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Central Role of Satisfiability

Satisfiability problems seem to play a central role in
complexity theory due to their expressive power.

as complete problems
in terms of connection to lower bounds

Equally central in fine-grained complexity.

Any problem in NP can be reduced to Circuit Sat
preserving the natural complexity parameter.
Satisfiability conjectures are able to explain why we cannot
improve algorithms for a wide variety of problems.
Reduction from the satisfiability problem of a more general
circuit model to a given problem demonstrates the greater
hardness of the problem.
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Satisfiability algorithms; PPZ algorithm

Fine-grained reducibilities

Completeness of 3-sat under subexponential reductions

Satisfiability conjectures and their explanatory power
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Satisfiability Problems

Input: a formula or circuit F on n variables.

Check if F is satisfiable

Examples for F : k-cnf, cnf, AC0 circuit, NC1 circuit,
polynomial size circuit, or a formula

Decidable in |F |2n time.

Can we improve upon the exhaustive search? Can we obtain a
|F |2n(1−µ) bound for µ > 0?

µ is a called the satisfiability savings. µ can be a function of
the parameters of the class of formulas/circuits and n, the
number of variables.
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Improved Algorithms for Circuit Sat

Circuit Sat — split and list, random restrictions, dynamic
programming, algebraization, matrix multiplication
Impagliazzo, P, William (2012), Williams (2011), Santhanam
(2011), Tamaki and Seto (2012), Impagliazzo, P, and Schneider
(2013), Lokshtanov, Mikhailin, P, Pudlák (2018)

AC0 Satisfiability for circuits of size cn and depth d —
2n(1−1/O(cd ))

ACC Satisfiability — 2n−Ω(nε)

Formula Satisfiability for formulas of size cn — 2n(1−1/O(c2))

Formula Satisfiability for formulas of size cn over the full

binary basis — 2n(1−1/O(2c
2

))

Depth-2 Threshold Circuit Satisfiability for circuits with cn

wires — 2n(1−1/O(cc
2

))

Formula Satisfiability for formulas of size cn — 2n(1−1/O(c))

Satisfiability for circuits of size cn and bounded treewidth ω
— 2n(1−1/O(cω4ω))
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Improved Exponential Time Algorithms for k-sat

k-sat, number of variables as the complexity parameter —
backtracking and local search
Hertli (2012), PPSZ (1998/2005), Schöning (1999), PPZ
(1997), Rolf (2003), Iwama and Tamaki (2004), · · · , Monien
and Speckenmeyer (1985)

3-sat — 20.386n

4-sat — 20.554n

k-sat — 2(1−µk/(k−1))n where µk ≈ 1.6 for large k.
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Approaches to k-sat

Backtracking algorithms (also known as DPLL algorithms)

Local search algorithms

Polynomial method

Earlier (to 1997) results showed that µ is Ω(1/2k)

PPZ is a DPLL-style algorithm with random ordering of
variables
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PPZ Algorithm

Algorithm PPZ:

1 Let F be a k-cnf and σ a random permutation on variables
2 for i = 1, · · · , n
3 if there is a unit clause for the variable σ(i)
4 then set the variable σ(i) so that the clause true
5 else set the variable σ(i) randomly
6 Simplify F
7 if F is satisfied, output the assignment

Theorem

There is a randomized algorithm for k-sat that finds a satisfying

assignment in time poly(n)2n(1− 1
k

) with constant success
probability.
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Isolated Solutions

A satisfying solution for F is isolated if all its distance 1
neighbors are not solutions.

What is the maximum number of isolated solutions for a
k-cnf?

We show that this number is at most 2n(1−1/k)
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Critical Clauses

Let F be a k-cnf and x be an isolated satisfying solution of x .

For each variable i and isolated solution x , F must have a
clause with exactly one true literal corresponding to the
variable i at solution x .

Such clause is called a critical clause for the variable i at the
solution x .
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Compressing Isolated Satisfying Solutions

Let F be a k-cnf and σ a permutation of {1, · · · , n}.
Let x ∈ {0, 1}n be an isolated satisfying solution of F

Compression Function Fσ:
1 Permute the bits of x according to σ
2 For each i , delete the i ’th bit of x if all other variables in a

critical clause Cx,σ(i) (for the variable σ(i) at x ) occur before
the variable σ(i) in the order σ.

3 Fσ(x) is the resulting compressed string.
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Fσ is Lossless

We can recover x from y = Fσ(x), F , and σ. Decompression
Algorithm:

1 F1 = F
2 for i = 1, · · · , n
3 if Fi has a clause of length one with the variable σ(i),
4 then set the variable σ(i) so that the clause is true
5 else set the variable σ(i) to the next unused bit of y .
6 Fi+1 = substitute for σ(i) in F and simplify
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Satisfiability Coding Lemma

Lemma (Satisfiability Coding Lemma)

If x is an isolated solution of a k-cnf F , then its average (over all
permutations σ) compressed length |Fσ(x)| is at most n(1− 1/k).

Proof Sketch: For each variable i with a critical clause at x , the
probability (under a random permutation) i appears last among all
the variables in its critical clause is at least 1/k.

The compression algorithm deletes n/k bits on average.
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Maximum Number of Isolated Solutions

Lemma

A k-cnf can have at most 2n(1−1/k) isolated solutions.

Proof Sketch:

For every isolated solution, the average (over permutations)
compressed length is at most n − n/k

There exists a permutation such that the average (over all
isolated solutions) compressed length is at most n − n/k .

Hence, the number of isolated solutions is at most 2n(1−1/k)

using a convexity argument.

Fact

If Φ : S → {0, 1}∗ is a prefix-free encoding (one-to-one function)
with average code length l , the |S | ≤ 2l .

Paturi Genesis of ETH and SETH



Satisfiability Algorithms Sparsification Lemma Preparation for Sparsification Algorithm SNP Exponential Time Hypothesis Strong Exponential Time HypothesisPPZ Algorithm Satisfiability Coding Lemma

Lower Bounds for Parity

Theorem

Computing the parity function requires 2n/k size ΣΠΣk circuits.

Theorem

Computing the parity function requires Ω(n1/42
√
n) size depth-3

circuits.
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k-sat Algorithm

Algorithm PPZ:

1 Let F be a k-cnf and σ a random permutation on variables
2 for i = 1, · · · , n
3 if there is a unit clause for the variable σ(i)
4 then set the variable σ(i) so that the clause true
5 else set the variable σ(i) randomly
6 Simplify F
7 if F is satisfied, output the assignment
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Analysis

Lemma

Algorithm PPZ outputs x with probability at least 1
n2−n+I (x)/k for

any satisfying solution x with I (x) many neighbors which are not
solutions.

Proof Sketch:

E1 — for at least I (x)/k variables, the critical variable appears
as the last variable among the variables in the critical clause

E2 — values assigned to the variables in the for loop agree
with x

P(E1) ≥ 1/n

P(E2|E1) ≥ 2−n+I (x)/k

P(x is output by PPZ) ≥ 1
n2−n+I (x)/k
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PPZ Analysis

Let S be the set of satisfying solutions of F .

For x ∈ S , define value(x) = 2−n+I (x)

Fact:
∑

x∈S value(x) ≥ 1

P(x is output by PPZ) ≥
∑
x∈S

1

n
2−n+I (x)/k

=
1

n
2−n+n/k

∑
x∈S

2(−n+I (x))/k

≥ 1

n
2−n+n/k

Paturi Genesis of ETH and SETH



Satisfiability Algorithms Sparsification Lemma Preparation for Sparsification Algorithm SNP Exponential Time Hypothesis Strong Exponential Time HypothesisPPZ Algorithm Satisfiability Coding Lemma

Dense Case

Theorem

If S 6= ∅ is the set of satisfying solutions of a k-cnf F , then PPZ
finds a satisfying assignment with probability at least 1

n ( 2n

|S |)
(1−1/k)

Proof Sketch: Use the edge isoperimetric inequality for the
hypercube to conclude that among all sets S ⊆ {0, 1}n of a given
size, the subcube of dimension log |S | minimizes the number of
edges between S and S̄ .
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Towards a Theory of Fine-Grained Complexity —
Motivating Questions

Can the improvements for 3-sat extend to arbitrarily small
exponents?

Is 3-sat solvable in subexponential-time?

How about 3-Colorability?
Do improved algorithms for 3-sat imply improved algorithms
for 3-Colorability or vice versa?
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An Obstacle for Developing a Theory of Exact Complexity

Lack of reductions that preserve the complexity parameter

In the least, we need reductions that preserve the complexity
parameter linearly.
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Example: An Obstacle for a Reduction from 3-sat to
3-Colorability

If 3-Colorability has a subexponential time (2εn for
arbitrarily small ε) algorithm, does it imply a subexponential
time algorithms for 3-sat?

In the standard reduction from 3-sat of n variables and m
clauses to 3-Colorability, we get a graph on O(n + m)
vertices and O(n + m) edges.

Complexity parameter increases polynomially, thus preventing
any useful conclusion about 3-sat.

Paturi Genesis of ETH and SETH



Satisfiability Algorithms Sparsification Lemma Preparation for Sparsification Algorithm SNP Exponential Time Hypothesis Strong Exponential Time HypothesisPPZ Algorithm Satisfiability Coding Lemma

Subexponential Time

Definition (Subexponential Time)

A problem is computable in time subexponential in the complexity
parameter n if there is an effectively computable monotone
increasing function g(n) = ω(1) such that the problem on instance
x with complexity parameter n is computable in time
poly(|x |)2n/g(n).
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Subexponential Time Reductions

Definition (Subexponential Time Reductions)

Let P and P ′ be problems with complexity parameters p and p′

respectively. P is subexponential time reducible to P ′ if there exists
a collection of reductions {Rε} such that ∀ε > 0, ∃c(ε) such that

1 Rε takes an instance x of P and outputs instances yi of P ′ for
1 ≤ i ≤ 2εn where |yi | ≤ poly(|xi |) and p′(yi ) ≤ c(ε)p(x).

2 x ∈ L(P) if and only if yi ∈ L(P ′) for some i .

3 Rε runs in time poly(|x |)2εp(x).
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Worst-case Instances of Max Independent Set

Theorem (Johnson and Szegedy, 1998)

Max Independent Set problem has a subexponential time
algorithm (in the number of vertices) iff Max Independent Set
problem when restricted to graphs of degree at most three has one.

In other words, graphs with maximum degree three are the
worst-case instances for the Max Independent Set problem up
to subexponential time reductions.
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Proof Sketch for Johnson/Szegedy Theorem

Let d be large enough. Given a graph G on n vertices,
execute the following backtracking algorithm:

1 As long as G has a vertex of degree more than d , select a
vertex v such that deg(v) > d .

2 Solve the instances G − v (major branch) and G − N[v ]
(minor branch) where N[v ] is the neighbourhood of v in G
including v .

Transform each Gi output by the previous algorithm to G ′i of
degree at most 3 where n(G ′i ) ≤ (2d − 1)n(Gi ) and such that
a maximum independent set of Gi can be recovered from a
maximum independent set of G ′i in linear time.

Number of root-leaf paths with i minor branches is at most(n
i

)
since the maximum path length is at most n.

i ≤ n/(d + 1).
( n
n/(d+1)

)
≈ 2h(1/(d+1))n where h is the binary

entropy function.
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Johnson/Szegedy Continued

Let g(n) = ω(1) be a monotone function such that that
maximum independent set can be computed in time
poly(|G |)2n/g(n) on graphs G of degree at most 3 with n
vertices.

We reduced G on n vertices to at most 2h(1/(d+1))n many
graph instances each with at most (2d − 1)n vertices in time
2h(1/(d+1))n.

Total time for solving the Max Independent Set problem
is bounded by

2
h( 1

(d+1)
)n

+ 2
h( 1

(d+1)
)n

2
(2d−1)n

g((2d−1)n) ≈ 2
n(h( 1

(d+1)
)+ (2d−1)

g((2d−1)n)
)

Choose d large enough so that the exponent is at most εn for
all sufficiently large n.
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Sparsification Lemma

Lemma (Sparsification Lemma)

∃ algorithm A ∀k ≥ 2, ε ∈ (0, 1], φ ∈k-cnf with n variables,
Ak,ε(φ) outputs φ1, . . . , φs ∈k-cnf in 2εn time such that

1 s ≤ 2εn; Sat(φ) =
⋃

i Sat(φi ), where Sat(φ) is the set of
satisfying assignments of φ

2 ∀i ∈ [s] each literal occurs ≤ O(kε )3k times in φi .

Branching on variables alone would require setting almost all
the variables resulting in a large tree.
Branch on frequently occurring subclauses rather than just on
variables.
Clause branching results in less information, and as a result
the tree does not grow too much.
To control for the growth of new clauses, start with small
clauses and look for longest subclauses with required
frequency Paturi Genesis of ETH and SETH
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Reduced Clause Sets

A k-clause is a clause of size (exactly) k . A k-CNF φ is a set
of clauses each of size ≤ k .

View each clause as a set of literals.

φ is reduced iff no clause is a subset of any other. The
reduction of φ = red φ = {⊆-minimal elements of φ}.

Paturi Genesis of ETH and SETH
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Frequency Parameters

Define

β1 = 2, θ0 = 2,

βc =
c−1∑
h=1

4αβc−hβh for c ≥ 2

θc = βcα for c ≥ 1, and

α =
2(k − 1)2

ε
lg

32(k − 1)2

ε
.

Solving the recurrence, we get

βi ≤ 4(32α)i−1 for i ≥ 2

θi = αβi ≤ 4(32)i−1αi for i ≥ 1.

Define β =
∑k−1

i=1 βi ≤ 4(32α)k

Paturi Genesis of ETH and SETH
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Sunflowers, Hearts, and Petals

φc — set of c-clauses of φ;

Sunflower F of c-clauses — a collection of distinct c-clauses
of size ≥ θc−h that share a common subset H of size h ≥ 1

Sunflowers consist of clauses of the same size.

Petals of a sunflower F : {C − H} where C is a clause of F
and H its heart.

All petals have the same size and they need not be disjoint.

Paturi Genesis of ETH and SETH
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Sparsification Algorithm

1 Ak,ε(φ ∈k-cnf)
2 φ← red φ
3 if ∃ a sunflower {
4 select a sunflower consisting of clauses of the smallest size

c and among them one with a heart H of the largest size
5 P ← {C − H | H ⊆ C ∈ φc} /* set of petals */
6 /* branch: if we set H to 1, we call this a heart branch */
7 /* if we set H to 0, we call this a petal branch */
8 Ak,ε(φ ∪ {H})
9 Ak,ε(φ ∪ P)

10 }
11 output φ /* φ is sparsified */

Figure: Sparsification Algorithm
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Analysis of Sparsification Algorithm

Consider the binary tree T generated by the recursive calls of
the algorithm.

Each node is associated with a reduced k-cnf.

Each leaf is sparse: No literal occurs with frequency more
than O(kε )3k . If a literal (heart of size 1) with frequency θc−1

among c-clauses, we would have branched.

Goal: to bound the number of leaves of T .

Plan:
1 Bound the number of root-leaf paths.
2 Bound the maximum length (βn) of any path
3 Bound the maximum number ( (k−1)n

α ) of petal branches along
any path.

4 Conclude that the number of leaves ≤
( βn

(k−1)n
α

)
≤ 2εn.

Paturi Genesis of ETH and SETH
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Bounding the Max Length of a Path in T

A clause C is new at node u in T if C is either a petal or a
heart in the branching at the parent of u.

In other words, C is new at u if the parent of u introduced C
along the branch leading to u.

Consider the new clauses introduced along a path. Each
branch introduces at least one new clause.

Maximum path length is bounded by the maximum number of
new clauses introduced along any path.

1 Show that the number of new c-clauses ≤ βcn
2 Conclude that the maximum path length ≤ βn =

∑k−1
c=1 βcn

Paturi Genesis of ETH and SETH
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Bounding the Number of New Clauses

Petals are compact: no subclause of length h occurs more
than θc−h − 1 among petals of size c .

Indirect argument to count new clauses: new clauses either
remain till the leaf or get eliminated by another new clause

Number of new clauses along a path ≤ number of clauses
eliminated + number remaining at the leaf

Number of new clauses of length c at any leaf is at most
2nθc−1/c since no variable occurs with frequency more than
θc−1 − 1.

Paturi Genesis of ETH and SETH
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Bounding the Number of Eliminated New Clauses – I

Only new clauses can eliminate new clauses.

Any clauses eliminated by a new clause are eliminated at the
time of its introduction.

Argue that a new clause cannot eliminate many new clauses.

Paturi Genesis of ETH and SETH
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Bounding the Number of Eliminated New Clauses – II

We will show that a a newly introduced h-clause can eliminate
at most 2(θc−h − 1) new c-clauses.

Definition: A set of clauses of uniform length c is sparsified if
no subclause of length h ≥ 1 occurs with frequency more than
θc−h − 1. In other words, no sunflowers exist.

Paturi Genesis of ETH and SETH
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Bounding the Number of Eliminated New Clauses – III

If the branching at a nonleaf node is made based on a
sunflower of c-clauses, then all the clause sets of length less
than c are sparsified at the node.

The set of petal clauses introduced by a petal branch is
sparsified

At any node, new c-clauses are almost sparsified: no
subclause of length h occurs more than 2(θc−h − 1) times.

Therefore, a newly introduced h-clause can eliminate at most
2(θc−h − 1) new c-clauses.

Paturi Genesis of ETH and SETH
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Bounding the Number of New Clauses

Number of new 1-clauses ≤ 2n = β1n. For c > 1,

# of new (≤ c)-clauses

≤
c−1∑
h=1

# of new c-clauses eliminated

by a new h-clause

+ # c-clauses at the leaf

+ # new clauses of length ≤ c − 1

≤
c−1∑
h=1

(2θc−h − 2)βhn + θc−1
2n

c
+ βc−1n

≤
c−1∑
h=1

4αβc−hβhn = βcn

Paturi Genesis of ETH and SETH
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Bounding the Max Number of Petal Branches in T

Each petal branch introduces at least θc new clauses for some
c .

Number of petal branches that introduce petals of size c
≤ number of new c-clauses

θc
≤ βcn

θc
≤ n

α

Total number of petal branches ≤
∑k−1

c=1 βcn/θc = (k − 1)n/α

Conclusion: total number of leaves ≤
( βn

(k−1)n/α

)
≤ 2εn by the

choice of parameters

Paturi Genesis of ETH and SETH
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Open Problem

Lemma (Sparsification Lemma)

∃ algorithm A ∀k ≥ 2, ε ∈ (0, 1], φ ∈k-cnf with n variables,
Ak,ε(φ) outputs φ1, . . . , φs ∈k-cnf in 2εn time such that

1 s ≤ 2εn; Sat(φ) =
⋃

i Sat(φi ), where Sat(φ) is the set of
satisfying assignments of φ

2 ∀i ∈ [s] each literal occurs ≤ O(kε )3k times in φi .

Can we improve the sparsification constant (for a given ε) to
O( cε )O(k) for some absolute constant c?
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Random k-sat

Conjecture (Satisfiability Threshold Conjecture)

For every k ≥ 3, there exists a constant rk > 0 such that,

lim
n→∞

P[Fk(n, rn) is satisfiable] =

{
1, if r < rk

0, if r > rk

It is known that 2k ln 2−Θ(k) ≤ rk ≤ 2k ln 2−Θ(1) for k ≥ 3.

Paturi Genesis of ETH and SETH
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Reducing 3-sat to 3-Colorability under SERF

Apply Sparsification Lemma to the given 3-cnf φ.

Consider each 3-cnf φi with linearly many clauses and reduce
it to a graph with linearly many vertices.

Now, a subexponential time algorithm for 3-Colorability
implies a subexponential time algorithm for 3-sat.

Paturi Genesis of ETH and SETH
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SNP

SNP — class of properties expressible by a series of second
order existential quantifiers, followed by a series of first order
universal quantifiers, followed by a basic formula
—Papadimitriou and Yannakakis 1991

SNP includes k-sat and k-Colorability for k ≥ 3.
∃S∀(y1, . . . , yk)∀(s1, . . . , sk)[R(s1,...,sk )(y1, . . . , yk) =⇒
∧1≤i≤kSsi (yi ), where si ∈ {+,−} and S is a subset of [n].

Vertex Cover,Clique, Independent Set and
k-Set Cover are in size-constrained SNP.

Hamiltonian Path is SNP-hard.
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Completeness of 3-sat in SNP

Theorem (IPZ 1997)

3-sat admits a subexponential-time algorithm if and only if every
problem in (size-constrained) SNP admits one.

Proof Sketch: Show that every problem in SNP is strongly
many-one reducible to k-sat for some k. Complexity
parameter is the number of Boolean existential quantifiers.

Reduce k-sat to the union of subexponentially many
linear-size k-sat using Sparsification Lemma.

Reduce each linear-size k-sat to 3-sat with linearly many
variables.
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Exponential Time Hypothesis (ETH)

Let sk = inf{δ|∃2δn algorithm for k-sat};
Define s∞ = limk→∞ sk

3-sat has a subexponential time algorithm =⇒ sk = 0 for
all k and s∞ = 0. Moreover, all problems in SNP have
subexponential time algorithms.

Our plan is to make progress by assuming this statement

Exponential Time Hypothesis (ETH) — s3 > 0
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Explanatory Burden of ETH

We have very little understanding of exponential time
algorithms.

For ETH to be useful,

it must be able to provide an explanation for the known
complexities of various problems,
ideally, by providing lower bounds that match the upper
bounds from the best known algorithms.

ETH will be useful if it helps factor out the essential difficulty
of dealing with exponential time algorithms for NP-complete
problems.
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Explanatory Value of ETH — I

All the following results assume ETH.

None of the problems in (size-constrained) SNP have a
subexponential time algorithm

Furthermore, SNP-hard problems such as
Hamiltonian Path cannot have a subexponential time
algorithm.
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Explanatory Value of ETH — II

We follow the nice summary provided by Lokshtanov, Marx
and Saurabh (2011).

Subexponential time lower bounds: There is no 2o(
√
n)

algorithm for Vertex Cover, 3-Colorability, and
Hamiltonian Path for planar graphs.

Lower bounds for FPT problems: There is no 2o(k)nO(1)

algorithm to decide whether the graph has a vertex cover of
size at most k .
Similar results hold for the problems
Feedback Vertex Set and Longest Path. Cai and
Juedes (2003)

Lower bounds for W [1]-complete problems: There is no
f (k)no(k) algorithm for Clique or Independent Set.
Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005,
2006)
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Explanatory Value of ETH — III

Lower bounds for W [2]-complete problems: There is no
f (k)no(k) algorithm for Dominating Set. Fellows (2011),
Lokshtanov (2009)

Lower bounds for problems parameterized by treewidth
Chromatic Number parameterized by treewidth t does not
admit an algorithm that runs in time 2o(t lg t)nO(1).
Lokshtanov, Marx, and Saurabh (2011), Cygan, Nederlof,
Pilipczuk, van Rooij, Wojtaszczyk (2011)

List Coloring parameterized by treewidth does not admit
algorithms that run in f (t)no(t). Fellows, Fomin, Lokshtanov,
Rosamond, Saurabh, Szeider, and Thomassen (2011)

Workflow Satisfiability Problem parameterized by the number
of steps k cannot have a 2o(k lg k)nO(1) algorithm. Crampton,
Cohen, Gutin, and Jones (2013)

Many others · · ·
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Explanatory Value of ETH — IV

Can the ETH provide any information about the specific
values of the constants in the exponents?

Can we prove a specific non-zero constant lower bound on s3

assuming ETH?

Paturi Genesis of ETH and SETH



Satisfiability Algorithms Sparsification Lemma Preparation for Sparsification Algorithm SNP Exponential Time Hypothesis Strong Exponential Time HypothesisExplanatory Value of ETH

Explanatory Value of ETH — V

Practical experience with SAT heuristics shows that the
performance degrades as the clause width increases.

Worst-case analysis of SAT algorithms also shows a
degradation in performance with increasing clause width.

Can ETH explain this behavior?
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SETH — Strong Exponential Time Hypothesis

Theorem (IP, 1999)

If ETH is true, sk increases infinitely often

Let s∞ = limk→∞ sk .

Conjecture:
Strong Exponential Time Hypothesis (SETH): s∞ = 1
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SETH and Its Equivalent Statements

Theorem

The following statements are equivalent:

∀ε < 1, ∃k, k-sat, the satisfiability problems for n-variable
k-cnf formulas, cannot be computed in time O(2εn) time.

∀ε < 1, ∃k, k-Hitting Set, the Hitting Set problem for
set systems over [n] with sets of size at most k, cannot be
computed in time O(2εn) time.

∀ε < 1, ∃k, k-Set Splitting, the Set Splitting problem
for set systems over [n] with sets of size at most k, cannot be
computed in time O(2εn) time.

— Cygan, Dell, Lokshtanov, Marx, Nederlof, Okamoto, P,
Saurabh, Wahlstrom, 2012
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Explanatory Value of SETH - I

If SETH holds, k-Dominating Set does not have a
f (k)nk−ε time algorithm. — Patrascu and Williams, 2009

SETH implies that Independent Set parameterized by
treewidth cannot be solved faster than 2twnO(1) —
Lokshtanov, Marx, and Saurabh 2010

SETH implies that Dominating Set parameterized by
treewidth cannot be solved faster than 3twnO(1) —
Lokshtanov, Marx, and Saurabh 2010

Many others · · ·
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Explanatory Value of SETH - II

Theorem

SETH determines the exact complexities of the following problems
in P.

∀ε > o, the Orthogonal Vectors problem for n binary
vectors of dimension ω(log n) cannot be solved in time
O(n2−ε). — Williams - 2004

∀ε > o, the Vector Domination problem for n vectors of
dimension ωlog n cannot be solved in time O(n2−ε). —
Williams - 2004, Impagliazzo, Paturi, Schneider - 2013

∀ε > o, the Fréchet Distance problem for two piece-wise
linear curves with n pieces n cannot be solved in time
O(n2−ε). — Bringmann - 2014

Many others · · · — Borassi, Crescenzi, Habib - 2014,
Abboud, Vassilevska Williams, 2014
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Explanatory Value of SETH - III

Assuming SETH, can we prove a 2n lower bound on
Chromatic Number?

Assuming SETH, can we prove that s3 > c for some c > 0?

Paturi Genesis of ETH and SETH



Satisfiability Algorithms Sparsification Lemma Preparation for Sparsification Algorithm SNP Exponential Time Hypothesis Strong Exponential Time HypothesisExplanatory Value of SETH

Open Problems

Assuming ETH or other suitable assumption, prove

a specific lower bound on s3

s∞ = 1 (SETH)

Assuming SETH, can we prove a 2n lower bound on
Colorability?

Are there better non-OPP algorithms for k-sat or
Circuit Sat?

Does there exist a c−n success probability OPP algorithm for
Hamiltonian Path?
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Thank You
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