



the model is also drawn from its posterior distribution, not just the parameters.
Using the notation f (x|y) to denote the conditional distribution of = given
y, MCMC algorithms operate by drawing from f (x|y) then using the draw of z
to draw y from f (y|z). Subject to certain conditions, this leads (provided the
sequence is repeated many times) to draws from f (z,y). Within the standard
MCMC approach, the quantities y and = can represent parameters or latent data.
With the RJ approach, they can also represent models. In this section we describe

the model and estimation procedure in more detail.

2.1. The Model

The model employed within this paper is of a standard binomial Probit form:

y = xzb+e (1)

y = (yi,....yr); e = (e1,....er)’; and,

v = (71,....07) where x; = (1,21, Tio..Tq1) -
It is assumed that e; YN (0,1) . The restriction on the variance of e; is the usual
identifying assumption for the Probit model. The data y; is not observed for the
Probit model. Instead, we observe the indicator variable d = (dy, .....d, ) where
d; = 1 where y; > 0 and d; = 0 otherwise. The Bayesian approach to estimation,
requires a prior distribution for b. Where this is specified as f (b)) = N (60, My 1),
then:

f(bly) = N (By, My") and y; = TN (2b,1)1(d; = 1)+ TN~ (zb,1) 1 (d; = 0)

(2)
where My = 2'z; My = Mo+ My; B, = MfIQ?’y; By = Mgl (Moo + Mij3y);
and, TNT(TN~) denotes a positively (negatively) truncated distributed normal

distribution and 1 (.) denotes and indicator function.

2.2. Estimation

Where the regressors are known, estimation can proceed through simulation
by drawing b from f (bly) then y then f (y|b,d) and so on, recording the draws
of b so as to simulate the marginal posterior distribution. The reversible jump

algorithm only involves a further step by augmenting the sequence by drawing



from f (m|y,d) where m denotes the model (the choice of regressors). The last
step is achieved by proposing a new model m* in a ‘symmetric fashion™, then

accepting this new model (rather than the old model m) with probability

1 .
| Mz (m )\73 « efJZL

p = min [ Mo(m )\_i 1 (3)
[Ma(m)[72 o3
|Mo(m)| ™2

where

T = (4 = 2mBom) (U = TmBom) = (U = TmBom) TmM (m)y" 2!y, (y — 2By n)

(4)
and z,, are the regressors for model m, and j,,, M (m), are the priors for the
parameters under model m, and M (m), = (Mo, + x,,%.,) . Derivations of equa-
tions (3) and (4) are left for an appendix (see section A2.2). The validity of the
‘model step’ above follows from the fact that the conditional distribution of the
model f (mly,d) simplifies to f (mly) since any admissible set of latent data (y),
is sufficient to deduce the observed data (d). Therefore, the model step within the
RJ algorithm for the Probit model is almost identical to the model step within the
normal linear model, except that the variance is set to one.

The Priors adopted in this survey are the ‘G-Priors’ with Bg’m = 0 for all
models. Using this construction, the priors are Mg, = x;”% For the rationale
behind the use of these priors, readers are referred to the discussion and further
references within Fernandez et al. (2001). Within our analysis the priors over all
models are uniform (each model is, a priori, equally likely as another). In principle,
informative priors could be placed over the model space if some variables were
thought more likely to determine adoption than others. However, we prefer to use

non-informative priors over the model space.

4This means that the probability of proposing move from m to m* is equal to the probability
of proposing a move from m* to m.



3. Empirical Section

Our analysis within this section will examine two different data sets: organic
technology adoption; and, computer adoption in agriculture. As discussed above,
our analysis throughout will be Bayesian. Classical point estimates and confidence
intervals for the data sets in this paper are similar to the results we present below
without using BMA. Although it is not entirely consistent with the Bayesian liter-
ature, we denote significance at the 5% level if the coefficient has a 95% Bayesian
confidence interval (also known a high density region) that excludes zero. Bayesian
significance has a slightly different interpretation to that of classical significance®.
However, as already noted, the Bayesian confidence intervals presented herein are
similar to those obtained by a classical analysis, thus, the exclusion of zero from
the Bayesian confidence interval would also indicate significance in the classical
sense. Therefore, we continue to label the parameter ‘significant’ if its confidence

interval excludes zero.
3.1. Organic Adoption

3.1.1. Data on Organics Adoption

The Organics data is composed of 237 horticultural producers from the UK, of
which 151 were conventional producers and 86 had adopted organic technologies.
The survey was conducted in 1996. The discussion of the sources and summary of
this data is discussed in Rigby et al (1999). The data, with descriptions can also
be found on the ESRC data archive.

3.1.2. Results for Organics Adoption

Rigby et al. (1999) run a Logit regression of the decision to adopt organics on
a set of explanatory variables. These are listed in Table 2 of Rigby et al. (1999).
Since our aim is to compare the model averaged results with those obtained by
Rigby et al. (1999), we use exactly the same variables used in their analysis. We
produce the Probit results for their model in Table 1 below, on the left hand side.
The variables that are significant at the 5% level, are superscripted by a star. In

terms of significance, these are broadly the same as those reported in Rigby et al.

Pe.g. see Mittelhammer, 2000, chap 24.



The BMA results are reported on the right hand side of Table 1. The last col-
umn gives the probabilities that the relevant variables are included in the model.
The estimates and the standard deviations are the mean of the posterior distrib-
utions for both the standard and BMA results. Apart from the intercept, we can
see that 4 variables: conin, orgff, infpss, and infbuy (conin=1 if farmer believes
that current practices will sustain farm productivity, orgff=1 if farmer believes
that farming alone can satisfy societies needs for food and fibre, infpss (infbuy)=
1 of main source of information is press (merchants)) are included with probability
0.99 or above, closely followed by infadas, which is included with probability of
0.972. Notably, all these are also significant at the 5% level. More generally, across
most of the variables, there is a correspondence between the probability of being
included in the model, and the significance of the associated coefficient. Generally,
the more significant a variable (the further away the interval is from zero) the
more likely that the variable is included in the model. This said, we would revise
the importance of variables in the light of the probabilities in the last column.
First, it would be inaccurate to conclude that a variable that is significant at the
5% level should be in the model with 95% probability. Several variables such as
hhsize, fem and inffmrs (hhsize=household size, fem=female ( 1 for female, 0 for
male) , inffmrs=1 if main source of information is other farmers) are significant at
the 5% level, but are included in the model less than 80% of the time. Even more
notable is the variable age which is significant at the 5% level. However, it is only
included in the model around 47% of the time. Likewise, memenv (=1 member
of environmental organisation) is significant at the 5% level, but is only included
in around 55% of the time. By contrast the variable mazcon (=1 if maximiser of
consumption of own production) was insignificant at the 5% level, but as it was
included in 61% of the time, it has a higher probability of being included than ei-
ther of the significant variables age and memenv. Finally, we note that the model
averaged results differ substantively from the standard results. For variables that
are not included with a probability close to 1, the estimates are substantially lower
in absolute value, reflecting the high probability that they are zero.

Finally, with respect to the estimates, the coefficients of the model averaged
results are generally smaller (in absolute value) than for the standard results, but

in nearly all cases retain their original signs. Those variables that enter the models



a relatively small proportion of the time, have correspondingly smaller values in
absolute terms. In this sense the BMA results represent the mid ground between
a model selection strategy in which only the most general model is estimated and
one where insignificant variables are eliminated from the model. The strategy of
excluding insignificant variables from the model is an extreme one, and arguably
does not truly reflect the nature of our uncertainty about the role of the variable.
Thus, the BMA results represent a more balanced approach between two polar

approaches that are commonly employed in the literature.

3.2. Computer Adoption

The literature suggests various factors which may affect the diffusion of farm-
based computer technology in England and Wales. The likelihood of computer
adoption within a farm business depends on the characteristics of the farmer and
his/her operation. The age and education of the farmer have been found to be
significant determinants in the adoption process (Lazarus and Smith 1988; Putler
and Zilberman, 1988; Batte, 1990; Woodburn et al. 1994; Hoag et al. 1999; Lewis
1998; Ascough et al. 2002). Older farmers have been found not to use as many
sources of information as their younger colleagues and are more dependent on
their experience in farming. Moreover, older and more experienced farm decision
makers tend to maintain less complicated record types, which may reduce their
demand for computer-based management innovation. Although (Jarvis, 1990;
Baker 1992) find that the managers’ age and education are insignificant in deter-
mining computer adoption among Texan rice producers and New Mexico non-farm
agri-businesses, respectively. In addition, Woodburn et al. (1994); Ortmann et
al. (1994) and Ascough (2002); find that farmers’ self-rating of financial, computer
and management skills to be significant factors in the adoption process.

Results from a number of studies (Lazarus and Smith 1988; Putler and Zil-
berman, 1988; Batte, 1990; Jarvis, 1990; Baker 1992; Woodburn et al. 1994; and
Lewis 1998; ) indicate that gross farm income or farm size is a significant factor in
computer adoption. In the UK, Warren (2000) finds a clear positive relationship
between increasing use of computer technology and increasing farm size, as well
as a tendency for cattle and sheep farms to have lower levels of adoption than
other farm types. Woodburn et al. (1994); also found that the probability of

10



computer adoption declines with the presence of beef enterprises in Natal, South
Africa. While Batte, (1990) found adoption rates among Ohio commercial farms
to be highest for mixed livestock and dairy producers. The reasoning for these
conflicting results may lie in the degree of livestock production intensity in the
different regions and the availability of appropriate livestock production decision
analysis and record-keeping software. Further significant positive factors in the
decision to adopt computer technology include ownership of farm sales related
businesses (Putler and Zilberman, 1988; and Baker 1992), the presence of off-farm
employment and higher proportions of rented land (Woodburn et al. 1994), and
reduced-levels of diversification (Putler and Zilberman, 1988) and off-farm invest-
ments (Ortmann et al., 1994).

3.2.1. Data on Computer Adoption

The Department for Environment, Food and Rural Affair’s (Defra) (2001) sur-
vey of computer use in England found that 35 per cent of holdings had computer
access. Moreover, 25 per cent of holdings owned a computer but do not use it for
farm business. In the 2002/03 FBS survey period, 75 per cent of 1,718 farmers
had access to a computer, and 76 per cent of these farmers used computers for
farm business purposes. Of those farm business computer users 82 per cent made
at least some use of the computer for office management functions, 69 per cent for
farm management accounts, 55 per cent for livestock enterprise management, 49
per cent for statutory records, 42 per cent for tax accounts, 39 per cent for arable
enterprise management, and 23 per cent for the farm’s payroll. In this paper we
use data from Defra’s Farm Business Survey data for 1,718 farms in England and
Wales over the 2002/2003 financial year. There are 335, 531 and 424 farms in the
North, East and West of England, respectively, and 428 in Wales. There are 917
full owner-occupied farms, 251 full tenanted farms, and 550 have a mixed tenure
status. The sample includes 622 small farms, 613 medium-sized farms and 483
large farms.

The average age of the farmers in the sample is 54 years. Of the total sample
of farmers, 563 (33 per cent) have a “school only” highest education level, while
873 (51 per cent) have GCE “O” or “A” levels or the equivalent, and 211 (12 per

cent) have a degree or postgraduate qualification. Of the four regions surveyed the
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East of England has the lowest proportion of “school only” educated farmers and
the highest proportion of farmers with GCE and university qualifications, whilst
the reverse is true for Wales. The average age of farmers with a “school only”
education is 60 years, while those with a GCE/College education, and university
graduates, average 52 years, and 51 years, in age, respectively.

Table 2 gives a summary of the use of computers on the farms in the sample.
Of the total sample of farms, 432 (25 per cent) did not have access to a computer,
314 (18 per cent) used a computer for personal/family purposes only, and 972 (57
per cent) used a computer for farm or related business use. Farmers are extending
their use of computers for farm or related business use, specifically various farm,

financial and record management purposes.

3.2.2. Results for Computer Adoption

The dependent variable in our analysis is whether the farmer owns and uses
a computer on the farm. The explanatory variables are detailed in Table 3. The
structure of Table 3 is the same as in Table 2. As with organics data, there is
close correspondence between the significance of the variable, and the probability
that it will enter the model. In 9 out of the 12 significant variables the prob-
ability that the variable enters the model exceeds 0.95. In a number of cases,
the significant variables were deemed to be in the model with probability near 1.
However, Fast area, Cattle and Sheep Farms in the less favoured areas, and Net
Farm income, have probabilities of entering the model of 0.363, 0.696, and 0.763
respectively even though they are significant at the 5% level. Thus, as in the case
of the organics data, the BMA results differ substantively from the standard one
in some important respects. Overall, the correspondence between results with and
without BMA, are closer for the computer data than for the organics data. This
is unsurprising since, with the larger sample size, the power of tests increase, and
important variables are more likely to be significant.

With regard to farm type, there is clear evidence that farms classified under
Cereals, are more likely to use a computer than other farming types. This classifi-
cation variable enters the model 100% of the times. Other farm classifications do
not seem to be particularly important, except perhaps Cattle and Sheep Farms in

less favoured areas, which has a negative association with computer ownership. A
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number of findings differ from the preceding literature. In contrast to previous re-
sults, age is not found to be an important predictor, at least when other covariates
are taken into account. This variable enters the equation only 3.5% of the times,
and is also insignificant at the 95% level. Next, in contrast to previous results, we
do not find a positive relationship between farm size and computer use. Larger
farms are found to be less likely to use computers than the median sized farm.
Farm size is significant and is included in the model over 99% of the times, and its
coefficient is negative. However, net farm income (which is positively related to
farm size) is found to be a significant positive predictor of computer use, although
it is included in the models around 75% of the times. Other variables connected to
size include the number of paid workers which is positively related to the physical
size of the farm, and is included in 100% of the models and is positively related to
computer usage. Care needs to be taken in interpreting these results. Although
the results are not included here, a simple probit of computer use on farm size
(excluding other variables) indicates a positive relationship between farm size and
computer use. Therefore, it is the inclusion of other covariates in the model that
has produced this result. Our results suggests that large farms with given net
incomes, and number of paid workers are less likely to use computers. However,
these other covariates also reflect farm size. Nonetheless, we believe that the re-
sults correctly reflect the fact that what might be termed the ‘commercial size’ of
the farm is positive predictor of whether a computer is used, rather than land size.
The role of education is generally in line with previous findings. The ‘school only’
variable seems to have a significant negative impact on the use of computers in the
farm, with the GCE qualification also. However, the influence of a degree, while
probably being positive, is insignificant, and enters the regression only around 25%
of the times.

Finally, comparing the magnitudes of the BMA coefficients and the original
ones, the impact of using BMA has been similar for the Computer data set and
Organic data set. In most cases the sign of the coefficients remain unchanged, but
for those variables entering the model with a small probability, the coefficients are

correspondingly small in absolute terms.

4. Conclusions
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This paper outlined the BMA approach to Probit regressions with uncertain
regressors and then explores its use in a comparison of two Probit regressions
with and without using BMA. We found the BMA method to be fast, and added
another useful layer of information when interpreting the results. While we found a
high correspondence between the results across estimation with and without BMA,
there were also some substantive differences. Overall, if a variable was significant
at the 95% level this could not be used as reliable indicator of whether that variable
should be in the model.

With regard to the results on organic adoption, while broadly in accord with
Rigby et al. (1999), some differences were obtained by using BMA. Most notably,
we found that using BMA produced considerably weaker evidence that age and
membership of an environmental organisation were good predictors of the use of
organic technology, once other covariates were taken into account.

With regard to the influence of farm and farmer characteristics on the uptake
and use of computers, we found that cereal farmers were much more likely to be
users of computer technology. With regard to size, contrary to previous work, the
physical size of the farm was negatively associated with computer use, once covari-
ates were taken into account. Education was found to be a useful predictor, with
those farmers having only a school education being less likely to use a computer.
The impact of higher levels of education (a degree) were less clear.

The use of BMA in this article has been limited to the Probit model with linear
effects. However, there are other contexts in which it may have utility. One further
application may be in the selection of regressors when using ‘flexible functional
forms’, which are popular in the Agricultural Economics literature. Where the
number of explanatory variables is large, flexible functional forms can suffer badly

from the ‘curse of dimensionality’.
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Technical Appendix

A1l. Preliminary Definitions

Take the model as defined in the paper. Let V' be the prior variance, and M, be
the prior precision for the parameters b that have a prior normal b ~ N (50, My 1).
Also, let 5 and M be conformable vectors and matrices indexed by j (defined
further below) and define: Q; = (b— Bj)le (b—p;) and P; = B5M;(3;. Using
this notation, the prior distribution for § is: 7 (b) = 27~ 2 |M0|% exp (%%) . The
likelihood is f (y|b) = (ZW)_TT exp (—@) . Further define M; = 2’z and M, =
(Mo + My) . Let B, = My '2'y and By = My (Myf3y + My3,). Further define S (.)
S (ﬁ j) =5 (yt — 0 j)z . Three results are of use in what follows are:

e (See Proof 1)
S(b) =S5 (B1)+ (5)

e (See Proof 2)
Qo+ Q1 —Qr=F+P P (6)

e and (see Proof 3)

SB)+Po+P—Po=(y— ifﬁo), (y — xﬁoz_ gy - xﬁo),$M51$/ (y — 1’502

A B
(7)

A2. Deriving the Posterior and Marginal Likelihood
A2.1 The Posterior
Combining the prior with the likelihood we obtain:

pe = () ltes (SO EL) ®)

Using (5)

p(B/y) = (2r) 3 |My| " exp (_5 (51) +2Q1 + Q0>
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using (6)

P8/ = n) 5 | Bewp (T OERERERY o (- 22) 10)

therefore S (3,), Po, P, and P, are functions of the data and priors only. It is
evident that this joint density is:

(11)

(b—By) Ma (b— ﬁz)')

(/) o - :

Therefore [/y ~ N (62, M;l) .

A2.2 The Marginal Likelihood
The marginal likelihood is ML = [ 50 (8/y) dB, therefore:

ML = (ZW)_w‘Mgl‘_%exp (—S(ﬁl)—'—Pg—'—Pl_PQ)/xexp <—%) dp
B

S(B)+ P+ P — P
2

1

= (2#)7% ‘Mo_lr2 exp (—

p
2

) x| M| (27)F (12)
Using (6):

J=SB)+FP+P—P= (y_fﬁo)l (y—xﬁol—gy—ﬁﬁo)'ng_la:’ (y — 28,)

(. 7

v~

A B
(13)
Thus the marginal likelihood observes the following proportionality:
My
ML (27)7 % X e~3 (14)
| Mo

It is this equation that provides the basis of the Metropolis Hastings acceptance

probability in the paper (equation 3).

A3. Proofs
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S(b) = S(B)+ Q= (y—zb)(y—ab) (15)

(y— 2B —x(b—B1)) (y—xfy —z(b—B))
= \(?J —By) (y — xBy) + (b= By) 2’z (b - 51)1"‘ 2(y — $51>;x (b—54)

S N
-~

=5(8,) —Qu

Proof 2: First note that for j=1,2,3 Q); = b/Mjb+ P, — Qb/Mjﬁj. Using these

conditions

Qo+Q1—Q: = PBh+P—P+K

where

K = b Mob—2bMyBy~+ b Miby —2b' My, — b Mab + 2b Maj3,

We can show that K is zero since V' Myb = b Myb + b Myb and b M, 3, = b' MoBo +

K

= b Mob—2b' MyfSy + b Myby — 20 My 3, — b Mob — b Myb + 2 (W MoS, + b My 5,)
= 0 (16)

Proof 3: We need to show that:

J = Si+P+P—P=y—azby) (I —aMy'2) (y — zf,)
= (y - wﬁo)l (y - 37502_ KZ/ - xﬁo)/$M2_lxl (y - xﬁo) (17)

(. /

~~

A B

Result 3.1: S(8,) =vy'y — P

e Proof of 3.1

17



S (51) = (3/ - 5551), (y - 55’51) = yly - P
= yy+ P —2p,a'y (18)
using B2’y = BMiB, = S(B,) =yy— P

Result 3.2: Po—Py = By M1 B¢+(y — x8,) My 2" (y — 23,)+28, Mo My ' (y — 3,)

e Proof of 3.2

5/2M2ﬁ2 = (50 + M{lx’ (y — xﬁo)) M, (50 + Mflx/ (y — fﬁo)) (19)
P
= BoM2By+ (y — xﬁo)'xMz_la:' (y — 2B,) + 256M2M2_1x’ (y — 2f)
= BoMoBy + BoMiBy + (y — x8y) aMy 2’ (y — x8y) + 280MaMy '’ (y — 2,)
———

Py

Therefore, using R3.1
J281+P0+P1—P2:y/y+PO—P2 (20)
and R3.2

J = yy-— [BOMIBO +(y — xﬁo)lxMz_lxl (y — 2B,) + 256M2M2_1$, (y — xﬁo)}

~ /
-

Py—P,
= Yy — BoMiBy — 2607 (y — xBy) — (y — xBo) eMy e’ (y — xBy)  (21)

A:(y—x'ﬁo)' (y—=pBp)
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Tables

Table 1. Organics

Standard Model Averaged

Est Stdv. LB UB Est Stdv  Prob
int -1.316* 0.240 -1.809 -0.864 -1.161 0.245 1.000
hhsize 0.255*  0.092 0.079 0.437 0.175 0.119 0.796
fem 1.430*  0.549 0.358 2.495 0.935 0.663 0.781
age -0.027* 0.015 -0.056 0.001 -0.012 0.015 0.469
hefe -0.182  0.329 -0.810 0.476 -0.006 0.121 0.130
yagric -0.025 0.377 -0.766 0.707 -0.036 0.164 0.160
toha -0.002  0.001 -0.005 -0.000 -0.002 0.002 0.633

enviss 0.986 0.510 -0.005 1.992 0.619 0.650 0.595
conin -2.378* 0.486 -3.336 -1.453 -2.231 0.482 1.000
orgff 1.195* 0.325 0.566 1.848 1.196  0.324 0.996
fsv 0.144 0.350 -0.542 0.828 0.052 0.184 0.183
maxcon 0.761 0.447 -0.100 1.630 0.539 0.536 0.616
memenv 0.674* 0.341 0.004 1.332 0.382 0.423 0.554
mempga -0.937* 0.371 -1.666 -0.212 -0.740 0.453 0.836
infpss -1.333* 0.346 -2.001 -0.650 -1.237 0.332 0.999
infbuy -1.278* 0.340 -1.955 -0.622 -1.142 0.344 0.991
inffmrs  0.835* 0.332 0.192 1.480 0.579 0.433 0.748
infadas  -1.112* 0.359 -1.832 -0.423 -1.076  0.389 0.972

Table 2. On Farm Computer Uses

No Use Some Use  Total Reliance

Farms % Farms % Farms %
Office Management 918 53 491 29 309 18
Farm Management 1048 61 264 15 406 24
Tax Accounts 1305 76 186 11 227 13
Payroll 1499 87 74 4 145 8

Arable Enterprise Management 1342 78 222 13 154 9
Livestock Enterprise Management 1183 69 359 21 176 10
Statutory Records 1244 72 334 19 140 8
Other 1612 94 43 3 63 4
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Table 3: Computer Adoption

Standard Model Averaged
Area Est Stdv. LB UB Est  Stdv  Prob
North 0.269* 0.033 0.205 0.332 0.264 0.032 1.000
East 0.207* 0.091 0.030 0.385 0.075 0.112 0.363
West 0.566* 0.098 0.377 0.757 0.514 0.092 1.000
Main Farm Activity
Cereals 0.538* 0.090 0.356 0.708 0.491 0.089 1.000
General Crop -0.044 0.124 -0.295 0.189 0.004 0.026 0.038
Horticultural -0.191 0.142 -0.466 0.089 -0.007 0.040 0.056
Spec Pig and Poultry -0.143 0.161 -0.442 0.182 -0.003 0.031 0.039
Dairy -0.042 0.172 -0.370 0.297 0.002 0.026 0.026
Cattle and Sheep LFA -0.271*  0.117 -0.499 -0.042 -0.157 0.122 0.696
Cattle and Sheep Lowland -0.093 0.121 -0.335 0.137 -0.006 0.034 0.057
Farm Size
Small 0.078 0.133 -0.176 0.345 0.022 0.067 0.125
Large -0.299* 0.072 -0.443 -0.162 -0.298 0.077 0.994
Tenancy Status
Fully Owned 0.271* 0.084 0.110 0.436 0.294 0.103 0.958
Fully Tenanted 0.014 0.063 -0.109 0.136 -0.000 0.010 0.027
Education
School Only -0.189* 0.029 -0.248 -0.134 -0.193 0.028 1.000
CGE College -0.213  0.154 -0.517 0.085 -0.250 0.151 0.782
Degree 0.096 0.151 -0.206 0.385 0.056 0.132 0.274
Ownership
Sole 0.717* 0.178 0.373 1.070 0.696 0.183 0.993
Partner -0.304 0.178 -0.652 0.044 -0.095 0.104 0.531
Company -0.133  0.178 -0.478 0.223 0.021 0.069 0.186
Other Attributes
No of Unpaid Workers 0.056 0.076 -0.095 0.204 0.001 0.014 0.028
No of Paid Workers 1.307  0.230 0.862 1.750 1.352  0.213 1.000
Net Farm Income 0.390* 0.177 0.042 0.732 0.299 0.222 0.762
Organic Enterprises 0.016 0.009 -0.001 0.035 0.002 0.006 0.115
Age of Farmer 0.026 0.087 -0.141 0.199 0.001 0.016 0.035
Other Activities
Off Farm Work 0.261* 0.086 0.093 0.434 0.262 0.081 0.976
Off Farm Income -0.024 0.071 -0.161 0.114 -0.002 0.015 0.039
Socail Payments 0.097 0.140 -0.187 0.361 0.006 0.041 0.051
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