

Karl Bringmann August 2018

Exercises for ADFOCS 2018 - Sheet 1

Exercise 1 Longest Palindrome Subsequence Problem: Given a sequence S of length n, find the longest subsequence which is a palindrome (i.e., a sequence of characters which reads the same backward and forward).

Prove that if this problem can be solved in time $O(n^{2-\varepsilon})$ then **OVH** fails.

Exercise 2 Diameter Problem: Given a graph G on n vertices and m edges, compute the largest distance between any two vertices in G.

We consider sparse graphs, i.e., $m = \widetilde{O}(n) = O(n \operatorname{polylog} n)$. Show that the diameter can be computed in time $\widetilde{O}(n^2)$, and prove that if the diameter can be computed in time $O(n^{2-\varepsilon})$ then **OVH** fails.

Exercise 3 k-Clique Problem: Given a graph G on n vertices, decide whether there are vertices v_1, \ldots, v_k that are pairwise adjacent.

Show by a reduction that if **OVH** fails, i.e., OV can be solved in time $O(n^{2-\varepsilon}\operatorname{poly}(d))$, then for sufficiently large k and some $\varepsilon' > 0$ the **k-Clique** problem can be solved in time $O(n^{k-\varepsilon'})$.

Remark: The fastest known algorithm for k-Clique runs in time $O(n^{k\cdot\omega/3})$ where $\omega\leq 2.37$, so this reduction does not yield a tight lower bound for OV, but is only a partial relation.

Exercise 4 RegExpMatching: Given a regular expression R of size m and a text T of length n, determine whether any substring T' of T can be derived from R.

It is well-known that this problem can be solved in time O(nm). Show that there is no algorithm running in time $O((mn)^{1-\varepsilon})$ unless **OVH** fails.

For specific classes of regular expressions there are faster algorithms to solve this problem. Consider homogeneous regular expressions: A regular expression R is called homogeneous of type " $o_1o_2 \ldots o_\ell$ " (where $o_i \in \{\circ, *, +, |\}$) if there exist a_1, \ldots, a_p , which are characters or homogeneous regular expressions of type o_2, \ldots, o_l , such that $R = o_1(a_1, \ldots, a_p)$. For example, the regular expression $[(a \circ b \circ c) | b | (a \circ b)]^*$ is homogeneous of type " $* | \circ$ ", but the regular expression $(a^*) | (b^+)$ is not homogeneous.

- a) Find types t such that **RegExpMatching** restricted to homogeneous regular expression of type t can be solved in time O(n+m).
- b) Prove that there is no $O((mn)^{1-\varepsilon})$ algorithm for **RegExpMatching** restricted to homogeneous regular expression of type " $|\circ|$ " unless **OVH** fails. Prove the same result for homogeneous regular expressions of type " $|\circ|$ ".