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Abstract/Summary  
 
Gut microbes are capable of producing most neurotransmitters found in the human brain.  

While these neurotransmitters primarily act locally in the gut, modulating the enteric 

nervous system, evidence is now accumulating to support the view that gut microbes 

through multiple mechanisms can influence central neurochemistry and behavior.  This 

has been described as a fundamental paradigm shift in neuroscience.  Bifidobacteria for 

example can produce and increase plasma levels of the serotonin precursor tryptophan, 

which is fundamental in regulating mood, appetite and gastrointestinal function.  Certain 

Lactobacilli have been shown to produce gamma-aminobutyric acid (GABA) and to alter 

brain GABA receptor expression and behavior.  IBS is regarded as the prototypic 

disorder of the brain-gut-microbiota axis which can be responsive to probiotic therapy.  

Recently, the concept of a psychobiotic has been introduced in the literature. A 

psychobiotic is a bacteria which when ingested in adequate amounts can have a positive 

mental health benefit.  Translational studies indicate that certain bacteria may impact 

upon stress responses and cognitive functioning.  Manipulating the gut microbiota with 

psychobiotics, prebiotics or even antibiotics offers a novel approach to altering brain 

function and treating gut-brain axis disorders such as depression and autism. 

 

Key Points  
 

• Gut microbes can communicate with the brain through a variety of routes 
including the vagus nerve, short chain fatty acids, cytokines and tryptophan 

• Psychobiotics are bacteria which when ingested in adequate amounts produce a 
positive mental health benefit. 

• The brain-gut-microbiota axis represents a paradigm shift in neuroscience and 
provides a novel target for treating not just IBS but conditions such as depression, 
autism and Parkinson’s disease. 
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Introduction 
 
The human adult gut contains over 1kg of bacteria, essentially the same weight as the 

human brain1.  It is generally estimated that the gut is inhabited by 1013-1014 micro-

organisms, which is more than ten times the number of human cells in our bodies and 

contains over 100 times as many genes as in our genome2. Amazingly, the genomic and 

biochemical complexity of the microbiota exceeds that of the brain. Studies of the brain-

gut-microbiota axis have been described as a paradigm shift in neuroscience 3. Increasing 

evidence points to the fact that appropriate diversity in the gut microbiota is not only 

essential for gut health but also for normal physiological functioning in other organs and 

especially the brain. An altered gut microbiota in the form of dysbiosis at the extremes of 

life, both in the neonate and in the elderly, can have a profound impact on brain function. 

Such a dysbiosis might emerge for a variety of reasons including the mode of birth 

delivery, diet, antibiotic and other drug exposure.  Given the fact that the brain is 

dependent on gut microbes for essential metabolic products it is not surprising that a 

dysbiosis can have serious negative consequences for brain function both from a 

neurological and mental health perspective.  While much of the early data emerged from 

animal studies, mainly rodent based, there are now an increasing number of human 

studies translating the animal findings.  

In this review we will focus upon the routes of communication between the gut and brain, 

examine a prototypic disorder of the brain gut axis, explore the ways in which gut 

dysbiosis may evolve and provide an up-to-date account of behavioral and neurological 

pathologies associated with dysbiosis. 
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Brain-gut-microbiota communication  

The brain-gut-microbiota axis is a bidirectional communication system enabling gut 

microbes to communicate with the brain, and the brain with the gut 4. While brain-gut 

communication has been a subject of investigation for decades an exploration of gut 

microbes within this context has only featured in recent years. The mechanisms of signal 

transmission are complex and not fully elucidated, but include neural, endocrine, 

immune, and metabolic pathways 5,6.  Preclinical studies have implicated the vagus nerve 

as a key route of neural communication between microbes of the gut and centrally-

mediated behavioural effects, as demonstrated by the elimination of central Lactobacillus 

rhamnosus effects following vagotomy7 and the fact that humans who have underwent 

vagotomy at an early age have a decreased risk of certain neurological disorders8. The gut 

microbiota also regulates key central neurotransmitters such as serotonin by altering 

levels of precursors; for example Bifidobacterium infantis has been shown to elevate 

plasma tryptophan levels and thus influence central 5-HT transmission9.  Intriguingly, 

synthesis and release of neurotransmitters from bacteria has been reported; Lactobacillus 

and Bifidobacterium species can produce gamma-aminobutyric acid (GABA): 

Escheridia, Bacillus and Saccharomyces spp. can produce noradrenaline: Candida, 

Streptococcus, Escheridia and Enterococcus spp. can produce serotonin: Bacillus can 

produce dopamine: and Lactobacillus can produce acetylcholine 10,11. These microbially 

synthesised neurotransmitters can cross the mucosal layer of the intestines, though it is 

highly unlikely that they directly influence brain function.  Even if they enter the blood 

stream, which is by no means certain, they are incapable of crossing the blood brain 

barrier (BBB).  Their impact on brain function is likely to be indirect acting on the enteric 
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nervous system.  Short chain fatty acids (SCFAs) which include butyrate, propionate and 

acetate are  essential metabolic products of gut microbial activity and may exert central 

effects either through G-protein coupled receptors, though such receptors are sparsely 

concentrated in the brain.  It is more likely that they act as epigenetic modulators through 

histone deacetylases (HDACs)2. SCFAs are also involved in energy balance and 

metabolism, and can modulate adipose tissue, liver tissue and skeletal muscle and 

function 12. Immune signalling from gut to brain mediated by cytokine molecules is 

another documented route of communication 13. Cytokines produced at the level of the 

gut can travel via the bloodstream to the brain.  Under normal physiological 

circumstances it is unlikely that they cross the BBB, but increasing evidence indicates a 

capacity to signal across the BBB and to influence brain areas such as the hypothalamus 

where the BBB is deficient. It is through the latter mechanism the cytokines interleukin 

(IL)-1 and IL-6 activate the hypothalamic-pituitary-adrenal axis (HPA), bringing about 

the release of cortisol.  This is the most potent activator of the stress system. 

The HPA which provides the core regulation of the stress response can  significantly 

impact the brain-gut-microbiota axis 14-20.  It is increasingly clear and probably of 

relevance in a number of pathological conditions that psychological or physical stress can 

significantly dysregulate the HPA and subsequently the brain-gut-microbiota axis, for 

example in IBS21.  

---Insert Fig. 1 here--- 

Multiple lines of approach have been used to interrogate the brain-gut-microbiota axis 

especially in animal model systems; these include the use of germ-free animals, potential 

probiotic agents, antibiotics, animals exposed to pathogens and the use of stress to 
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determine the effects of dysregulating the axis. The largest naturalistic study of a gut 

pathogen and the impact on the brain-gut axis was as a result of the Walkerton 

catastrophe. The contamination of the Walkerton water supply occurred  in 2000 claimed 

seven lives and  left over two thousand people ill. The E. coli outbreak was caused by 

farm runoff contaminating the town’s water supply.  Those infected had significant risk 

of developing post-infective-IBS and many had co-morbid depression/anxiety22. To a 

greater extent than any prior study this natural disaster provided clear cut support for the 

notion of post-infective IBS. 

Brain-gut-microbiota axis and extremes of life 

The intestinal microbiota of newborn infants is characterized by low diversity and a 

relative dominance of the phyla Proteobacteria and Actinobacteria in the early post-natal 

period, a time at which there is enormous brain development.  With the passage of time, 

the microbiota becomes more diverse with the emergence and dominance of Firmicutes 

and Bacteroidetes 23-25.  Full-term, vaginally delivered babies born to healthy mothers 

who are breast fed and non-antibiotic treated have an optimal  development of the 

neonatal microbiota 26.  The characteristic intestinal microbiota observed in healthy full-

term infants is disturbed in preterm infants 27, who are frequently delivered by caesarean 

section, receive antibiotics and may have problems feeding 28.  Furthermore, preterm 

infants possess a functionally immature gut with low levels of acidity in the stomach, due 

to insufficient gastric acid secretion and their requirement for more frequent feeding 28-30.  

These events lead to an increase in the prevalence of potentially pathogenic bacteria in 

the GI tract and less microbial diversity than full term infants 31-33.  The extent to which 

these features play a role in the development of cerebral palsy and subsequent autism are 
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the subject of research and ongoing debate 34.  What is clear is that complex brain 

maturation and the increasing sophistication of the gut microbiota are highly correlated. 

To date many of our assumptions are based on correlational data from which we cannot 

conclusively conclude a causative impact. 

When elderly people in nursing homes are compared with those in the community large 

scale differences are detected.  Those in nursing homes have a far less diverse microbiota 

and this has been attributed to a less varied diet35.  However, it is possible that 

pathological factors that lead to admission into nursing homes such as deteriorating 

cognitive function and less physical activity might play an important role in the decreased 

microbial richness and not the less diverse diet.  On-going studies should clarify this 

issue and there is a challenge for the food industry to produce diets for the elderly which 

will help to sustain microbial diversity. 

What is abundantly clear is that a dyregulated gut microbiota either in early childhood or 

in an aging population significantly increases the likelihood of brain dysfunction.  The 

precise relationship between these observations is far from understood.  Determining the 

mechanisms and pathways underlying microbiota-brain interactions may yield novel 

insights into individual variations and perhaps enable the development of new treatments 

for a range of neurodevelopmental and neurodegenerative disorders, ranging from autism 

to Parkinson’s disease.  

IBS as prototype 

IBS is the prototypic disorder of the brain-gut-microbiota axis, generally perceived as a 

having a biopsychosocial aetiology36 and frequently co-morbid with depression or 
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anxiety.. The most important single risk factors are female gender, younger age and 

preceding gastrointestinal infections.  Recent studies suggest that trauma in childhood 

especially sexual abuse may be an important risk factor37.  The aspect of dysbiosis in IBS 

is important and will be dealt with elsewhere, but aspects of gut to brain communication 

are clearly altered.  For example elevated levels of plasma pro-inflammatory cytokines 

are found and there is an exaggerated pituitary-adrenal response to corticotropin-releasing 

hormone, together with augmented visceral pain responses. A recent study found that 

fasting serum levels of SCFAs did not differ between patients with IBS and controls 38. 

However, the postprandial levels of total SCFAs, acetic acid, propionic acid, and butyric 

acid  were found to be significantly lower in patients with IBS compared with healthy 

controls. An epigenetic model of IBS has been proposed 36 which is consistent with the 

potential epigenetic modulating effects of butyrate, the levels of which are altered 

substantially in the post-prandial state.  

Treatments for IBS which do not take into account this complex pathophysiology are 

likely to be of very limited benefit. 

---Insert Fig 2 here-- 

Depression 

IBS and depression are frequently co-morbid and the latter is associated with the 

presence of biomarkers of inflammation such as elevated interleukin IL-6, tumor necrosis 

factor alpha (TNFα) and the acute phase protein, C reactive protein (CRP)(45). Similar 

elevated biomarkers of inflammation have been seen in anxiety states and are known to 

occur as a result of stress. The site at which these pro-inflammatory molecules is 
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produced in depression is not known and it has yet to be determined whether the 

elevation is core to the pathophysiology or merely epiphenomenal.  There is evidence 

from rodent studies to indicate that stress alters the gut barrier function allowing 

lipopolysaccharide (LPS) and other molecules to gain access to the bloodstream 

stimulating toll-like receptor 4 (TLR4)  and other TLRs resulting in the production of 

inflammatory cytokines (46). If this does occur in depression, which has yet to be 

definitively demonstrated, it would  explain the pro-inflammatory phenotype observed.   

The McMaster group using germ-free and specific pathogen-free mice, demonstrated that 

the early life stress of maternal separation alters the HPA and colonic cholinergic neural 

regulation in a microbiota-independent fashion 39. However, they showed that the 

microbiota is required for the induction of anxiety-like behaviour and behavioural 

despair. Colonization of adult germ-free maternally separated and control mice with the 

same microbiota produces distinct microbial profiles, which are associated with altered 

behaviour in maternally separated, but not in control mice. The results suggest that 

maternal separation-induced changes in host physiology lead to intestinal dysbiosis, 

which is a critical determinant of the abnormal behaviour that characterizes this model of 

early-life stress.  Prior studies in maternally separated rats demonstrated an altered 

behavioural phenotype when these animals reached maturity and also decreased diversity 

in the microbiota 20.   Does this decreased diversity translate to patients with major 

depression? 

 

In a recent study the faecal microbiota was sequenced40.    Forty-six patients with 

depression and 30 healthy controls were recruited. . High-throughput pyrosequencing 
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showed that, according to the Shannon index, increased fecal bacterial alpha-diversity 

was found in those currently depressed but not in a group who had responded to 

treatment . Bacteroidetes, Proteobacteria, and Actinobacteria were increased, whereas 

Firmicutes was significantly reduced.   Despite the profound inter-individual variability, 

levels of several predominant genera were significantly different between the depressives 

and controls. Most notably, the depressives had increased levels of Enterobacteriaceae 

and Alistipes but reduced levels of Faecalibacterium. The authors conclude that further 

studies are necessary to elucidate the temporal and causal relationships between gut 

microbiota and depression and to evaluate the suitability of the microbiome as a 

biomarker.   When rats are given a humanised microbiota from depressed patients as 

opposed to healthy controls they develop a depressive phenotype from a behavioural and 

immune perspective. 

 

Autism 

Autism is a neurodevelopmental disorder whose prevalence is apparently on the increase.  

It is characterised by a failure of language acquisition and a lack of sociability.  It is 

frequently associated with GI symptoms41 the relevance of which has been a longstanding 

source of controversy.   Up to 70% of patients with the syndrome report abdominal 

symptoms and hence the view that it is a disorder of the brain-gut axis.  Our group at the 

APC Microbiome Institute examined the behaviour of mice raised in a germ-free 

environment 42,43.  The mice were tested in a three chamber facility, where a germ-free 

mouse was placed in the middle chamber with a familiar mouse in one chamber and a 

novel mouse in the third. The germ-free mouse spent as much time with the familiar as 
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with the novel mouse; this is in contrast to the behaviour of conventionally colonised 

mice who spend more time with the novel than the familiar mouse. Germ-free mice are 

also more likely to spend time with an object than with another mouse, a decidedly 

abnormal behaviour for a sociable animal.  Colonisation of the germ free mice does 

partially normalise their behaviour patterns.  These behavioural changes are associated 

with significant alterations in underlying neurochemistry. 

Work from the late Paul Patterson & Sarkis Mazmanian’s group in an animal model 

demonstrated that the microbiota modulates behavioural and physiological abnormalities 

associated with neurodevelopmental disorders such as autism 44.  They used the maternal 

immune activation model induced by poly-IC injection during pregnancy and found 

altered gastrointestinal barrier defects and microbiota alterations.  Oral treatment with the 

human commensal Bacteroides fragilis was shown to correct gut permeability and most 

interestingly stereotyped and other abnormal behaviours.  Furthermore, a metabolite 

found in the abnormal animals was observed to transfer the phenotype to naïve animals 

and to be reduced by Bacteroides fragilis.  

Increasing attention is currently being paid to oxytocin the hypothalamic peptide which 

has been shown to increase sociability. The oxytocin receptor knockout mouse shows 

considerable deficits in social behaviour 45 and some small scale preliminary studies in 

humans indicate that intra-nasally administered oxytocin may positively alter social 

behaviour patterns.   A few large clinical trials are under way to test oxytocin and related 

therapies for autism spectrum disorder  46. There is still considerable debate as to whether 

or not the preclinical findings translate to the clinical setting and if they do which patients 

and which aspects of the syndrome are likely to benefit most.  Intriguingly, a recent study 
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indicates that a probiotic bacteria can influence hypothalamic posterior pituitary activity 

and increase oxytocin levels raising the possibility of influencing social behaviour by 

targeting the gut microbiota 47.  

The faecal microbiota in patients with autism spectrum disorder has been sequenced 48.  

In the most recently published study Tomova et al examined the microbiota in Slovakian 

children.  The faecal microbiota of autistic children showed a significant decrease of the 

Bacteroidetes/Firmicutes ratio and elevation of the amount of Lactobacillus spp.  There 

was a modest elevation in Desulfovibrio spp and a correlation with the severity of autism.  

A probiotic diet normalised the Bacteroidetes/Firmicutes ratio and Desulfovibrio spp 

levels.  As recently summarised by Mayer & colleagues there is a paucity of large 

comprehensive studies of the microbiome in autism 3. Again the issue of chicken or egg 

emerges; are these changes induced by stereotyped diets seen in many individuals as a 

product of obsessional behaviour patterns? Also the heterogeneous nature of the disease 

needs to be taken into account and  much more effort is needed to tease out the exact role 

of the microbiome in both the aetiology and treatment of the disorder. 

Parkinson’s disease 

In marked contrast to autism Parkinson’s disease tends to be diagnosed generally in old 

age; it is the second most common neurodegenerative disorder and affects 1-2% of the 

population over 65 years of age.  It is a movement disorder characterised by degeneration 

of the zona compacta neurons of the substantia nigra.  The most common GI symptoms 

are constipation, appetite loss, weight loss, dysphagia, sialorrhea and gastro-oesophageal 

reflux49.  Alpha-synuclein-aggregates, the major neuropathological marker in Parkinson’s 
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disease, are present in  the submucosal and myenteric plexuses of the enteric nervous 

system, prior to their detection in the brain, which may indicate a gut to brain "prion-like" 

spread 50.   

The gut microbiota has been sequenced in patients with Parkinson’s disease51. On 

average, the abundance of Prevotellaceae in the feces of Parkinson’s disease patients was 

reduced by almost 80% compared with controls. A logistic regression analysis based on 

the abundance of four bacterial families and the severity of constipation identified 

Parkinson’s disease  patients with 66.7% sensitivity and 90.3% specificity. The relative 

abundance of Enterobacteriaceae was highly correlated with the severity of postural 

instability and gait difficulty. The findings suggest that the intestinal microbiome is 

altered in Parkinson’s disease and is related to motor phenotype. Large prospective 

studies beginning in the early stages of the disorder are required. 

It has been suggested  that microbiota transplantation might benefit patients with 

Parkinson’s disease but there is as yet no conclusive evidence52.  Neither are there any 

reports of controlled trials of probiotics/psychotiotics. 

Psychobiotics 

Psychobiotics were first defined as the family of probiotics that, ingested in appropriate 

quantities, had a positive mental health benefit53.   Recently, the definition has been 

expanded to include prebiotics, which are dietary, soluble fibres for example 

galactooligosaccharides (GOS) or fructooligosaccharides (FOS) that stimulate the growth 

of intrinsic commensal microbiota.  There is now an enormous volume of preclinical data 

to support the concept of psychobiotics.  Understandably, clinical data is less abundant 
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but nonetheless is emerging.  Given the demonstrated efficacy of probiotics in IBS54 and 

the high co-morbidity between IBS and stress related mental health issues such as anxiety 

and depression it is not surprising that certain probiotics might positively impact on 

mental health. 

Tillisch et al 55 administered  healthy female participants either a placebo or a mixture of 

probiotics (Bifidobacterium animalis Lactis, Streptococcus thermophiles, Lactobacillus 

bulgaricus, and Lactococcus lactis Lactis), which were consumed over four weeks. 

Participants underwent functional magnetic resonance imaging (fMRI) to determine how 

probiotic ingestion affected neuropsychological activity. During image acquisition, 

participants were shown emotional faces that are known to capture attention and cause 

brain activation.  Relative to placebo, probiotic-treated participants showed decreased 

activity in a functional network associated with emotional, somatosensory, and 

interceptive processing, including the somatosensory cortex, the insula, and the 

periaqueductal gray. In marked contrast, placebo participants showed increased activity 

in these regions in response to emotional faces. This is interpreted as evidence of a 

probiotic-induced reduction in network-level neural reactivity to negative emotional 

information. 

A recent prebiotic study carried out in Oxford found a significant impact on stress 

responses 56. Healthy male and female participates consumed either BGOS, FOS, or a 

placebo. In comparison to the other two groups, participants who consumed BGOS 

showed significantly reduced waking-cortisol responses, which are a robust marker  of 

anxiety, stress, and depression risk 57. Furthermore, participants completed an emotional 

dot-probe task measuring vigilance, or attention to negative stimuli, which is also a 
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marker of anxiety and depression. Participants taking BGOS showed substantially 

attenuated vigilance on this task, suggesting reduced attention and reactivity to negative 

emotions. Overall, the data support the view that the specific prebiotic has anxiolytic 

activity. 

Takada et al 58 examined the effects of Lactobacillus casei strain Shirota (LcS) on gut-

brain interactions under stressful conditions. A double-blind, placebo-controlled trials 

were conducted to examine the effects of LcS on psychological and physiological stress 

responses in healthy medical students whilst undergoing examination stress. Subjects 

received LcS-fermented milk or placebo daily for 8 weeks prior to taking an examination. 

Subjective anxiety scores, salivary cortisol, and the presence of physical symptoms were 

analysed.  In a parallel animal study, rats were fed a diet wither with or without LcS for 2 

weeks, then submitted to water avoidance stress (WAS). Plasma corticosterone 

concentration and the expression of cFos and corticotropin releasing factor (CRF) in the 

paraventricular nucleus (PVN) were measured immediately after WAS. Academic stress 

resulted in increases in salivary cortisol and an increase in physical symptoms, both of 

which were significantly suppressed in the LcS group. In rats pretreated with LcS, WAS-

induced increases in plasma corticosterone were significantly suppressed, and the number 

of CRF-expressing cells in the PVN was reduced. Intriguingly, intragastric administration 

of LcS was found to stimulate gastric vagal afferent activity in a dose-dependent manner. 

The results suggest that LcS may positively impact stress responses by acting through the 

vagus nerve. In a study of university students we have found that a Bifidobacterium 

longum decreased morning waking cortisol levels, reduced subjective levels of anxiety 
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and modestly improved aspects of cognitive functioning, an effect that was associated 

with altered EEG activity. 

A large scale cross-sectional study has examined the impact of probiotics on measures of 

social anxiety59.  Seven hundred and ten young adults completed self-report measures of 

fermented food consumption, neuroticism, and social anxiety. An interaction model, 

controlling for demographics, general consumption of healthful foods, and exercise 

frequency, showed that exercise, neuroticism, and fermented food consumption 

significantly and independently predicted social anxiety. Furthermore, fermented food 

consumption also interacted with neuroticism in predicting social anxiety. For those with  

high neuroticism scores, a high frequency of fermented food consumption resulted in 

fewer symptoms of social anxiety.  The data suggest that fermented foods containing 

probiotics may have a protective effect against social anxiety symptoms for those at 

higher genetic risk, as assayed by trait neuroticism.  

Sternbergen et al 60 tested  a multispecies probiotic containing Bifidobacterium bifidum, 

Bifidobacterium lactis, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus 

casei, Lactobacillus salivarius, and Lactococcus lactis  in non-depressed individuals 

using a triple-blind, placebo-controlled, randomized, design, Twenty healthy participants 

received a 4-week probiotic food-supplement intervention with the multispecies 

probiotics, while 20 control participants received an inert placebo for the same period.  

Subjects who received the 4-week multispecies probiotics intervention showed a 

significantly reduced overall cognitive reactivity to sad mood. The results provide 

evidence that probiotics may help reduce negative thoughts associated with sad mood.  
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Romijn and Rucklidge in their systematic review 61 add a  note of caution to the above 

optimistic findings concluding that more trials are necessary before any definitive 

inferences can be made about the efficacy of probiotics in mental health applications.  

Further studies of a translational nature are certainly required. 

Summary/Discussion 

The role of the microbiota-gut-brain access in the genesis of IBS symptoms is now 

largely accepted, though several questions remain unanswered.  How does stress, 

especially early life stress dysregulate the axis?  Can IBS subtypes be delineated on the 

basis of the microbiota?  If patients with IBS have co-morbid psychiatric illness does the 

latter resolve if the former is treated with probiotics?  

We have an enormous number of pre-clinical studies implicating the gut microbiota in 

other stress-related conditions and in disorders at the extremes of life.  Far more 

translational studies are required.  The human studies to date support the view that the gut 

microbiota is altered in major depression and that psychobiotics, either in the form of 

prebiotics or probiotics van impact anxiety and depressive symptoms in healthy subjects.  

We have no clear indication of efficacy in diseased populations.  In the 

neurodevelopmental disorder autism, which is usually diagnosed in early childhood, GI 

symptoms are common and an altered microbiota has been reported, while at the other 

end of the developmental spectrum old age related frailty correlates with decreased gut 

microbial diversity.   Whether fecal microbiota transplantation is an appropriate 

therapeutic option in at least some brain-gut axis disorders remains to be determined. 

 

 
 



18 
 

 
 
Acknowledgements 
 
The authors are supported in part by Science Foundation Ireland in the form of a centre 

grant (Alimentary Pharmabiotic Centre Grant Number SFI/12/RC/2273); by the Health 

Research Board of Ireland (Grant Numbers HRA_POR/2011/23 and 

HRA_POR/2012/32) and received funding from the European Community’s Seventh 

Framework Programme Grant  MyNewGut under Grant Agreement No. FP7/2007-2013. 

The Centre has conducted studies in collaboration with several companies including 

GSK, Pfizer, Cremo, Suntory, Wyeth and Mead Johnson.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19 
 

 
 
References  
 
1. Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how 

gut microbes shape human behavior. Journal of psychiatric research. Apr 
2015;63:1-9. 

2. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour - 
epigenetic regulation of the gut-brain axis. Genes, brain, and behavior. Jan 
2014;13(1):69-86. 

3. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes 
and the brain: paradigm shift in neuroscience. The Journal of neuroscience : 
the official journal of the Society for Neuroscience. Nov 12 2014;34(46):15490-
15496. 

4. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of 
the brain-gut-enteric microbiota axis. Nature reviews. Gastroenterology & 
hepatology. May 2009;6(5):306-314. 

5. El Aidy S, Dinan TG, Cryan JF. Gut Microbiota: The Conductor in the 
Orchestra of Immune-Neuroendocrine Communication. Clinical therapeutics. 
May 1 2015;37(5):954-967. 

6. Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe 
communication in health and disease. Frontiers in physiology. 2011;2:94. 

7. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain 
regulates emotional behavior and central GABA receptor expression in a 
mouse via the vagus nerve. Proceedings of the National Academy of Sciences 
of the United States of America. Sep 20 2011;108(38):16050-16055. 

8. Svensson E, Horvath-Puho E, Thomsen RW, et al. Vagotomy and subsequent 
risk of Parkinson's disease. Annals of neurology. Oct 2015;78(4):522-529. 

9. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of 
the probiotic Bifidobacterium infantis in the maternal separation model of 
depression. Neuroscience. Nov 10 2010;170(4):1179-1188. 

10. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how 
bacterial production and utilization of neurochemicals influence behavior. 
PLoS pathogens. Nov 2013;9(11):e1003726. 

11. Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. 
Advances in experimental medicine and biology. 2014;817:3-24. 

12. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of 
body weight and insulin sensitivity. Nature reviews. Endocrinology. Oct 
2015;11(10):577-591. 

13. El Aidy S, Dinan TG, Cryan JF. Immune modulation of the brain-gut-
microbe axis. Frontiers in microbiology. 2014;5:146. 

14. Wang Y, Kasper LH. The role of microbiome in central nervous system 
disorders. Brain, behavior, and immunity. May 2014;38:1-12. 

15. Tillisch K. The effects of gut microbiota on CNS function in humans. Gut 
microbes. May-Jun 2014;5(3):404-410. 



20 
 

16. Scott LV, Clarke G, Dinan TG. The brain-gut axis: a target for treating 
stress-related disorders. Modern trends in pharmacopsychiatry. 2013;28:90-
99. 

17. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The 
microbiome: stress, health and disease. Mammalian genome : official journal 
of the International Mammalian Genome Society. Feb 2014;25(1-2):49-74. 

18. O'Mahony SM, Clarke G, Dinan TG, Cryan JF. Early-life adversity and 
brain development: Is the microbiome a missing piece of the puzzle? 
Neuroscience. Oct 1 2015. 

19. O'Mahony SM, Hyland NP, Dinan TG, Cryan JF. Maternal separation as a 
model of brain-gut axis dysfunction. Psychopharmacology. Mar 
2011;214(1):71-88. 

20. O'Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, 
immunity, and microbiota in rats: implications for irritable bowel syndrome 
and psychiatric illnesses. Biological psychiatry. Feb 1 2009;65(3):263-267. 

21. Dinan TG, Quigley EM, Ahmed SM, et al. Hypothalamic-pituitary-gut axis 
dysregulation in irritable bowel syndrome: plasma cytokines as a potential 
biomarker? Gastroenterology. Feb 2006;130(2):304-311. 

22. Marshall JK, Thabane M, Garg AX, et al. Eight year prognosis of 
postinfectious irritable bowel syndrome following waterborne bacterial 
dysentery. Gut. May 2010;59(5):605-611. 

23. Backhed F. Programming of Host Metabolism by the Gut Microbiota. Ann. 
Nutr. Metab. 2011;58:44-52. 

24. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal 
microbial flora. Science. Jun 10 2005;308(5728):1635-1638. 

25. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established 
by metagenomic sequencing. Nature. Mar 4 2010;464(7285):59-U70. 

26. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the 
intestinal microbiota in early infancy. Pediatrics. Aug 2006;118(2):511-521. 

27. Dennison B. Definition of preterm delivery. Br. Med. J. 1976;2(6049):1449-
1449. 

28. Hoy CM, Wood CM, Hawkey PM, Puntis JWL. Duodenal microflora in 
very-low-birth-weight neonates and relation to necrotizing enterocolitis. J. 
Clin. Microbiol. Dec 2000;38(12):4539-4547. 

29. Sondheimer JM, Clark DA. Gastric pH in healthy preterm infants - effect of 
age and feeding type. Gastroenterology. 1985 1985;88(5):1593-1593. 

30. Sondheimer JM, Clark DA, Gervaise EP. Continuous gastric pH 
measurement in young and older healthy preterm infants receiving formula 
and clear liquid feedings. J. Pediatr. Gastroenterol. Nutr. 1985 1985;4(3):352-
355. 

31. Arboleya S, Binetti A, Salazar N, et al. Establishment and development of 
intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. Mar 
2012;79(3):763-772. 

32. Chang JY, Shin SM, Chun J, Lee J-H, Seo J-K. Pyrosequencing-based 
Molecular Monitoring of the Intestinal Bacterial Colonization in Preterm 
Infants. J. Pediatr. Gastroenterol. Nutr. Nov 2011;53(5):512-519. 



21 
 

33. Jacquot A, Neveu D, Aujoulat F, et al. Dynamics and Clinical Evolution of 
Bacterial Gut Microflora in Extremely Premature Patients. Journal of 
Pediatrics. Mar 2011;158(3):390-396. 

34. Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. 
Gut microbiota in autism and mood disorders. World journal of 
gastroenterology : WJG. Jan 7 2016;22(1):361-368. 

35. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition 
correlates with diet and health in the elderly. Nature. Aug 9 
2012;488(7410):178-184. 

36. Dinan TG, Cryan J, Shanahan F, Keeling PW, Quigley EM. IBS: An 
epigenetic perspective. Nature reviews. Gastroenterology & hepatology. Aug 
2010;7(8):465-471. 

37. Park SH, Videlock EJ, Shih W, Presson AP, Mayer EA, Chang L. Adverse 
childhood experiences are associated with irritable bowel syndrome and 
gastrointestinal symptom severity. Neurogastroenterology and motility : the 
official journal of the European Gastrointestinal Motility Society. Apr 8 2016. 

38. Undseth R, Jakobsdottir G, Nyman M, Berstad A, Valeur J. Low serum 
levels of short-chain fatty acids after lactulose ingestion may indicate 
impaired colonic fermentation in patients with irritable bowel syndrome. 
Clinical and experimental gastroenterology. 2015;8:303-308. 

39. De Palma G, Blennerhassett P, Lu J, et al. Microbiota and host determinants 
of behavioural phenotype in maternally separated mice. Nature 
communications. 2015;6:7735. 

40. Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in 
patients with major depressive disorder. Brain, behavior, and immunity. Aug 
2015;48:186-194. 

41. Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic 
role in autism spectrum disorder. Neuroscience. Jun 2 2016;324:131-139. 

42. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is 
essential for social development in the mouse. Molecular psychiatry. Feb 
2014;19(2):146-148. 

43. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of 
microbiota on brain and behavior: mechanisms & therapeutic potential. 
Advances in experimental medicine and biology. 2014;817:373-403. 

44. Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and 
physiological abnormalities associated with neurodevelopmental disorders. 
Cell. Dec 19 2013;155(7):1451-1463. 

45. Chini B, Leonzino M, Braida D, Sala M. Learning about oxytocin: 
pharmacologic and behavioral issues. Biological psychiatry. Sep 1 
2014;76(5):360-366. 

46. Shen H. Neuroscience: The hard science of oxytocin. Nature. Jun 25 
2015;522(7557):410-412. 

47. Erdman SE, Poutahidis T. Probiotic 'glow of health': it's more than skin 
deep. Beneficial microbes. Jun 1 2014;5(2):109-119. 



22 
 

48. Tomova A, Husarova V, Lakatosova S, et al. Gastrointestinal microbiota in 
children with autism in Slovakia. Physiology & behavior. Jan 2015;138:179-
187. 

49. Park H, Lee JY, Shin CM, Kim JM, Kim TJ, Kim JW. Characterization of 
gastrointestinal disorders in patients with parkinsonian syndromes. 
Parkinsonism & related disorders. May 2015;21(5):455-460. 

50. Felice VD, Quigley EM, Sullivan AM, O'Keeffe GW, O'Mahony SM. 
Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-
motor symptoms. Parkinsonism & related disorders. Jun 2016;27:1-8. 

51. Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to 
Parkinson's disease and clinical phenotype. Movement disorders : official 
journal of the Movement Disorder Society. Mar 2015;30(3):350-358. 

52. Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour: 
implications for psychiatry. Current opinion in clinical nutrition and 
metabolic care. Nov 2015;18(6):552-558. 

53. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. 
Biological psychiatry. Nov 15 2013;74(10):720-726. 

54. Didari T, Mozaffari S, Nikfar S, Abdollahi M. Effectiveness of probiotics in 
irritable bowel syndrome: Updated systematic review with meta-analysis. 
World journal of gastroenterology : WJG. Mar 14 2015;21(10):3072-3084. 

55. Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk 
product with probiotic modulates brain activity. Gastroenterology. Jun 
2013;144(7):1394-1401, 1401 e1391-1394. 

56. Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PW. 
Prebiotic intake reduces the waking cortisol response and alters emotional 
bias in healthy volunteers. Psychopharmacology. May 2015;232(10):1793-
1801. 

57. Bhagwagar Z, Hafizi S, Cowen PJ. Increased salivary cortisol after waking in 
depression. Psychopharmacology. Oct 2005;182(1):54-57. 

58. Takada M, Nishida K, Kataoka-Kato A, et al. Probiotic Lactobacillus casei 
strain Shirota relieves stress-associated symptoms by modulating the gut-
brain interaction in human and animal models. Neurogastroenterology and 
motility : the official journal of the European Gastrointestinal Motility Society. 
Feb 20 2016. 

59. Hilimire MR, DeVylder JE, Forestell CA. Fermented foods, neuroticism, and 
social anxiety: An interaction model. Psychiatry research. Aug 15 
2015;228(2):203-208. 

60. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A 
randomized controlled trial to test the effect of multispecies probiotics on 
cognitive reactivity to sad mood. Brain, behavior, and immunity. Aug 
2015;48:258-264. 

61. Romijn AR, Rucklidge JJ. Systematic review of evidence to support the 
theory of psychobiotics. Nutrition reviews. Oct 2015;73(10):675-693. 

 
 
 



23 
 

 

                    
 
 
 
 
Fig 1 Routes of communication between gut microbes and brain.  These include the 
vagus nerve, short chain fatty acids (butyrate, propionate, acetate), cytokines and 
tryptophan 
 
Fig 2  Model of irritable bowel syndrome.  Psychological stress or infection leads to 
activation of the hypothalamic-pituitary-adrenal-axis (HPA) with elevation in 
cortisol and also changes in gut permeability. Lipopolysaccharide (LPS) enters the 
bloodstream increasing pro-inflammatory cytokines and in turn altering tryptophan 
metabolism.  In turn this leads to alterations in 5HT and glutamate 
neurotransmission.  Psychobiotics may impact by decreasing gut permeability and 
signaling the brain via the vagus nerve and other routes. 
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