Chapter 4.
Deeper Discussions

Danupon Nanongkai
KTH, Sweden

ADFOCS 2018
Last edited: Aug. 16, 2018

Plan

Query-update time tradeoffs
Other conjectures
Unconditional lower bounds

Partially-dynamic algorithms

Query-Update Time Tradeoffs

Motivation

* So far, we focuses on outputting something
small (yes/no, numbers) after each update.

* More realistic: output when users want.

e Also: Users may just want part of the (large)
output.

Single-Source Reachability

with queries

Thanks Thatchaphol Saranurak for slides

How should we define
single-source reachability?

Option 1: Output list of reachable nodes

* ()(n) is an obvious update time lower bound
* ... not so interesting

Option 2: Answer query “Can s reach u?”

* Possible to get polylog update time in this
case?

e Let’s look into this

Single Source Reachability#ss-Reach)

1. Preprocess

&

Single Source Reachability#ss-Reach)

1. Preprocess

H

=

NO

&

2. Updates/Queries

‘ Reach(1)?

Single Source Reachability#ss-Reach)

1. Preprocess 2. Updates/Queries
Reach(1)?
1 3 '—‘g # Insert(4,5)
S 5 !1 o

Single Source Reachability#ss-Reach)

1. Preprocess 2. Updates/Queries
Reach(1)?
1 3 —) Insert(4,5)

Delete(s,?2)
S 5 !1 o

Single Source Reachability#ss-Reach)

1. Preprocess - 2. Updates/Queries
Reach(1)?
1 3 —) Insert(4,5)
! Delete(s,?2)
S 5 L BB Reach(5)?

Single Source Reachability#ss-Reach)

1. Preprocess - 2. Updates/Queries
Reach(1)?
1 3 —) Insert(4,5)
! Delete(s,?2)
S 5 L BB Reach(5)?

A Naive Algorithm
for (fully dynamic) ss-Reach:

Update = Query
time time

BFS from s " .
when update

Can we improve update t
m ﬁ ml_e ? (maybe amortized)

n = #finodes

ime

Reduction from y-OuMyv to ss-Reach

(sketched)

Sketch:

1. For each (u;, v;): n¥ updates and n
gueries

2. Y-OuMv implies that amortized time
over nY updates and n queries cannot
be O(n1*Y~€) for any € > 0.

3. If query time is n°), then update time
cannot be O(n1~¢) for any € > 0.

4. Forany € > 0, update time of
O(m'~€) implies amortized time of
O(n(1+y)(1—e’)).

5. .. whichis O(n!~¢) for some € > 0 for

small enough y.

N,
N

............. }] I
g B Sankowski’04
! 0
: ! 1.495 ,,1.495
. n E (Tl n)

Forbidden 2
by OMv

Bounds for ss-Reach via OMv

Further notes

* OMv (in fact y-OuMv) gives tight lower
bounds of query time and update-query
tradeoffs for many problems

o ——————

2 1
»(m3,m3) REELRENEEET n
. & Roditty’08
Forbidden ™\

by OMv

Open: Close bounds for
Subgraph Connectivity via OMv

Other Conjectures?

As an algorithm designer, I'm not
sure | should give up when | see
lower bounds from other
conjectures.

But they sometimes guide to good directions.

Example: st-Reach

* Bounds hold only for small
preprocessing time

* Time smaller than OMyv
 Bounds from BMM is only

for “combinatorial”
algorithms K

— They were broken by
algorithms based on fast
matrix multiplication

Prepro update | query Conj
m?/? md m?2/3-0 3SUM
[TmIFo—¢ m=’ ¢ m?2° ¢ Triangle
(*)
. — i
nd—e nz—e nz.—e (*))BMM
/\/
poly(n) | m'/2~¢ m'~ OMv

Should | make new conjectures?

Our own study case: st-reach

* After failing to further improve our algebraic
algorithms for st-reach and related problems. We
made three conjectures. One of them:

v-hinted OMVv (informal)

Input: Phase 1: Boolean matrix M, Phase 2: a Boolean matrix V, Phase 3: index i.
Output the matrix-vector product MV;, where V; is the i-th column of V.

Naive algorithm: Compute MV in phase 2 or MV; in phase 3.

Conjecture: Nothing better than the naive algorithm.

* The three together give tight lower bounds for
~ 20 problems, including st-reach.

Unconditional Lower Bounds?

Typical Model: Cell-Probe

Disclaimer: I’'m not an expert

Conjectures are sometimes attempted

, CPU \ in the cell-probe model.
Examples:
e [CI-Gr-L'15]: Cell probe lower bounds for
— OMv problem over very large finite fields F,
RAM space usage S=min(n log|F|,n%) when

|F|=n®1), S=0(n).

— This does not imply the OMv Conjecture (need the
Boolean case).

* [Larsen-Williams’17]: The OMv conjecture

cannot be true on the cell-probe model.

Patrascu’s multiphase problem
and communication model

Multiphase Problem: Three phases of inputs

 Phase 1: n X n Boolean matrix M

* Phase 2: Vectorv

* Phase 3: Integer i

Output: (Mv);

Naive algorithm: Compute Mv in phase 2 (0(n?) time) or
M;v in Phase 3 (O(n) time)

Observe: OMv implies that the native algorithm is best.
Weaker lower bounds can be derived from, e.g., 3SUM

Patrascu’s multiphase problem
and communication model

* Phase 1: n X n Boolean matrix M
* Phase 2: Vectorv

* Phase 3: Integer i

Output: (Mv);

Enough to show lower bounds for communication with Advice

Teac her
kwnows M)V

Bob

Lenmows f)VW
Want: (Mv);

Naive: Teacher sends M (0(n?)) or
Alice sends v (0(n))

Claim:

e |f exists algorithm A with 0(n'®) &
0(n%°) time in Phases 2 & 3,

e Then exists grotocol where teacher
)

sends 0(n'?) bits and Alice and Bob
exchanges 0(n°°) bits.
Proof:

 Teacher sends what CPU wrote on
memory in Phase 2 to Alice.
[0(n1?) bits]

* Alice simulate Phase 3, and ask Bob

for some missing bits (written in
Phase 1). [0 (n"?) bits]

Partially-Dynamic Algorithms

Notes

e Partially dynamic means insertions-only or
deletions-only

* [nstead of amortized update time, we can
analyze total update time instead.

 We have see:
— Incremental connectivity with O(log n) worst-case
update time.

— Incremental single-source reachability with O(m)
total update time (O(1) amortized).

Motivation

* Enough for some data: social networks rarely
have deletions (“unfriend”)

* Sometimes equivalent to fully-dynamic case

— E.g. fully-dynamic connectivity is equivalent to the
deletion-only one

* Enough as a subroutine for some problems

Decremental All-Pairs Shortest Paths | Approx. multi-commodity flow
[Roditty-Zwick FOCS’'04] [Madry STOC’10]

Decremental SSSP [HKN FOCS'14, ?] | Approx. s-t flow

Decremental min-cut (restricted) Interval Packing, Traveling salesperson [chekuri-Quanrud SODA'17, FOCS'17]

Example: Dyn. Shortest Paths > Max Flow

Garg-Konemann [rocs9s], Madry [sToc’10]:
Deterministic m**°(*) total update time for weighted (1+g)-approx
decremental st-shortest path = m**°l) -time (1+¢)-approx max flow

Randomized algorithm against adaptive adversary is also enough.

Known: Randomized m**°(1) total update time
[HenzingerKN. FOCS’14]

st-Distance under insertions

(It is possible to prove tight total update time!)

Thanks Thatchaphol Saranurak for slides

Theorem [Even-Shiloach JACM’81, Dinitz'71]
A BFS tree can be maintained with O(mn)

total time for m edge insertions.

(Thus O(n) amortized over m insertions)

Even-Shiloach pacwsi;

Well-known as Even-Shiloach Tree
(ES-tree)

43

Dinitz [Voprosy Kibernetiki’71]

Original version of Dinitz’s maxflow algorithm

44
For detail, see “Dinitz' Algorithm: The Original Version and Even's Version”

Description of Even-Shiloach tree
as nodes talking to each other

\begin{technical}

Compute BFS tree from s.
Every node maintains its level.

Add edge (s, b) = s and b check if their
levels should change

b changes its level.
It informs this to all neighbors.

A
\©

e
level=3 49

Neighbors check if they should change levels.
Node e should in this case.
Again e informs neighbors.

This is what we
obtain after

adding (s,b)

Even-Shiloach tree can be implemented in such a way that
total update time = number of messages

Tak
azes j‘> I

time steps @ —_— @

Exercise

Number of messages
(thus time complexity)
after m insertions is

O(mn)
Hint

Node v sends degree(v) messages
every time level(v) decreases.

52

\end{technical}

Tight Lower Bound

Lemma: st-distance cannot have total update time
0 ((mn)1~¢), assuming the OMv conjecture.

Proof sketch:

r"‘”t/%h/f“* X
O

dist(s,t)=2n+1 iff “yes” dist(s,t)=2(n-1)+1 iff “yes”

st-Reach under insertions

Thanks Thatchaphol Saranurak for slides

This example shows ...

* Converting amortized fully-dynamic lower to

worst-case (only!) for partially-dynamic lower
bounds.

* |t works for most problems.

Claim: Incremental st-Reach has (n)
worst-case lower bound

* Trick: Undo (roll-back) insertions before new insertions

* Worst-case update time 0(n%?) = 0(n'?) time per
(L;, R;). Contradicting OuMv con].

st-Reach st-Reach

z Undo + add new edges
To L, From R, To L
5 g >

Doesn’t work for total update time: If assume, say, O(n?) total update time,
we may spend O(mn!~¢) time per (L;, R;). Nothing to contradict.

Questions?

Acknowledgements:
Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian
Wulff-Nilsen, Thatchaphol Saranurak

This project has received funding from the European Research Council (ERC) under the
European Union's Horizon 2020 research and innovation programme under grant agreement
No 715672 62

