Chapter 4. Deeper Discussions

Danupon Nanongkai KTH, Sweden

Plan

- Query-update time tradeoffs
- Other conjectures
- Unconditional lower bounds
- Partially-dynamic algorithms

Part 1

Query-Update Time Tradeoffs

Motivation

- So far, we focuses on outputting something small (yes/no, numbers) after each update.
- More realistic: output when users want.
- Also: Users may just want part of the (large) output.

Example

Single-Source Reachability

with queries

How should we define single-source reachability?

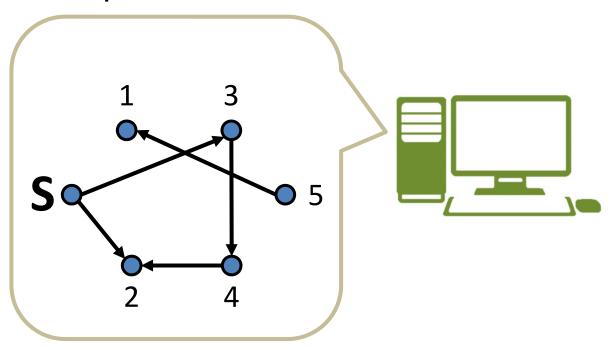
Option 1: Output list of reachable nodes

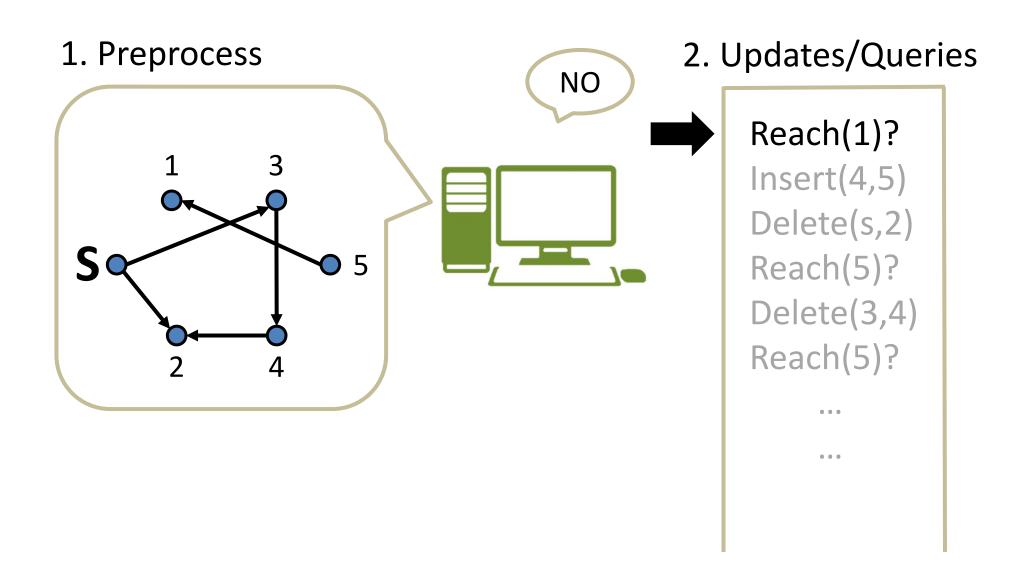
- $\Omega(n)$ is an obvious update time lower bound
- ... not so interesting

Option 2: Answer query "Can's reach u?"

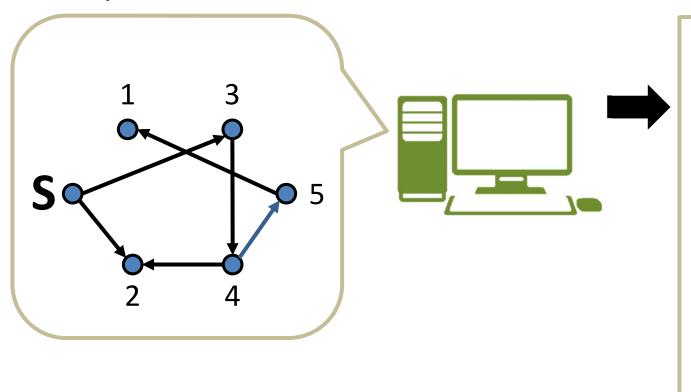
- Possible to get polylog update time in this case?
- Let's look into this

1. Preprocess





1. Preprocess



2. Updates/Queries

Reach(1)? Insert(4,5)

Delete(s,2)

Reach(5)?

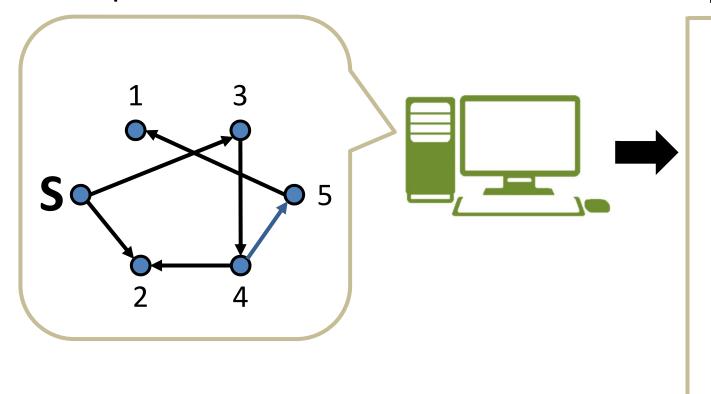
Delete(3,4)

Reach(5)?

. . .

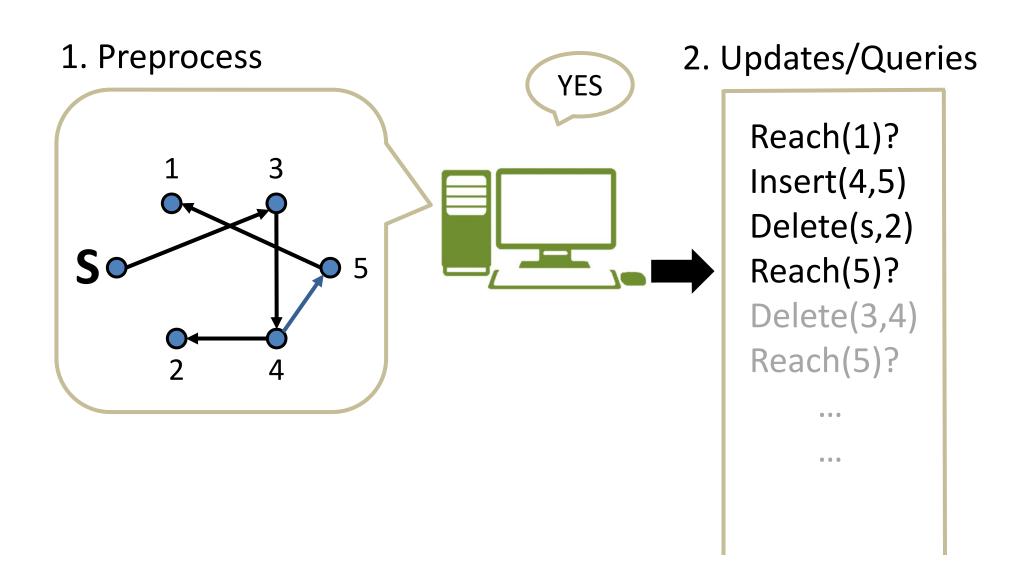
. . .

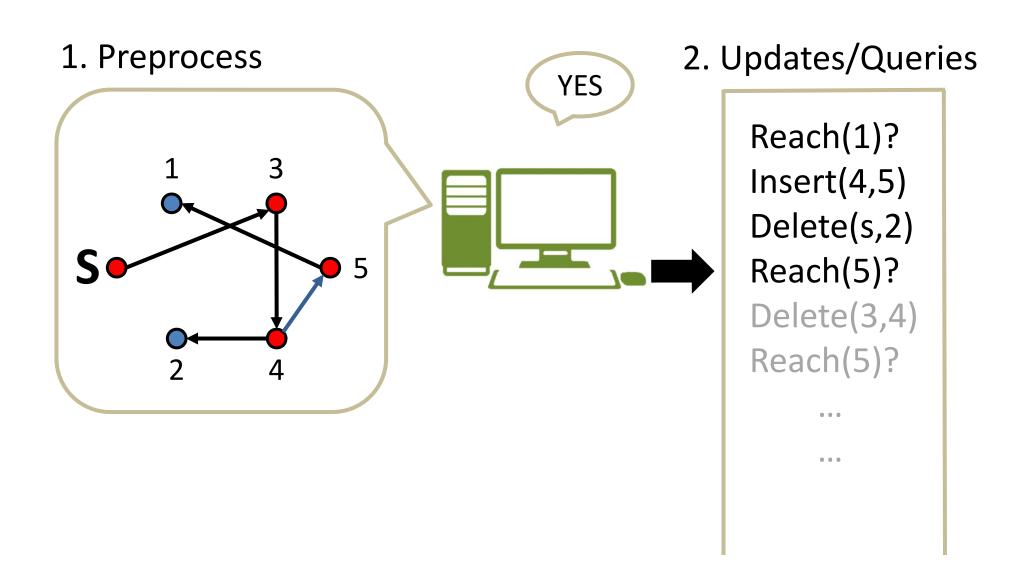
1. Preprocess



2. Updates/Queries

Reach(1)?
Insert(4,5)
Delete(s,2)
Reach(5)?
Delete(3,4)
Reach(5)?





A Naïve Algorithm for (fully dynamic) ss-Reach:

	Update time	Query time
BFS from S	m	1
when undate	1	

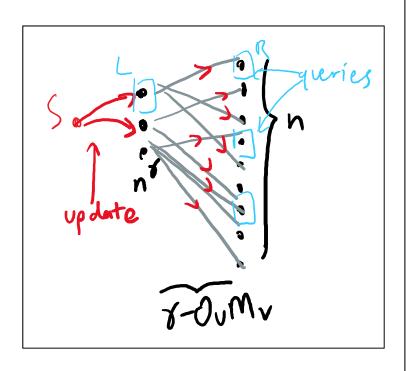
Can we improve update time $m \Rightarrow m^{1-\epsilon}$? (maybe amortized)

$$m \Rightarrow m^{1-\epsilon}$$
? (maybe amortized)

 $m = \max \# edges$ n = # nodes

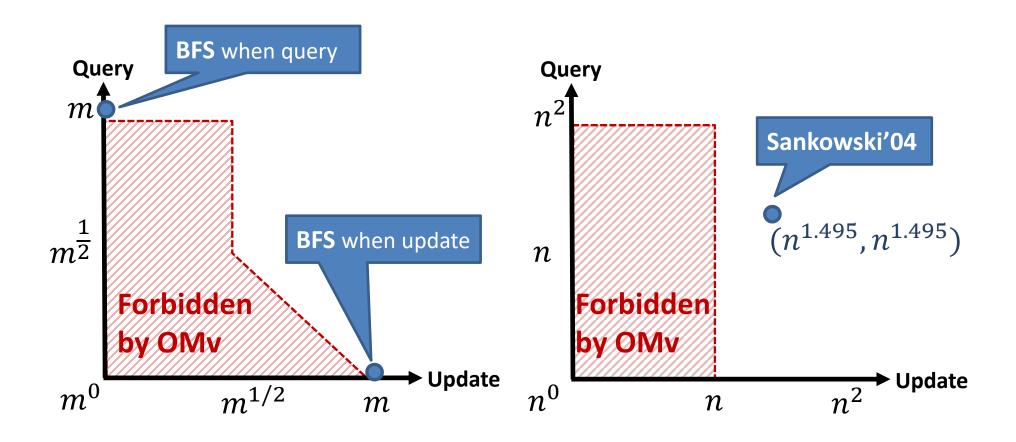
Reduction from γ -OuMv to ss-Reach

(sketched)



Sketch:

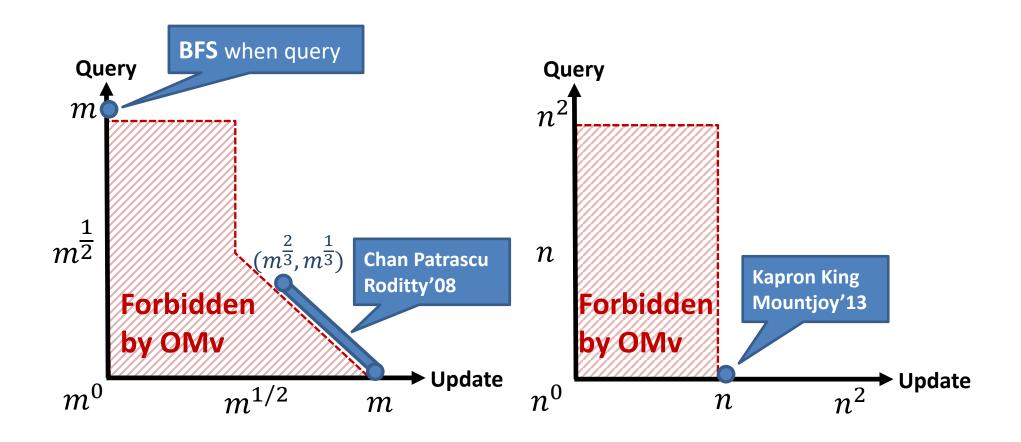
- 1. For each (u_i, v_i) : n^{γ} updates and n queries
- 2. γ -OuMv implies that amortized time over n^{γ} updates and n queries cannot be $O(n^{1+\gamma-\epsilon})$ for any $\epsilon>0$.
- 3. If query time is $n^{o(1)}$, then update time cannot be $O(n^{1-\epsilon})$ for any $\epsilon > 0$.
- 4. For any $\epsilon' > 0$, update time of $\mathbf{O}(m^{1-\epsilon'})$ implies amortized time of $\mathbf{O}(n^{(1+\gamma)(1-\epsilon')})$.
- 5. ... which is $O(n^{1-\epsilon})$ for some $\epsilon > 0$ for small enough γ .



Bounds for ss-Reach via OMv

Further notes

• **OMv** (in fact γ -**OuMv**) gives tight lower bounds of query time and update-query tradeoffs for many problems



Open: Close bounds for Subgraph Connectivity via OMv

Part 2

Other Conjectures?

As an algorithm designer, I'm not sure I should give up when I see lower bounds from other conjectures.

But they sometimes guide to good directions.

Example: st-Reach

Bounds hold only for small preprocessing time

Time smaller than OMv

 Bounds from BMM is only for "combinatorial" algorithms

> They were broken by algorithms based on fast matrix multiplication

_	Prepro	update	query	Conj
	$m^{4/3}$	$m^{\delta-\epsilon}$	$m^{2/3-\delta-\epsilon}$	3SUM
	$\mathbf{m^{1+\delta-\epsilon}}$	$\mathbf{m^{2\delta-\epsilon}}$	$m^{2\delta-\epsilon}$ $(*)$	Triangle
	$n^{3-\epsilon}$	$n^{2-\epsilon}$	$n^{2-\epsilon}$ (*)	BMM
	$poly(\mathbf{n})$	$\mathrm{m}^{1/2-\epsilon}$	$\mathrm{m}^{1-\epsilon}$	OMv

Should I make new conjectures?

Our own study case: st-reach

 After failing to further improve our algebraic algorithms for st-reach and related problems. We made three conjectures. One of them:

v-hinted OMv (informal)

<u>Input</u>: **Phase 1**: Boolean matrix **M**, **Phase 2**: a Boolean matrix **V**, **Phase 3**: index *i*.

<u>Output</u> the matrix-vector product MV_i , where V_i is the i-th column of V.

Naïve algorithm: Compute MV in phase 2 or MV_i in phase 3.

Conjecture: Nothing better than the naive algorithm.

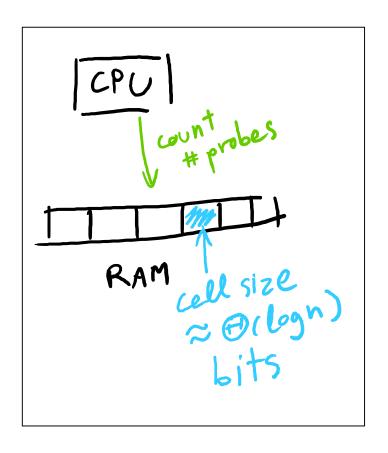
• The three together give tight lower bounds for ≈ 20 problems, including st-reach.

Part 3

Unconditional Lower Bounds?

Typical Model: Cell-Probe

Disclaimer: I'm not an expert



Conjectures are sometimes attempted in the cell-probe model.

Examples:

- [Cl-Gr-L'15]: Cell probe lower bounds for
 OMv problem over very large finite fields F, space usage S=min(n log|F|,n²) when |F|=nΩ(1), S=O(n).
 - This does not imply the OMv Conjecture (need the Boolean case).
- [Larsen-Williams'17]: The OMv conjecture cannot be true on the cell-probe model.

Patrascu's multiphase problem and communication model

Multiphase Problem: Three phases of inputs

- Phase 1: $n \times n$ Boolean matrix M
- Phase 2: Vector v
- Phase 3: Integer i

Output: $(Mv)_i$

<u>Naïve</u> algorithm: Compute Mv in phase 2 ($O(n^2)$ time) or M_iv in Phase 3 (O(n) time)

Observe: OMv implies that the native algorithm is best.

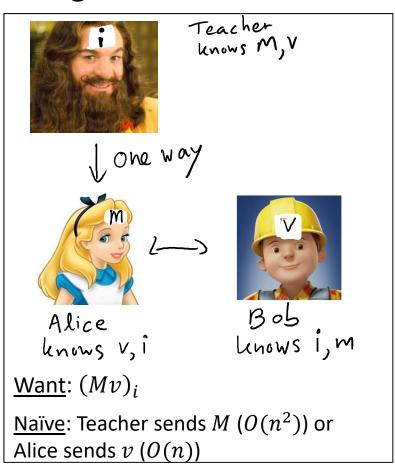
Weaker lower bounds can be derived from, e.g., 3SUM

Patrascu's multiphase problem and communication model

- Phase 1: $n \times n$ Boolean matrix M
- Phase 2: Vector v
- Phase 3: Integer i

Output: $(Mv)_i$

Enough to show lower bounds for communication with Advice



Claim:

- If exists algorithm A with $O(n^{1.9})$ & $O(n^{0.9})$ time in Phases 2 & 3,
- Then exists protocol where teacher sends $O(n^{1.9})$ bits and Alice and Bob exchanges $O(n^{0.9})$ bits.

Proof:

- Teacher sends what CPU wrote on memory in Phase 2 to Alice. $[O(n^{1.9}) \text{ bits}]$
- Alice simulate Phase 3, and ask Bob for some missing bits (written in Phase 1). $[O(n^{0.9})$ bits]

Part 4

Partially-Dynamic Algorithms

Notes

- Partially dynamic means insertions-only or deletions-only
- Instead of amortized update time, we can analyze total update time instead.
- We have see:
 - Incremental connectivity with O(log n) worst-case update time.
 - Incremental single-source reachability with O(m) total update time (O(1) amortized).

Motivation

- Enough for some data: social networks rarely have deletions ("unfriend")
- Sometimes equivalent to fully-dynamic case
 - E.g. fully-dynamic connectivity is equivalent to the deletion-only one
- Enough as a subroutine for some problems

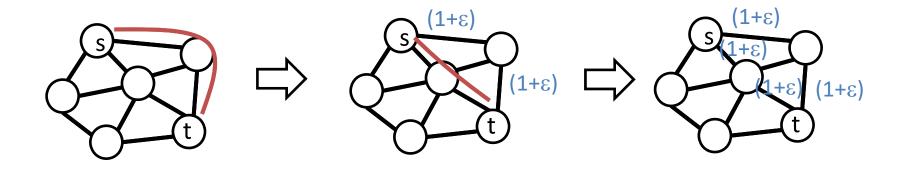
Decremental All-Pairs Shortest Paths [Roditty-Zwick FOCS'04]	Approx. multi-commodity flow [Madry STOC'10]	
Decremental SSSP [HKN FOCS'14, ?]	Approx. s-t flow	
Decremental min-cut (restricted) Interval Packing, Traveling salesperson [Chekuri-Quantud SODA		

Example: Dyn. Shortest Paths -> Max Flow

Garg-Konemann [FOCS'98], Madry [STOC'10]:

Deterministic $m^{1+o(1)}$ total update time for weighted (1+ ε)-approx decremental st-shortest path $\rightarrow m^{1+o(1)}$ -time (1+ ε)-approx max flow

Randomized algorithm against adaptive adversary is also enough.



Known: Randomized m1+o(1) total update time

[HenzingerKN. FOCS'14]

Example 1:

st-Distance under insertions

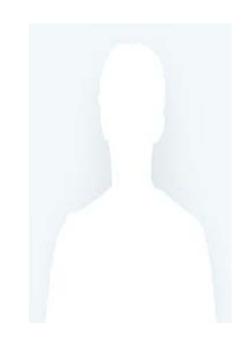
(It is possible to prove tight total update time!)

Theorem [Even-Shiloach JACM'81, Dinitz'71]

A BFS tree can be maintained with O(mn) total time for m edge insertions.

(Thus O(n) amortized over m insertions)

Even-Shiloach [JACM'81]



Well-known as Even-Shiloach Tree (ES-tree)

Dinitz [Voprosy Kibernetiki'71]

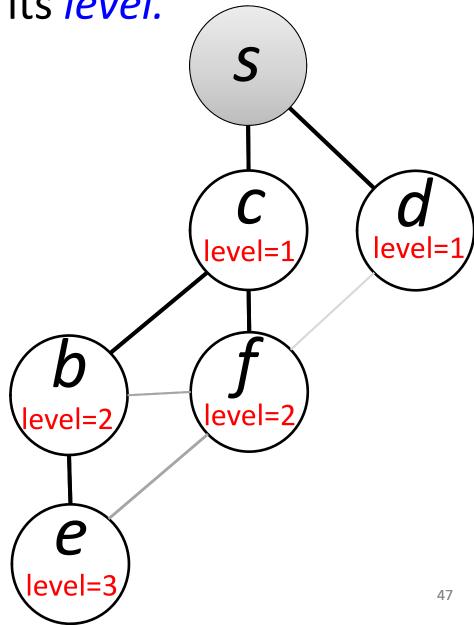
Original version of Dinitz's maxflow algorithm

Description of Even-Shiloach tree as nodes talking to each other

\begin{technical}

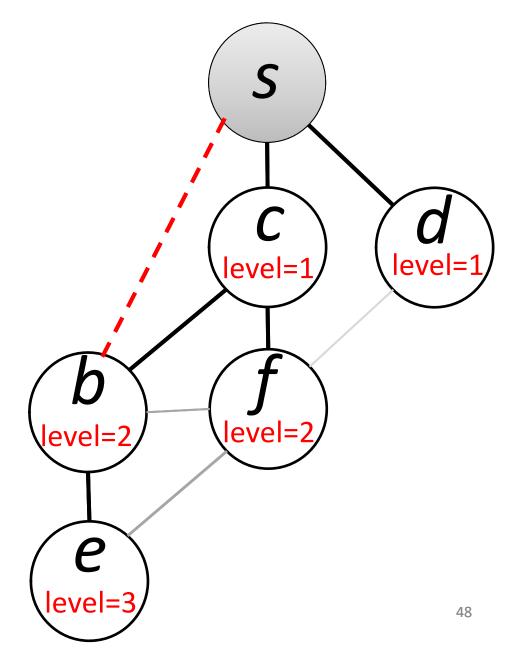
Compute BFS tree from s.

Every node maintains its *level*.



Add edge (s, b) \rightarrow s and b check if their

levels should change



b changes its level.

It informs this to all neighbors.

Solution of the seven of the seven

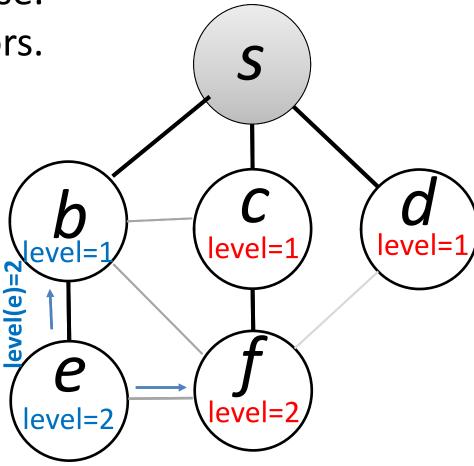
level=2

Neighbors check if they should change levels.

Node e should in this case.

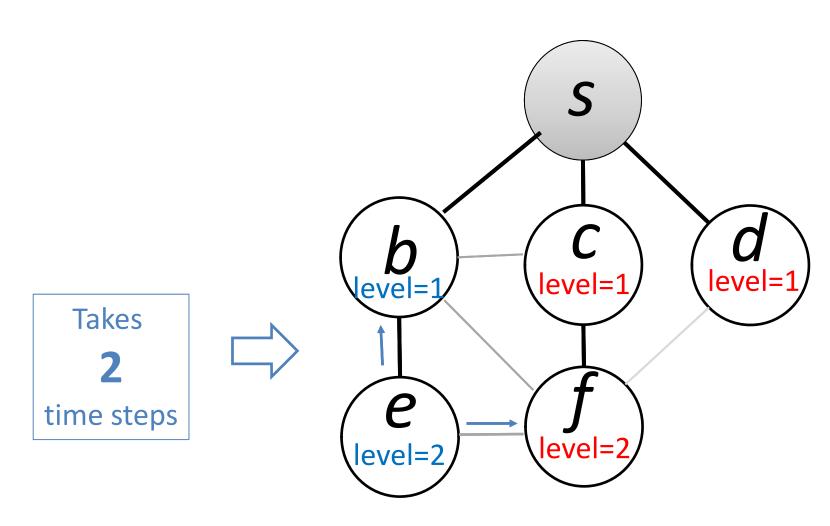
Again e informs neighbors.

This is what we obtain after adding (s,b)



Even-Shiloach tree can be implemented in such a way that

total update time = number of messages



Exercise

Number of messages (thus time complexity) after m insertions is O(mn)

<u>Hint</u>

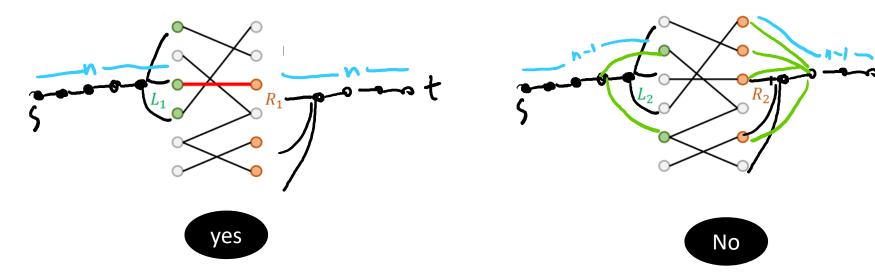
Node v sends degree(v) messages every time level(v) decreases.

\end{technical}

Tight Lower Bound

Lemma: st-distance cannot have total update time $O((mn)^{1-\epsilon})$, assuming the OMv conjecture.

Proof sketch:



$$dist(s,t)=2n+1$$
 iff "yes"

$$dist(s,t)=2(n-1)+1 iff "yes"$$

Example 2

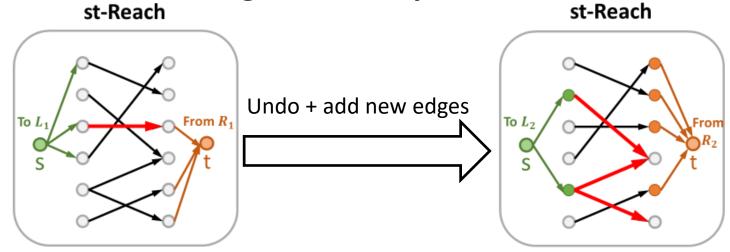
st-Reach under insertions

This example shows ...

- Converting amortized fully-dynamic lower to worst-case (only!) for partially-dynamic lower bounds.
- It works for most problems.

Claim: Incremental st-Reach has $\Omega(n)$ worst-case lower bound

- **Trick:** *Undo (roll-back)* insertions before new insertions
- Worst-case update time $O(n^{0.9}) \rightarrow O(n^{1.9})$ time per (L_i, R_i) . Contradicting OuMv conj.



Doesn't work for total update time: If assume, say, $O(n^2)$ total update time, we may spend $O(mn^{1-\epsilon})$ time per (L_i, R_i) . Nothing to contradict.

Questions?

Acknowledgements:

Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian Wulff-Nilsen, Thatchaphol Saranurak

