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relative to the US for the 1900-2000 period. We develop tests that allow for an unknown 

number of breaks in the series and also asymmetric convergence speed. We show that 

this asymmetry arises theoretically when the economy is not in the neighbourhood of the 

steady state. Breaks are modelled through a Fourier function fitted to the deterministic 

part of a time series and asymmetries are modelled as a smooth transition function that 

matches the theory predictions. The tests are shown to have good finite sample 

properties. The results support the existence of convergence towards a mean that displays 

a break around WWII. These breaks, in the majority of cases, appear to be permanent. 

Asymmetric mean reversion also appears to be an important feature driving convergence 

for most countries in the sample. These results emphasize the importance that disruptive 

historical events have on the dynamics of relative outputs. 
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International Output Convergence, Breaks, and Asymmetric 

Adjustment 

 

 

1. Introduction 

 

Theoretical models of growth have important implications for the stochastic behavior of 

income per capita differentials between countries. The standard neoclassical Solow-Swan 

model predicts that economies with identical determinants of steady state levels of 

income per capita would converge in the long run. The New Growth Theory models 

pioneered by Romer (1986) and Lucas (1988), predict that income per capita would 

diverge due to the non-convexities induced by physical and/or human capital. Tests of the 

convergence hypothesis are abundant in the literature (see the survey by Durlauf et al, 

2006). Most of these tests have been carried out in cross-sectional contexts where 

convergence is interpreted as catching-up from initially poor to rich nations. The works 

of Bernard and Durlauf (1995, 1996) propose time-series definitions of the convergence 

hypothesis that are interpretable in terms of unit-roots and cointegration theory. 

According to these authors, convergence occurs when relative outputs are stationary with 

zero mean forecast value. Li and Papell (1999) considered also the possibility that the 

relative outputs are stationary with a positive mean (deterministic convergence). Pesaran 

(2007) has rationalized this possibility in the context of a neoclassical growth model. 

Within this framework, Evans (1998) claims that cross sectional studies generate 

inconsistent convergence rate estimates, which in turn would lead to incorrect inference 

regarding the neoclassical predictions. According to this author, time-series methods 

constitute a better way to test for output convergence.  

 

The evidence on time series based tests mainly runs against the convergence hypothesis. 

The results presented in Bernard and Durlauf (1995) reject the hypothesis of 

unconditional convergence. Recently, Pesaran (2007) presents a pair-wise test and also 
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rejects the existence of convergence in output levels.
1
 Cheung and Garcia-Pascual (2004) 

make use of panel data methods and conclude that the evidence depends on the null 

hypothesis in use, but their results for G7 countries are generally more supportive of 

convergence. 

 

However, standard tests of time-series convergence suffer important shortcomings if 

structural breaks are present in the series. In this case, events that change the steady state 

levels of per capita income may change the mean towards which relative outputs would 

revert. This is the case in the works of Loewy and Papell (1996), Li and Papell (1999), 

Datta (2003), Landon-Lane and Robertson (2004) and Bentzen (2005) amongst others. 

When structural changes are present, standard tests of convergence may fail to reject the 

null of non-stationarity. If stationarity is found once breaks are controlled for, however, 

the results have to be interpreted as evidence that economies tend to converge but that the 

equilibrium has been affected by large exogenous events. 

 

Another important aspect of these tests is that, as emphasized by Bernard and Durlauf 

(1996), they appear to be more appropriate when the time series are close to their 

invariant steady state. In that case, the stochastic properties of output would not be 

affected by initial conditions. Initial conditions, however, may matter when output is far 

away from steady state and is reflecting transitional dynamics. In the Solow-Swan growth 

model, the speed of convergence outside the neighborhood of steady state is not constant. 

We show that the speed of convergence will be higher (lower) when the economy 

approximates its steady state from below (above). Hence, if historical output series 

experience large shocks to relative output, it is unlikely that the assumption of no 

transitional dynamics will hold for all the sample period. In this case, mean reversion of 

relative output will depend on the relative position of the economy with respect to its 

(possibly time varying) equilibrium. 

  

In this paper we develop innovative tests for time-series output convergence based on the 

unit root literature that allow, simultaneously, for the series to have an unspecified 

                                                           
1
 See also Camarero et al (2002) for Mercosur countries. 
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number of structural breaks and the possibility that the speed of mean reversion is not 

constant thus obeying the theoretical predictions of the model outside the steady state 

neighborhood. Structural changes are captured by means of a Fourier function fitted to 

the deterministic components of relative output as in Becker et al (2006). This Fourier 

function allows us to endogenously differentiate between permanent and temporary 

breaks. Asymmetric mean reversion is captured by a logistic smooth transition function 

fitted to the residuals of the Fourier model. We develop critical values for two versions of 

the unit root test that depend on the frequency of the breaks in the Fourier function. We 

show that the tests have satisfactory size and power properties. When we apply the tests 

to the income per capita of 14 developed countries relative to the US using 100 years of 

data, we can reject the null of a unit root in all cases except Japan. There is widespread 

evidence of a structural change following the 1920s depression or World War II. This 

alone accounts for a large part of the rejections of the unit root null in the sample and is 

evidence of deterministic convergence to a non-constant mean. We also find strong 

evidence that the speed of convergence is not constant, which allows us to classify 

periods depending on the speed of convergence. Regarding the performance of this group 

of economies relative to the US, countries can be classified in three groups: i) a group of 

countries experiencing a “falling-behind” process (UK and Australia); ii) a group of 

countries whose relative output has remained relatively constant throughout the century 

(mostly European countries plus Canada); a group experiencing a fast process of 

catching-up (Japan, Italy, and the Scandinavian countries). 

  

The paper is organized as follows. Next section discusses the definitions of convergence 

in the literature and the issue of breaks and asymmetry. Section 3 presents the unit root 

test and its size and power properties. Section 4 presents the results for relative per capita 

incomes. Section 5 concludes. 

 

2. Output convergence in time-series 

 

As mentioned in the introduction, the concept of per-capita income convergence in time 

series relates to the integration properties of relative output per-capita levels. Bernard and 



 4 

Durlauf (1995, 1996) define convergence in output
2
 (y) between a pair of countries i and j 

as implying that the long-term forecasts of output for both countries are equal at a fixed 

time t so that: 

 

, ,lim ( ) 0i t k j t k t
k

E y y I+ +→∞
− =     (1) 

 

Equation (1) equates the notion of convergence with the tendency of output per capita 

differentials to disappear as the forecast horizon increases. From an empirical point of 

view the time series notion of convergence requires that per capita output differentials 

between countries i  and j  be zero-mean stationary. If output per capita series are trend 

stationary, definition (1) implies that the time series trends for each country must be 

identical. In the multivariate case, pair-wise convergence must hold for all pairs of 

sampled countries. Definition (1) would hold if relative incomes are compatible with a 

time-invariant Wold representation of the form 

 

, , , , , , ,

0

i t j t i j i j r i j t r

r

y y κ λ ε
∞

−
=

− = +∑     (2) 

 

such that 
,i jκ = 0 and 

, ,i j rλ  is square-summable, with 
, ,i j t rε −  being error terms [Bernard 

and Durlauf, 1996]. 

 

The requirement that relative output is zero-mean stationary may be imposing too strong 

requirements on convergence. As discussed by Pesaran (2007), a zero mean would imply 

that two economies are identical in every respect, including savings rates, population 

growths and initial endowments. For this reason, a less stringent version of output 

convergence in time-series can be defined as deterministic convergence. This requires 

that relative output is level stationary but not necessarily zero-mean. This definition 

follows Li and Papell (1999) and is based on Ogaki and Park (1998). It then implies that: 

 

                                                           
2
 Output here refers to the log of per capita output. 
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, ,lim ( )i t k j t k t ijk
E y y I α+ +→∞

− =         (3) 

 

with ijα  being either a constant or a time-varying (breaking) parameter. Note that in this 

case ,i jκ  in (2) would be different from zero. Nevertheless, definition (3) still implies 

that, for a sample period T, the average rate of growth differential between the two 

countries, 1 1

, ,1 1

T T

i t j tt t
T y T y− −

= =
∆ − ∆∑ ∑ , is zero-mean stationary. This means that this 

difference does not depend on the (constant) differences in initial output, which is the 

cross-sectional definition of convergence.
 3
  

 

These definitions have a clear counterpart in the unit-root and cointegration literature. 

Output convergence would imply that relative outputs are I(0) variables so that a shock 

does not have a permanent effect on output differences. The results from the early 

literature run against the convergence hypothesis. Recently, however, several authors 

have recognized the importance that structural breaks in the series, due to events such as 

the Great Depression or World War II, can have on unit root tests. It is a standard result 

in the literature that breaks increase the probability of accepting the null of a unit root 

when the series behaves as stationary around a breaking mean. If this happens, assuming 

a constant αij in (3) could spuriously lead to over-acceptance of the null of a unit root as 

the sample mean of , ,i t j ty y−  may not be unique for all the sample period. This is the case 

in, amongst others, Loewy and Papell (1996), Li and Papell (1999), Datta (2003) and 

Bentzen (2005) who find more supportive evidence in favor of deterministic convergence 

in different contexts.4 Landon-Lane and Robertson (2004) find that convergence amongst 

OECD countries is a very sample-specific phenomenon that only appears to occur 

between World War II and the first oil shock. In this case, the convergence hypothesis 

                                                           
3
 Carlino and Mills (1993) define “stochastic convergence” as relative outputs being trend-stationary. 

However, this would imply that 
,i jκ has a trend and hence there is a constant difference in the average 

rates of growth of relative outputs. This would match with the standard cross-sectional definition of β 

convergence, but not with time-series convergence, as relative growth would depend on the constant 

initial differences in output. 
4
 See also Carvalho and Harvey (2005), Luginbuhl and Koopman (2004) and St. Aubyn (1999) for different 

approaches to convergence based on structural time series models and the Kalman filter. 
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has to be “qualified”, as it would imply convergence once the test takes into account 

breaks that are produced by some exogenous events. In this case the change in the mean 

of relative outputs itself is of economic interest as it has consequences for the equilibrium 

relative output levels. Countries may have experienced processes of, for instance, 

technological catch-up or falling behind that may have changed their equilibrium relative 

output levels. Hence, whether the breaks in the series are permanent or transitory is also 

an economically relevant area of analysis. Notwithstanding these caveats, this qualified 

deterministic convergence hypothesis still has important theoretical implications. 

 

Large shocks to the output series, however, may also have another impact on 

convergence tests. A large shock generated by an important disruption to economic 

activity could potentially destroy existing capital stock in the economy, moving it away 

from its steady state equilibrium. This would imply that for certain periods following 

large shocks, the speed of mean reversion in the time-series of relative outputs changes as 

the data captures the impact of transitional dynamics when the economy is far from 

equilibrium. As shown by Barro and Sala-i-Martin (2004)
5
 and discussed in depth by 

Mathunjwa and Temple (2006), outside the neighborhood of the steady state the speed of 

mean reversion will depend on the distance between the current and the steady state level 

of capital stock (output). Usually, mean reversion is analyzed in theory models by 

linearizing around the steady state. In that case it is safe to assume a constant speed of 

mean reversion. However, it is easy to show that the speed of mean reversion depends on 

the distance between output and its steady state value. To make this point more 

transparent, assume an economy where output is produced by the following Cobb-

Douglas production function: 

 

1( )t t t tY K A Lα α−=  

 

where 
tK is capital. Labor ( tL ) and technology ( tA ) evolve according to the following 

deterministic paths: 
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1(1 )t tL n L −= +  

1(1 )t tA g A −= +  

 

where ,  0n g >  are population growth and the rate of technical progress respectively. 

Capital depreciates at a constant rate δ  and the savings rate s  is constant so that 

1 1(1 )t t tK sY Kδ− −= + − . Defining capital and output per effective worker as t
t

t t

K
k

A L
=  and 

t
t

t t

Y
y

A L
=  respectively, the steady state levels of capital and output per effective worker 

are:
6
 

 

1

1

*
s

k
n g

α

δ

− 
=  + + 

         (4) 

1

*
s

y
n g

α
α

δ

− 
=  + + 

  (5) 

 

The dynamics of k outside steady state are described by the following difference 

equation: 

 

1 1 1( )t t t t tk k k sk n g kα δ− − −− = ∆ = − + +   (6) 

 

Given that 1log /t t tk k k −∆ = ∆ , from the production function we have that 

log logt ty kα∆ = ∆ . This, together with (6) allows us to write the rate of growth of output 

outside the steady state as: 

 

( 1) /

1log ( )t ty sy n gα αα δ−
− ∆ = − + +    (7) 

 

                                                                                                                                                                             
5
 See Barro and Sala-i-Martin (2004) page 78. 

6
 We assume that n and g are small enough so that g⋅n ≈ 0. 
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From the steady state value for ty  given in (5), we can obtain an expression for the 

savings rate as a function of steady state output as (1 ) /( ) *s g n y α αδ −= + + , which we can 

substitute into (7) to obtain: 

 

(1 ) /

1log ( ) ( / *) 1t ty n g y y α αα δ − −
− ∆ = + + −    (8) 

 

This expression allows us to obtain a measure of the speed of convergence towards the 

steady state which is defined as: 

 

(1 ) /

1

1

( log )
(1 )( )[ / *]

log

t
t

t

y
g n y y

y

α αβ α δ − −
−

−

∂ ∆
= − = − + +

∂
  (9) 

 

Hence, the speed of convergence in the neighborhood of the steady state, when 

1[ / *] 1ty y− =  is the familiar expression * (1 )( )g nβ α δ= − + + . However, outside the 

steady stateβ  will be higher (lower) than *β  as the economy approaches the steady state 

from below (above).7  To illustrate this point, Figure 1 presents the evolution of β  

against 1[ / *]ty y−  for values of the parameters given as n = 0.01, g = 0.02, δ = 0.05 and α 

= 1/3. This result shows that if for some periods the economy is far away enough from 

the steady state, the speed of adjustment will be asymmetric.  

 

The evolution of output per capita /t t ty Y L=% is then given by the following partial 

adjustment equation:8 

 

0 1log log( ) [log log( )]
1

t ty A g y gt s n g
α

β β β β β δ
α−

 ∆ = − + + + − + − − 
% %   (10) 

                                                           
7
 Notice that equation (9) can also be expressed in terms of the log of output as 

1[(1 ) / ]log( / *) 1*[ ]ty ye α αβ β −− −= , which may be more useful for empirical purposes when working with 

logarithmic values. 
8
 Here we make use of the fact that

0 0(1 )t gt

tA g A A e= + � . 
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which implies that the log of output per capita converges to: 

 

0log log( ) [log log( )]
1

ty A g gt s n g
α

δ
α

 = − + + − + − − 
%   (11) 

 

This is a familiar result from Binder and Pesaran (1999) and Pesaran (2007) but in a 

deterministic setting. Hence, two economies identical in every respect will converge to 

the same steady state and the Bernard-Durlauf definition of convergence would hold. 

Assuming a common technical progress parameter, two economies can converge to a 

constant relative output differential if 0A , α , n , s, or δ differ. Given the potential 

instability of parameters of the model, this constant mean may be subject to temporary or 

permanent structural breaks as acknowledged by previous studies. 

 

Hence, when testing for unit roots in relative output, it is necessary to consider both, 

structural breaks and the asymmetry in the speed of convergence that depends on the 

distance from steady state. Failure to consider these aspects in unit root tests would lead 

to a large loss of power and the consequent over-acceptance of the null of no-

convergence. In the following section we develop unit root tests that allow for an 

unknown number of breaks and possibly asymmetric mean reversion. These tests are then 

applied to a century of data for 14 countries relative to the US. 

 

3. Unit root tests 
  

 

The basic idea behind the tests developed in this section is to use trigonometric variables 

to capture breaks or large non-linearities in the deterministic terms of the variable 

together with smooth transition functions that allow capturing asymmetric adjustment to 

the deterministic trend. These tests can be considered as alternatives to Perron (1990), 

Zivot-Andrews (1992) and Bai and Perron (1998) that also allow for asymmetries in the 

adjustment speed. This asymmetric adjustment speed is consistent with that derived from 
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the theory model. An additional advantage of the tests is that they provide us with a 

simple way to analyze whether the breaks are permanent or transitory. 

 

Consider the following model for a stochastic variable ty  

 

tt vty += )(δ ,          (12) 

 

where ~ (0, )tv � σ  and ( )tδ  is a time-varying deterministic mean. Following Becker et 

al. (2004) and Becker et al (2006) we use a Fourier series expansion to approximate the 

unknown number of breaks of unknown form ( )tδ  as 

 

0 1 2

1 1

2 2
( ) sin( ) cos( )

G G
k k

k k

kt kt
t

T T

π π
δ δ δ δ

= =

= + +∑ ∑                  (13) 

 

where k is the number of frequencies of the Fourier function, t is a trend term, T is the 

sample size and π = 3.1416. 

 

When G  is large, then the unknown functional form )(tδ can be approximated very well. 

In the case where the null hypothesis 0kδ = is rejected for at least one frequency 

1,..., Mk G G= with
1 0G > , then the nonlinear component can explain adequately the 

deterministic component of ty and at least one structural change is present in the DGP. 

Otherwise the linear model without any structural change emerges as a special case. Note 

that in this specification the breaks are modeled as smooth processes rather than level 

shifts, but would have the same economic interpretation. 

 

A specification problem related with model (13) is to identify the appropriate number of 

frequencies to include in the fitted model.  In dealing with this issue we follow Ludlow 

and Enders (2000) who showed that a single frequency is enough to approximate the 

Fourier expansion in empirical applications.   Thus, equation (13) can be written as  
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0 1 2

2 2
( ) sin( ) cos( )

kt kt
t

T T

π π
δ δ δ δ= + +                    (14) 

 

According to Becker et al. (2004) equation (12) under specification (14) has more power 

to detect several smooth breaks of unknown form in the intercept than the standard Bai 

and Perron (2003) multi-break tests. 

 

If the appropriate frequency k was known then we would be able to test for the presence 

of unknown structural breaks in the baseline equation (12). However, the true value of k  

is typically unknown. A standard way to find out the most appropriate frequency k  is to 

estimate equation (12) under definition (14) for each value of k within a certain interval. 

According to Becker et al (2006), since the breaks shift the spectral density function 

towards frequency zero, the most appropriate frequency interval for a break is likely to be 

at the low end of the spectrum. Thus, it is the low frequencies that are the most 

appropriate to use for a test of unit root versus stationarity, as these would represent 

structural breaks rather than short-run cyclical behavior. Hence, the value of k is then 

chosen using the Bayesian Information Criterion (BIC). In our application we used an 

interval for [0.1, 0.2,..., 4.9,5]k = .  

 

Testing for the presence of unknown (smooth) breaks in the DGP of 
ty  can then be 

carried out by using the null hypothesis 0: 21 == δδoH  against the alternative 

0: 211 ≠= δδH . A −F statistic can be employed to test this null hypothesis. Monte 

Carlo simulations that approximate the empirical distribution for this test are tabulated in 

Becker et al (2006). It should be noted that since the −F statistic has low power if the 

data are non-stationary this could be used only when the null of a unit root is rejected. 

 

Note that the Fourier transform implies that if we select an integer frequency, the 

function would be such that the breaks are temporary. Fractional frequencies would 

imply permanent breaks as the function would not complete a full oscillation. Whether 

the permanent break is positive or negative will depend on the values of 1δ  and 2δ . This is 
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illustrated in Figure 2, where we plot three Fourier functions for different values of k , 1δ , 

and 2δ  for T = 100. The non-integer values of k  generate permanent breaks in the series, 

whereas for 1k =  we have only temporary breaks. This can be important in the output 

convergence context as it allows checking if the breaks led to permanently higher or 

lower relative per capita income. Countries that embarked in a process of important 

structural transformations after WWII, for instance, may have experienced rapid catch-up 

processes affecting their steady state output levels.
9
 In function (14), for a particular 

frequency k, the sign of coefficients 
1δ  and 2δ determines whether the country shows 

stable relative output, relative decline (falling behind), or relative catch-up throughout the 

sample.10 This can be simply analyzed by looking at the selected optimal frequency and 

the individual significance of coefficients 1δ  and 2δ .  

 

Within this context, given the model  

 

0 1 2

2 2
sin( ) cos( )t t

kt kt
y v

T T

π π
δ δ δ= + + + ,                 (15) 

 

the null unit root hypothesis of interest can then be stated as follows: 

 

0 : t tH v µ= ,   ttt h+= −1µµ  

 

where th is assumed to be a stationary process with zero mean. The test statistics we 

propose are then calculated via a three step procedure: 

 

                                                           
9
 This is in fact related to the catch-up definition of Bernard and Durlauf (1996) (Definition 1 in their 

paper). 
10

 For instance, for a frequency of 0.5, stable relative output would arise if 
2
0δ = , relative decline if 

2
0δ > , and catching-up if 

2
0δ <  (regardless of the values of 

1
δ ). This is not, however, a general rule, as 

it will depend on the frequency k. 
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The first step involves finding the optimal frequency *k  and estimating the non-linear 

deterministic component in model (15) by OLS as explained above. We then compute the 

OLS residuals  

 

* *

0 1 2

2 2ˆ ˆ ˆˆ sin( ) cos( )t t

k t k t
v y

T T

π π
δ δ δ
 

= − + + 
 

. 

 

In the second step we test for a unit root on the OLS residuals of step one. Given that, as 

discussed in the previous section, mean reversion may present asymmetric features, we 

propose the following two linear and non-linear models: 

 

t

p

j

jtjtt uvvv +∆+=∆ ∑
=

−−
1

11 βα                                                       

 (16) 

∑
=

−
−

−− +∆++=∆
p

j

tjtjittt uvvvv
1

1

1 ))exp(1( αθρ          Li ,.....2,1=     (17) 

     

where 0>θ  and 
tu is a white noise error term.  

 

If we reject the null of a unit root in step two, the third step consists of testing for 

0: 21 == δδoH  against the alternative 0: 211 ≠= δδH  in (15). If the null hypothesis is 

rejected, we can conclude that the variable is stationary around a nonlinear deterministic 

function. 

 

Model (16) is a standard ADF regression, which we call Fourier-ADF (FADF), while 

model (17) assumes that the adjustment speed is asymmetric and follows a Logistic 

Smooth Transition Autoregressive (LSTAR) process. Model (17) corresponds to the unit 

root tests developed by Park and Shintani (2005). Both models allow for testing for a unit 

root in the original series after removing the breaks in the deterministic component. In the 
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linear case, the null unit root hypothesis 0: 10 =αH is tested against the 

alternative 0 1: 0H α ≠ .   

 

Model (17) allows, in addition to nonlinear deterministic trends, testing for a unit root 

against a non-linear alternative in which the speed of mean reversion depends on the 

distance from equilibrium. In particular in the model suggested by Park and Shintani 

(2005) the transition parameter θ determines the speed of transition between two extreme 

regimes. The logistic transition function ),( itvF −θ is bounded by zero and unity with 

itv − being the transition variable that determines the regime. If 0→θ  model (17) 

becomes linear tttt uvvv ++= −− 11 5.0 ρ  while as ∞→θ  the transition function 

approaches a heavy-side function, taking the value 1 for 0<−itv  and 0 for 0>−itv . The 

corresponding AR(1) models are given by ttt uvv += −1  for 0>−itv  and 

ttt uvv ++= −1)1( ρ  for 0<−itv  respectively. This logistic function allowing for different 

effects of positive and negative deviations from equilibrium implies that the speed of 

mean reversion depends on whether the transition variable is above or below the steady 

state. This specification matches the theoretical form of the speed of convergence outside 

steady state. The speed of convergence in the neighborhood of the steady state (when 

0t iv − = ) would be equal to 0.5 ρ⋅  and it increases (falls) as 0t iv − <  ( 0t iv − > ). Here t iv −  

represents deviations from equilibrium as it is the demeaned log value of relative 

output.
11
 

 

To test the null unit root hypothesis, Park and Shintani (2005) have proposed the 

following infimum t -statistic 

 

t−inf = )(inf θ
θ

T
Θ∈

  

                                                           
11

 In the theory model β in equation (9) is bounded between +∞  and 0. Our function is bounded between 

1 and 0, as for estimation purposes the transition function needs to be finitely bounded. However, the 

two transition functions are very close (see footnote 7) for reasonable values of deviations from steady 

state. 
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where   the function 
ˆ ( )

( )
ˆ. .( ( ))

T
s e

ρ θ
θ

ρ θ
= is the t-ratio test for the null hypothesis Ho: ρ = 0 

for the range of values of θ  defined as ],[ θθ=Θ  and  θθθ <<<0 . The value of θ  

can be estimated by using )(minargˆ θθ
θ

T
Θ∈

= over the parameter space ]10,
10

1
[ 3QQ , where 

)
/

1
(

1

2∑
=

=

t

t Tv
Q . Hence the t−inf  test is the minimum value of the (negative) t-ratios 

for the unit root null evaluated over a range of values of the transition speed parameter.
12
 

 

Becker et al (2006) have shown that when a Fourier function is adopted in the first stage 

then the asymptotic distribution of any unit root test implemented in the second stage 

depends only on the frequency k  of the Fourier series. We tabulated critical values for 

the two tests via Monte Carlo simulations under the null of a random walk for values of k 

between 0.5 and 3 at increments of 0.5 and sample sizes of 100, 250 and 500 

observations. The critical values were obtained from 10,000 replications using a pseudo-

random number generator. These critical values are reported in Tables 1 and 2.  

 

3.1 Size and power properties 

 

We carry out a Monte Carlo experiment in order to investigate the small sample size and 

power properties of the tests suggested in the previous Section. In all Monte Carlo 

simulations the parameter space is set equal to ]10,
10

1
[ 3QQ , where )

/

1
(

1

2∑
=

=

t

t Tv
Q . 

We first consider the size of the tests using the following non-stationary DGP 
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π
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 See Park and Shintani (2005) for a detailed analysis of the parameter space for θ. 
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1t t tv v ε−= +  

 

where tε  is a sequence of standard normal errors and 
*k stands for the optimal frequency.  

 

The empirical size is considered for each test for sample sizes {100,  250}T = , values of 

* {0.5,1,1.5,2.5}k = and 1 2 {1,  0.5,  0.1}δ δ= =  with a nominal size of 5%. The results are 

displayed in Table 3. We can see that both tests display empirical sizes that are very 

close to the nominal. The t−inf  test performs better than the FADF statistic when 

100=T , 121 == δδ  and 5.1,1,5.0* =k . In these cases the FADF test tends to slightly 

under-reject. The FADF test has less size distortions than the t−inf  when 1.021 == δδ  

for all *k  and when 5.021 == δδ  and 1,5.0* =k .  When the sample size is increased to 

250=T  the t−inf  performs better than the FADF statistic for high and moderate values 

of 5.0,1.021 == δδ  irrespective of the values of *k  while for low values of 1.021 == δδ  

the FADF outperforms the t−inf  statistic, which tends to slightly over-reject. Overall, 

we can conclude that the FADF test has marginally better size properties relative to the 

t−inf  test for low values of 1.021 == δδ . On the other hand, for high and moderate 

values of 5.0,1.021 == δδ  (i.e. larger amplitudes of the oscillations) the t−inf test 

performs better than the FADF. In general, these results show that the 3-steps procedure 

employed does not produce excessive rejections of the unit root null when it is true, 

which ensures that the test is not over-fitting deterministic components that could lead to 

over-rejection. 

 

To check the robustness of our findings, the empirical size of the tests was also simulated 

for two cases with non-normal errors.  In particular, we considered errors ( tε ) drawn 

form both the 1)1(2 −χ  distribution and the )6(t  distribution. In both cases the 

simulation results indicated that both tests are robust against both types of non-normal 
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errors. In all the cases the empirical sizes were very close to the nominal for all sample 

sizes using the critical values of Tables 1 and 2.
13
  

 

Next, we investigate the power properties of the unit root tests against a globally 

stationary process using the following Fourier-LSTAR model as a DGP: 
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*

2

*
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δ

π
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1

1 1 1(1 exp( ))t t t t tv v v v uρ θ −
− − −= + + + , 

 

where tu is a sequence of standard normal errors.  All combinations of the following 

parameter values and frequencies were used: }1.0,5.0,1,5.1{ −−−−=ρ , }1,5.0,01.0{=θ , 

}1.0,1{21 == δδ  and * {0.5,1,1.5,2.5}k = . The results from these power experiments for 

a sample size of 250 are shown in Table 4. The general outcome is that for values of 

121 == δδ  the t−inf  test is more powerful than the simple FADF test irrespective of the 

values of *k  and ρ . The power of the t−inf test increases for high and moderate values 

of }5.0,0.1,5.1{ −−=ρ and low values of }1,5.0{=θ . This is not unexpected since as ρ  

increases, for a given θ  the process becomes less persistent.  On the other hand for a 

given ρ  as θ decreases 1
))exp(1(

−
−+ itvθ increases and the process tends to be less 

persistent. The power of the t−inf test tends to unity for high values of }1,5.1{ −−=ρ  

and }5.0,01.0{=θ  while the power of the FADF test approaches unity for }1,5.1{ −−=ρ  

and }01.0{=θ . These conclusions also apply for the case where 1.021 == δδ . In 

general, thus, the t−inf  test is more powerful than the FADF test in all cases, and the 

difference in terms of power gains increases as the process becomes more persistent.  

 

4. Results 

 

                                                           
13

 These findings are not reported here to save space but are available from the authors upon request. 
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We tested for deterministic output convergence relative to the US in a dataset of 14 

developed countries for the 1900-2000 period. The data was obtained from Maddison 

(1995)
14
. We used the difference in the logs of per capita output of country j relative to 

the US. The data is plotted in Figure 3. We can observe that this group of countries 

shows a variety of patterns in the behavior of relative output. Several of them experience 

a substantial process of catching-up like Japan, Finland and Norway. Others have clearly 

fallen behind (Australia and the UK) while a large group seems to have experienced little 

change in relative output throughout the century. The main common pattern appears to be 

the major breaks occurring during World War II (WWII). For some European countries, 

convergence to appears to be faster during the inter-war period and the Great Depression. 

After WWII there is a process of slow convergence that levels-off (and even slightly 

reverses) towards the end of the period when US growth outperformed other OECD 

countries. Exceptions to this pattern appear to be Australia, the UK and Canada. For 

Australia and the UK the post-War era did not lead to a convergence pattern, but rather 

stagnant differences in output. Canada appears to have experienced the major break 

before 1920. Overall, relative outputs do not show a monotonic pattern of convergence, 

but are affected by large breaks and shocks that should be accounted for when testing for 

convergence. 

 

We first applied standard ADF unit root tests on the original relative output data. The 

results, in accordance with previous studies, showed that only for Canada and the 

Netherlands we were able to reject the null of a unit root including a constant in the 

deterministic components. When no constant was used, we could only reject a unit root 

for the Netherlands.  

 

We hence proceeded to fit a Fourier model to the series, as explained above, setting the 

maximum k to 4. We used increments of 0.1 for the search of the optimal frequency. Not 

surprisingly, given the behavior of the series, for 12 out of 14 countries the frequency 

was found to be less than 2 and in most cases close to 1 (see Table 5 column 2). For 

France a frequency of 1 indicates only a temporary break. Exceptions are Denmark and 

                                                           
14

 This data set can be downloaded at Maddison‘s website: http://www.ggdc.net/maddison/ 
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Germany where the relevant frequencies were equal to 2.90 and 3.60 respectively. This 

reveals that in most cases there was usually only one major event that affected the sample 

mean of output differences, i.e. one structural break. Figure 4 plots output and the 

estimated Fourier function for the 14 countries in the sample. For many countries, as 

expected, the Fourier function shows a minimum around the WWII period. Given that the 

destructive effects of war were felt mainly in European countries and Japan but they did 

not affect substantially the US, WWII reduced dramatically relative income per capita in 

these countries. There are, however, specificities to the patterns of breaks experienced by 

many of the countries: 

  

� Finland and Sweden experienced a dip in output during the decade of the 1920s.  

Finland became independent from the Soviet Union in 1918, but a civil war 

ensued that is reflected in a rapid output decline. Sweden was hit very badly by an 

attempt of Socialist revolution in 1917 and the 1920s recession. 

� Canada’s break appears during the 1930s. This seems to reflect the effect of a 

large negative shock during WWI and relative stagnation until the post-WWII 

period. 

� In the UK and Australia, the dominant feature is the decline in relative output 

experienced throughout the period. After WWII, both countries appear to be 

locked into levels of relative per-capita income substantially below those before 

the 1940s. This relative decline levels off by the end of the 1970s. 

� Denmark’s output fell during WWI and then recovered quickly until WWII. 

Afterwards we observe a recovery until the early 1970s and a small relative 

decline until the final years of the sample. In the case of Germany a similar 

pattern arises, although the last fluctuation of the Fourier function appears to be 

out of synchrony with the relatively constant levels of relative output since the 

1970s.  

� Finally, both Japan and Norway have experienced an almost continuous increase 

in relative output since WWII. 
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In general, our results show that major events such as WWII and the 1920s depression are 

crucial in understanding pair-wise convergence with the US and are driving a good part 

of the dynamics of output. Our results look remarkably similar to those in Li and Papell 

(1999) and are in accordance with those in Landon-Lane and Robertson (2004). We can 

further analyze the properties of the Fourier function to classify countries according to 

their economic performance during the 20
th
 century. Table 6 shows the estimated 

coefficients of the Fourier function. The last column shows a (+) sign if the country 

experienced a statistically significant catch-up process, an (=) sign for constant relative 

output and a (-) for cases of relative decline. In cases where these changes have been 

minor (defined as less than a 10% change), we follow the sign with the (=) symbol. 

Figure 4 plots output and the Fourier function by groups of countries. The first row 

shows the two relative decliners (Australia and the UK) where growth rates appear to be 

parallel to that of the US but with WWII leading to a substantial divergence in per-capita 

income levels. The next three rows show the group of countries whose relative output did 

not experience any large change, which is made up of core European countries plus 

Canada. The last three rows show the catch-up group, made up of Italy, Scandinavian 

countries, and Japan.  

 

The next step consists of obtaining the residuals from the Fourier function and applying 

the two unit root tests explained in the previous section. The  t−inf  statistic was 

computed for 
itv − , .4,3,2,1=i and the model with the smallest SSR was selected. The 

results are reported in columns 4 to 7 in Table 5. The FADF test is now able to reject the 

null of a unit root in ten out of fourteen countries. That is, breaks alone appear to account 

for a good part of the acceptances of the null of a unit root in a linear model. However, 

the unit root null is still not rejected for Austria, Germany, Japan and Italy and for 

Finland and the UK the rejection is only at the 10% level. When applying the t−inf   test, 

though, the null of a unit root is rejected in all cases except for Japan.
15
 The values of 

parameter ρ  are also reported in the table. Note that for values of relative output close to 

the (time varying) mean the speed of mean reversion is equal to / 2ρ . This value ranges 
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 We used critical values for the FADF and inf t− tests calculated for the optimal frequency k for each 

case. These critical values are available on request. 
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from -0.32 for the UK to -0.06 for Japan, and takes an average value of -0.17. The θ  

parameter is moderately high in most cases, which implies a relatively persistent process. 

Only for Germany we can observe a very fast transition speed. Overall, the results appear 

to support the view that relative outputs are stationary around a breaking mean and that, 

during the sample period, some major shocks may have led to a change in the speed of 

mean reversion generating asymmetries that linear models cannot capture. This, however, 

deserves more careful analysis.  

 

The evolution of the transition function over time is plotted in Figure 5. We can observe 

that for most countries, with the exception of Japan, the function fluctuates frequently 

around its mid-point value of 0.5 due to large shocks. For Germany the transition 

function moves very quickly between zero and one due to the large estimated transition 

speed. For the rest of the countries, this variation is smoother. The general pattern is an 

increase in the transition function following the shock due to WWII. This shock led 

relative outputs to fall substantially below equilibrium even accounting for the structural 

break, which results in a faster speed of mean reversion. This, to a smaller extent, is also 

the case after WWI. During the inter-war period the speed of transition falls as these 

economies expanded much faster than the US due to the impact of the Great Depression. 

In the absence of large shocks of this magnitude in the post-WWII period, the speed of 

mean reversion becomes much more stable for the great majority of countries. Only for 

Japan can we observe little variation around the mean with the exception of the war 

years.  

 

We also plot the transition function against the lagged difference from equilibrium t iv −  in 

Figure 6. We can see that the function is well defined over the range of values of 
t iv −  for 

all the countries in the sample with the possible exception of Japan. The majority of 

observations are concentrated in the range of -0.2 to 0.2, which implies deviations from 

equilibrium of about 20%. There are also large deviations, especially negative ones, due 

to the observations corresponding to the WWII years. For most cases the transition is 

smooth with the exception of Germany where it appears as a heavy-sided function.  
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In general, the evidence presented shows that both structural breaks and asymmetric 

convergence speeds are important in driving relative outputs. The F-test for the joint 

significance of the Fourier terms always rejects the null of linearity (no-breaks). These 

breaks account for large part of the rejections of the unit root null. In addition, 

asymmetries in adjustment stemming from large shocks happen to be important for all the 

countries with the possible exception of Japan, where our results cannot reject the null of 

non-convergence. In the rest of the cases the tests reject the unit root null and the results 

favor convergence in output to an infrequently changing mean.
16
 

 

5. Conclusions 

 

Theoretical models of growth have important implications for the dynamics of relative 

per capita output. The standard neoclassical growth model predicts that two countries that 

share the same structural characteristics will converge in the long run. Time series tests of 

convergence have been put forward as a superior alternative for testing convergence than 

standard cross-sectional tests. Deterministic convergence between two pairs of countries 

would imply that relative outputs are reverting to a mean that might be different from 

zero. Within this context, we argue that there are two important aspects that need to be 

considered when testing for convergence. On the one hand, structural breaks in the series 

may lead to spurious non-rejection of the null of a unit root when the process is stationary 

around a breaking mean. These breaks are likely to appear as a consequence of large 

disruptive exogenous events such as wars and crises. On the other hand, we show that the 

standard neoclassical growth model suggests that the speed of convergence when the 

economy is not in the neighborhood of the steady state is high (low) as it approaches 

equilibrium from below (above). In this case, transitional dynamics will be reflected in 

the series and mean reversion becomes faster when the economy is far below its steady 

                                                           
16

 We investigated further the reasons for the non-rejection of the null in the Japanese case. From the 

residuals of the FADF and LSTAR models it is clear that 1945 represents a very large outlier, which can be 

affecting our estimates and leading to a badly behaved transition function. When this outlier was 

dummied out, the results lead to a very substantial increase in the t-ratios for the null of a unit root (-3.67 

for the FADF and -4.30 for the t−inf  test).  However, we prefer no to make inference on these values as 

we do not know the properties of the test in the presence of dummy variables. 
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state and slower when it is far beyond it. This would induce asymmetric mean-reversion 

which, if not modeled, may also lead to a loss of power of standard unit root tests. 

 

In this paper we present unit root tests that take these two issues into account. The tests 

consist of fitting non-constant deterministic trends by means of a Fourier series and then 

applying linear and asymmetric unit root tests to the residuals. The Fourier function 

allows for the timing and nature (i.e. temporary or permanent) of the breaks to be 

endogenously determined, which allows us to classify countries depending on their 

relative economic performance throughout the sample. The shape of the asymmetric 

adjustment also matches the theoretical predictions of a standard growth model. We 

tabulate critical values for two versions of the test depending on the number of breaks in 

the series. The tests are shown to have satisfactory size and power properties. 

 

We applied these tests to per capita output of 14 OECD countries relative to the US for 

the 1900-2000 period. Our results show that, for 10 cases, considering these breaks alone 

lead to the rejection of a unit root. In the remaining cases, considering both breaks and 

asymmetric adjustment leads to the rejection of the null of a unit root (non-convergence) 

in all cases except for Japan (where the 1945 outlier appears to play a prominent role). 

Both, breaks and asymmetries, are associated the large shocks in relative output 

generated by the 1920s depression and WWII. In several cases these breaks appear to be 

permanent, leading to cases of catching-up (such as in Scandinavian countries, Japan, and 

Italy) and falling behind (as in Australia and the UK). Overall, the results lend support for 

the idea that relative outputs converge in the long run to an infrequently changing mean 

and emphasize the importance that large disruptive events have on the dynamics of 

convergence. 
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Tables 
 

Table 1: 1ull critical values for unit root tests against stationarity  

for the FADF statistic  
T=100 K 1% 5% 10% 

 0.5 -4.57 -3.97 -3.64 

 1 -4.43 -3.85 -3.52 

 1.5 -4.19 -3.48 -3.14 

 2.5 -3.80 -3.14 -2.79 

 3 -3.70 -3.06 -2.71 

T=250 0.5 -4.47 -3.93 -3.64 

 1 -4.36 -3.78 -3.48 

 1.5 -4.04 -3.44 -3.12 

 2.5 -3.77 -3.14 -2.81 

 3 -3.68 -3.03 -2.71 

T=500 0.5 -4.45 -3.88 -3.64 

 1 -4.40 -3.78 -3.46 

 1.5 -4.06 -3.46 -3.13 

 2.5 -3.83 -3.15 -2.80 

 3 -3.64 -3.05 -2.74 

 

Table 2: 1ull critical values for unit root tests against stationarity  

for the t−inf statistic 

T=100 k 1% 5% 10% 

 0.5 -4.53 -3.96 -3.65 

 1 -4.46 -3.86 -3.56 

 1.5 -4.18 -3.50 -3.15 

 2.5 -3.85 -3.18 -2.82 

 3 -3.75 -3.10 -2.77 

T=250 0.5 -4.48 -3.94 -3.63 

 1 -4.40 -3.79 -3.51 

 1.5 -4.05 -3.46 -3.14 

 2.5 -3.76 -3.16 -2.84 

 3 -3.69 -3.08 -2.77 

T=500 0.5 -4.42 -3.89 -3.64 

 1 -4.43 -3.81 -3.54 

 1.5 -4.07 -3.47 -3.16 

 2.5 -3.87 -3.16 -2.82 

 3 -3.66 -3.07 -2.74 
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Table 3: Empirical size of the tests 
 FADF t−inf  

 5.0=k  1=k  5.1=k  5.2=k  5.0=k  1=k  5.1=k  5.2=k  

 T=100 

1iδ =  
0.046 0.043 0.043 0.041 0.050 0.048 0.043 0.038 

0.5iδ =  
0.048 0.047 0.048 0.048 0.053 0.054 0.051 0.048 

0.1iδ =  
0.049 0.049 0.048 0.049 0.053 0.053 0.054 0.054 

 T=250 

1iδ =  
0.046 0.047 0.041 0.042 0.048 0.050 0.049 0.044 

0.5iδ =  
0.046 0.048 0.044 0.045 0.052 0.054 0.052 0.051 

0.1iδ =  
0.047 0.047 0.046 0.047 0.055 0.055 0.054 0.055 

Note: Nominal size is 5% and number of draws is 10,000. 
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Table 4: Empirical powers of unit root tests for a globally stationary LSTAR 

process at the 5% nominal level 

 FADF t−inf  

  5.0=k  1=k  5.1=k  5.2=k  5.0=k  1=k  5.1=k  5.2=k  

ρ  θ                                                       121 == δδ  

-1.5 0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1.5 0.5 0.874 0.991 0.994 0.996 0.947 0.999 0.999 0.999 

-1.5 1.0 0.027 0.163 0.221 0.321 0.463 0.737 0.771 0.838 

-1.0 0.01 0.947 1.000 1.000 1.000 0.999 1.000 1.000 1.000 

-1.0 0.5 0.214 0.760 0.855 0.929 0.520 0.963 0.966 0.992 

-1.0 1.0 0.002 0.042 0.067 0.131 0.222 0.491 0.514 0.638 

-0.5 0.01 0.264 0.813 0.942 0.996 0.324 0.857 0.948 0.997 

-0.5 0.5 0.013 0.126 0.196 0.362 0.142 0.435 0.497 0.689 

-0.5 1.0 0.0003 0.008 0.028 0.039 0.06 0.153 0.192 0.301 

-0.1 0.01 0.006 0.015 0.039 0.088 0.001 0.021 0.053 0.108 

-0.1 0.5 0.004 0.010 0.030 0.055 0.013 0.020 0.049 0.092 

-0.1 1.0 0.002 0.007 0.018 0.033 0.009 0.016 0.039 0.070 
ρ  θ  1.021 == δδ  

-1.5 0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1.5 0.5 0.992 0.994 0.996 0.977 0.998 0.999 0.999 0.999 

-1.5 1.0 0.181 0.223 0.282 0.346 0.795 0.827 0.853 0.878 

-1.0 0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

-1.0 0.5 0.829 0.879 0.928 0.950 0.978 0.988 0.993 0.996 

-1.0 1.0 0.052 0.077 0.115 0.163 0.588 0.642 0.698 0.745 

-0.5 0.01 0.954 0.983 0.998 1.000 0.963 0.987 0.998 1.000 

-0.5 0.5 0.167 0.227 0.337 0.448 0.591 0.666 0.766 0.843 

-0.5 1.0 0.011 0.017 0.035 0.057 0.266 0.318 0.403 0.485 

-0.1 0.01 0.013 0.022 0.061 0.136 0.019 0.030 0.075 0.161 

-0.1 0.5 0.013 0.020 0.043 0.075 0.025 0.037 0.077 0.138 

-0.1 1.0 0.0007 0.013 0.026 0.044 0.020 0.029 0.063 0.112 

Note: sample size is 250 and number of draws 10,000 
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Table 5: Unit root tests on output relative to the US based on a Fourier function 
 k̂  )ˆ(kFµ  FADF θ             ρ            t−inf  

Australia 0.50 56.61 -4.77*** 3.59       -0.57          -5.05*** 

Austria 1.10 59.52 -3.13 1.93       -0.29          -3.92** 

Belgium 1.40 31.60 -4.24*** 2.61       -0.27          -4.14 ** 

Canada 1.10 34.70 -4.25** 7.33       -0.44          -3.81** 

Denmark 2.90 9.19 -3.71*** 1.48       -0.31          -3.80***  

Finland 0.60 159.82 -3.74* 3.04       -0.34          -4.24** 

France 1.00 18.15 -3.94** 1.64       -0.25          -4.27** 

Germany 3.60 19.13 -2.61 122.80   -0.22          -4.36*** 

Japan 0.50 132.83 -2.09 1.69       -0.11          -2.21 

Italy 0.80 40.44 -3.57 2.29       -0.23          -4.00** 

Nether. 1.60 14.54 -4.33*** 1.86       -0.31         -4.91***  

Norway 0.10 114.79 -4.29** 2.69       -0.37         -4.82*** 

Sweden 0.90 83.77 -4.25** 3.46        -0.33        -4.21** 

UK 0.60 87.76 -3.67* 4.39       -0.63         -5.01*** 
Notes: (***),  (**) and (*) denote rejection of the null unit root hypothesis at the 1% , 5%  and 10% 

significance level respectively. The underlined figures indicate rejection of the null of linearity at 

conventional significance levels.  The )ˆ(kFµ  test is distributed as a −F statistic under the null 

hypothesis with two degrees of freedom. The critical values are taken from Table 1 of Becker et al. (2006).  

The optimal lag was selected optimally using the SBIC. 

 

Table 6: Estimated Fourier function 
 k̂  Coefficient  

Cos(.) 

t-ratio Coefficient 

Sin(.) 

t-ratio Relative 

output 

Australia 0.50 0.11 10.17 -0.11 -4.33 (-) 

Austria 1.10 0.28 10.81 -0.05 -1.97 (-)(=) 

Belgium 1.40 0.04 1.83 0.17 7.65 (=) 

Canada 1.10 0.05 6.54 -0.05 -5.47 (-)(=) 

Denmark 2.90 0.07 3.69 -0.04 -2.23 (+)(=) 

Finland 0.60 -0.28 -13.95 -0.16 -5.08 (+) 

France 1.00 0.14 4.51 -0.12 -3.98 (=) 

Germany 3.60 0.15 5.64 -0.05 -1.64 (-)(=) 

Japan 0.50 -0.52 -14.61 -0.56 -6.80 (+) 

Italy 0.80 0.05 1.50 -0.26 -8.96 (+) 

Nether. 1.60 -0.04 -1.77 0.15 5.19 (-)(=) 

Norway 0.10 -2.33 -2.51 0.48 1.55 (+) 

Sweden 0.90 -0.09 -5.59 -0.16 -11.28 (+) 

UK 0.60 0.17 12.52 -0.02 -0.72 (-) 
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Figures 
 

 

Figure 1: Speed of convergence for n = 0.01, g = 0.02, δ = 0.05 and αααα = 1/3 
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Figure 2: Fourier Function for different values of k and 1 and 2δ  
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Figure 3: Output relative to the US 
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Figure 4: Relative Output and the Fourier function with fractional k 
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