
Harnessing NLG to Create Finnish Poetry Automatically

Mika Hämäläinen
Department of Digital Humanities

University of Helsinki
Fabianinkatu 33, 00014 Helsinki Finland

mika.hamalainen@helsinki.fi

Abstract

This paper presents a new, NLG based approach to po-
etry generation in Finnish for use as a part of a bigger
Poem Machine system the objective of which is to pro-
vide a platform for human computer co-creativity. The
approach divides generation into a linguistically solid
system for producing grammatical Finnish and higher
level systems for producing a poem structure and choos-
ing the lexical items used in the poems. An automati-
cally extracted open-access semantic repository tailored
for poem generation is developed for the system. Fi-
nally, the resulting poems are evaluated and compared
with the state of the art in Finnish poem generation.

Introduction
Creating poems automatically is a difficult task to tackle, es-
pecially since poetry as a genre is fragmented and not easily
defined (Juntunen 2012). What makes computer generated
poetry more difficult than a traditional NLG task is that po-
ems usually express their meaning in an indirect language by
means of different rhetorical devices, such as, metaphors, el-
lipsis, rhymes and so on. These are issues to resolve above
and beyond the mere production of grammatical output that
follows the syntax of the target language.

Grammaticality is a big issue especially in the case
of morpho-syntactically rich languages such as Finnish.
Finnish has a set of agreement and government rules in its
syntax, which means that words in a sentence affect each
other’s morphological form depending on their syntactic re-
lations. In other words, where as in English it is almost pos-
sible to produce grammatical output just by using words in
their dictionary forms (i.e. lemmas) in a sentence with slight
to no modifications at all, in Finnish, more often than not,
words have to be inflected to fit the morphological require-
ments of the syntax in the sentence.

One of the tasks we have to solve in order to produce
grammatical poems with an NLG pipeline is to build a lin-
guistically robust system for resolving the morpho-syntax of
the words in a sentence. Due to the lack of freely available
systems of this kind for Finnish, we have to build one of our
own. On top of this syntax producing system, we then build
higher level functionality to produce poetry.

In addition to solving the challenging problem of gram-
maticality, in this paper, we also present a way of building a

semantically linked database to use in computationally cre-
ative systems. This database consists of syntactic relations
between words, which also reveals a great deal about their
semantics and the intercompatibility of their meaning in a
sentence. Finally, on top of the syntax generator and this se-
mantic database, we propose a method for generating mod-
ern poetry in Finnish.

The key notion behind the system is that if the output is
grammatical, i.e. the language is good, the structure resem-
bles that of a poem and there is semantic cohesion within the
poem, the poems produced by the system will be accepted
as poetry by people. In this paper, we discuss how we solved
these different requirements for the poetry produced.

The poem generator described in this paper replaces the
previous poem generator in a computationally creative sys-
tem called the ”Poem Machine1”. The generator then serves
as a component in a larger whole of a system with a fo-
cus on providing an environment for human-computer co-
creativity. The Poem Machine is intended to be used in
elementary schools to aid school kids in writing poems of
their own by removing the problem of ”a blank page” and
by offering a computer-generated poem as a starting point
for poem writing. This paper, however, focuses solely on the
poem generator as an independent component of the system
leaving the co-creativity aspect of the larger system outside
of the scope of this paper.

Related work
Poem generation has received its fair share of interest in past
research. The problem has been approached from different
angles such as translation with weighted finite-state trans-
ducers (Greene, Bodrumlu, and Knight 2010), text trans-
formation via word embeddings (Bay, Bodily, and Ventura
2017), templates (Colton, Goodwin, and Veale 2012) and
case-based reasoning (Gervás 2001) among others. In this
section, we describe the approaches used in the context of
Finnish poetry generation in more detail.

The current state of the art in Finnish poetry generation is
the P. O. Eticus system (Toivanen et al. 2012). Unlike in our
approach, P. O. Eticus does not employ a linguistically solid
NLG surface generator to produce syntactic Finnish, instead
it takes its syntax from existing poems. The way the system

1http://runokone.cs.helsinki.fi/



works is that it takes a ready-made human written poem at
random, analyzes it morphologically and swaps some words
in the poem with new ones making sure that the morphology,
such as case and number, matches that of the words in the
original poem that are to be replaced.

From a linguistic perspective, this means that the gram-
maticality of the final poem relies on pure chance. By mak-
ing sure that the morphology matches, the system is able to
solve agreement of nouns and adjectives, but will fail if the
government rules for the new words are different from the
ones that existed in the poem. This also means that the sub-
ject of the sentence cannot be changed at will into a different
person or number without producing ungrammatical output,
let alone the fact that the system is incapable of producing
any syntactic structure of its own, as it relies heavily on the
structure of the ready-made poems.

Another take on the poem generation in Finnish is that
of (Kantosalo, Toivanen, and Toivonen 2015). This is by
no means a sophisticated approach as it takes poem frag-
ments from thematically divided children’s literature at ran-
dom and puts them together without any further analysis of
their semantics or meter. However, it is important to show-
case this approach as it was the original one in use in the
Poem Machine, which nowadays uses a generator based on
the one we are describing in this paper. The poems produced
in this way, were more grammatical than the ones of P. O.
Eticus because the verses were never altered, but they had
less semantic cohesion because the verses came from very
different sources, although all of them shared a keyword.

The NLG Pipeline
In this paper, we propose an NLG pipeline with independent
modules to tackle different problems of generating Finnish
poetry. Syntax, morphology, semantics and poetic structure
are all different parts of the system. This makes it possible
to separate the two goals for the generated poems at the level
of implementation, grammaticality and semantic cohesion.

An NLG pipeline has traditionally been divided into four
different steps: content determination, sentence planning,
surface generation, and morphology and formatting (Reiter
1994). This is also the definition for NLG we are following
in this paper.

In the content determination step, an input such as a query
is fed to the system based on which the output will be pro-
duced. This might be for example weather for a particular
city requested by the user. The results of the query are in
a form of a semantic representation of the information that
will be conveyed to the user in the final output. In addition
to what the information will be in the final output, this step
also tackles the question of how it should be communicated
such as in the form of rhetorical planning.

In sentence planning, the abstract semantic representation
is further processed into an abstract syntactic representation.
This means that the lexical items and their syntactic relations
are chosen by the system. This step works on a high level
of abstraction of syntax and it does not require knowledge
of how the syntax is actually produced. This means that
it has no knowledge of government or agreement rules in

the language, which, as we will see later in this paper, are
extremely important features in the Finnish grammar.

The surface generator is the one in charge of resolving
the actual syntax needed to express the abstract syntax re-
lations (such as subject, predicate, object) by following the
grammar rules of the language in question. For example, in
Finnish the predicate has to agree with the number and per-
son of the subject, and the object has to be in a case governed
by the predicate verb.

Finally, the syntactic knowledge is passed to a morpho-
logical generator which is the one in charge of inflecting the
lexemes chosen in the previous steps based on the lemma
and the morphological features resolved by the surface gen-
eration step.

In this paper, we will focus on the two higher level steps
of the NLG pipeline in the Poem Generator section. For
the surface generation part, we have developed a tool called
Syntax Maker2 (Hämäläinen 2018) due to the absence of
openly available NLG tools for Finnish. Syntax Maker is
only briefly discussed in this paper, for a more detailed de-
scription and evaluation has already been published else-
where (Hämäläinen and Rueter 2018).

The reason why Finnish requires a sophisticated tool for
generating the syntax of the sentence lies in the highly ag-
glutinating nature of the language. In Finnish, syntactic
roles of words are not expressed by strict word order as is
the case in English, but rather by inflecting words accord-
ingly to their syntactic function. There are two syntactic
rules that affect the word forms in Finnish: agreement and
government.

Agreement in the Finnish context means that the predicate
verb has to agree in number and person with the subject and
that adjective attributes have to agree in case and number
with the noun they modify. This has been solved by rules in
the implementation of Syntax Maker.

Government is a more difficult phenomenon. Usually, in
Finnish, verbs take their direct object either in the genitive
(or the accusative for the personal pronouns) or the parti-
tive. This cannot be deduced by easy rules, but rather has
to be known for each verb individually. This was achieved
by learning the cases of the objects (direct and indirect) au-
tomatically from the Finnish Internet Parsebank (Kanerva et
al. 2014) and its syntactic bi-gram data.

The morphological generation is done by using Omorfi
(Pirinen et al. 2017), which is a finite-state based tool for
analyzing and generating the morphology of Finnish words.
The morphological forms together with lemmas resolved by
Syntax Maker are given to Omorfi, which inflects the words
accordingly to its rules and the input.

The Semantic Repository
Whereas P. O. Eticus uses a graph of semantically similar
words obtained by connecting words together with a log-
likelihood ratio test (LLR), we want not only to capture the
overall semantic relatedness of the words but also word re-
lations in their syntactic position. In other words, we do not

2Syntax Maker is released as an open source Python library on
https://github.com/mikahama/syntaxmaker



simply want to build our network so that we can deduce that
dog and dog food are related based on their shared context,
but rather that they are related by virtue that dog is capa-
ble of performing the action eat and dog food can serve as a
direct object for such an action.

In order to capture both the semantics and syntax, we
build our semantic repository3 so that it contains lists of lem-
matized words by their parts-of-speech. These lists are in-
terconnected to a network based on the syntactic relations
these words have had in a corpus. The strength of the con-
nection is determined by the frequency of co-occurrence of
the words in a given syntactic relation revealing more about
the semantic relatedness of the words. To achieve this, a
syntactically parsed corpus of Finnish is needed.

As a corpus for extracting the semantic knowledge, we
use the Finnish Internet Parsebank (Kanerva et al. 2014),
and more specifically its data-set of syntactic bi-grams. The
corpus is one of the largest syntactically parsed ones in
Finnish consisting of 116 million sentences and 1.5 billion
individual tokens. The text of the corpus originates from dif-
ferent sources found on the internet by Common Crawler4.

The data has been automatically parsed into syntactic de-
pendency trees, and the syntactic bi-gram data consists of
bi-grams of words that have appeared next to each other in
the syntactic tree. This means that as opposed to a traditional
bi-gram, it is perfectly possible that words that have not been
immediate neighbors in the sentence, but are related to each
other by one arc in the syntactic tree, appear in the bi-gram
list. In other words, for example, a noun acting as a direct
object of a verb will appear in the syntactic bi-grams even if
in the actual sentence there was an adjective in between the
verb and the noun.

We build our semantic repository based on the co-
occurrences of the words in the syntactic bi-grams. Since the
data-set has been parsed entirely automatically, however, the
data is not free of noise. This is why, we define additional re-
quirements for the two words of a bi-gram before we update
the relation to our semantic repository.

For verbs, we use the syntactic knowledge in Syntax
Maker to perform an additional check. For each verb found
in the bi-grams, we query Syntax Maker for the valency, in
other words, how many objects the verb can take, and the
cases of the objects. We only update the verb-object rela-
tions to the repository if the noun has been inflected in a
case that is possible for the verb in question, given its case
government.

For subjects, it is not necessary to query the Syntax Maker
because in Finnish, the subject is, almost without an excep-
tion, always in the nominative case, which means that we
can check that directly. Additionally the verb has to be in
active voice, because the direct genitive object of a verb in
passive voice appears in the nominative, which, if not fil-
tered out, would introduce more noise in the data.

A noun-adjective relation is only considered if the noun
and the adjective share the same grammatical case. This is

3The semantic repository can be browsed and downloaded on
https://mikakalevi.com/semfi/

4http://commoncrawl.org/

due to the Finnish agreement rule which requires the case of
an adjective attribute to agree with the case of the noun.

For other syntactic relations such as adverb to verb re-
lation, we don’t specify any further constraints based on
the compatibility of the words according to their morpho-
syntax. This couldn’t even be achieved, for example, in the
case of adverbs and verbs, as there are no agreement or gov-
ernment rules for them in the Finnish grammar.

By imposing restrictions of morpho-syntax, we were able
to solve a part of the issue caused by the noise in the data,
that is, the true syntactic relatedness of the words without
erroneous relations introduced by the parser. The syntac-
tic parser, however, was not the only source of errors in the
data. The data also contains a multitude of words that are
incorrectly tagged, for example the adjective in its partitive
form esiintulevaa (appearing) was incorrectly tagged as a
verb. Also, the corpus contains non-words such as her?nnyt
(awoken) with an encoding error, and non-lemmatized word
forms as lemmas such as the optative heitetääs (let’s throw)
where the correct lemma would be the infinitive heittää
(throw).

In order to remove incorrectly tagged words from our syn-
tactic repository, we go through all the words with Omorfi.
Omorfi produces all the possible morphological interpreta-
tions for its input word form. In the case of Finnish, this
usually results in a long list of possibilities because the in-
flected forms of Finnish are frequently homonymous. For
example, the word form voi, is interpreted by Omorfi as a
possible form of voi (butter), voida (can), voitaa (to butter),
voittaa (to win) or vuo (flow).

There are two things we look at in the list of possible lem-
mas produced by Omorfi for each word. First, we look to see
if at least one of the possible interpretations has the same
part-of-speech reading as recorded in our semantic reposi-
tory and if the lemma of at least one of the interpretations
with the same part-of-speech is the same as the word in the
repository. If the part-of-speech does not match, or the word
is not in a lemmatized form, we remove it from the reposi-
tory. Because Omorfi is a rule based system and we are not
using a guesser version of it, it makes no attempt to ana-
lyze anything it does not know. This also allows us to filter
out the non-words resulted mostly from encoding errors or
spelling errors.

After the extraction and filtering process, our semantic
repository consists of over 9569 adverbs, 18300 verbs, 5900
adjectives and 965000 nouns that are connected to each
other by the syntactic relation they have shared in the cor-
pus weighted by the frequency they have appeared together
in that syntactic relation. The high number of nouns is due
to the Finnish orthographic rule of writing compound nouns
together as one word, where as in English they would be
written separately, for example the English gas station and
its Finnish translation huoltoasema, which consists of two
words huolto and asema.

The Poem Generator
In this section, we describe how the higher levels of the NLG
pipeline, namely content determination and sentence plan-
ning, are implemented in the system. These operations rely



mainly on the semantic repository as their main source of
data, but the Finnish WordNet (Lindén and Carlson 2010) is
also used as an additional data-set.

The actual poem generation part is divided into multiple
diverse verse generators. Each one of these verse genera-
tors is only in charge of producing one verse of the poem.
Semantic cohesion is achieved by the fact that each verse
generator takes a noun as its input and outputs a noun to-
gether with the produced verse. This noun is then fed to the
next verse generator. Some of the verse generators do not
modify the noun while others change it. This way the verse
generators produce a semantically coherent whole.

Each verse generator implements its own content deter-
mination and sentence planning steps. Regardless of the
verse generator, the content determination starts with the in-
put noun passed to it either by the user or the previous verse
generator. This noun is used to look up related words in the
semantic repository and additionally in the Finnish Word-
Net. Each verse generator has an abstract definition of the
syntax of the verse in the form of syntactic relations that can
be expressed by the verse. This is the sentence planning part
of the generators. The actual realization of the grammar is
done by feeding this information to Syntax Maker.

The decision which verse generators will be used and in
which order is defined by the poem structure database. The
database consists of a set of hand-coded poem structures.
These structures only state the generators and their order, but
they do not affect the functionality of each individual gen-
erator in any way. In theory, the verse generators and their
order could also be randomized or decided automatically in
a more justifiable way than pure random, but for now, we
have opted for an approach involving predefined structures
to ensure a higher structural coherence within the poem.

Verse Generators
In this section, we will explain the functionality of each in-
dividual verse generator in the system. There are altogether
12 different verse generators implemented in the system.

Metaphor Generator The content determination for the
metaphor starts by looking at the list of verbs the input noun
can act as a subject for. We want to construct a metaphor of
a form X is Y where the two nouns, X and Y, are connected
together by a verb that is semantically strongly related to
both of them. The metaphor generator will also output a
second verse right after the metaphorical one explaining the
metaphor by revealing the verb.

By trying out different values, we reached to two thresh-
old values for the frequency of the subject relation between
the noun and the verb in the semantic repository. A verb
is considered for metaphor production if it has occurred at
least 20 times and at most 1000 times with the noun. This
way, we can filter out verbs that aren’t descriptive for the
noun because they are too frequent in general and also verbs
that don’t co-occur often enough.

The next step is to list other nouns that can act as subjects
for these verbs. These other nouns are also checked for the
frequency of their subject relation to the verb. This yields us
lists of possible nouns we can use in the metaphor together

with the linking verbs. This, however is not enough, because
now these lists will contain a lot of nouns that are semanti-
cally too similar. For example, man is a woman would be
a frequently appearing metaphor because both of the nouns
have a lot of verbs in common. This is why we remove all
the nouns that have more than 5 verbs in common with the
input noun we are searching metaphors for. This results in
a list of nouns that are far enough semantically from each
other.

Out of the obtained noun-verb list, we pick a noun and
a verb at random to form the metaphor. For the second,
metaphor explaining, verse we look at the number of ob-
jects the selected verb can have and fill the object slots with
weighted random based on the object relations and their fre-
quencies with the verb in the semantic repository. If the verb
doesn’t take an object, an adverb related to the verb is picked
with the same weighted random approach as in the case of
objects.

Rakkaus on luovuus Love is creativity
Se kukoistaa ajan It blossoms for a while

Viha on tapa Hatred is a habit
Se ruokkii ajattelua It provokes thought

The examples given above are possible outputs from the
metaphor generator. The structure of the sentence planner
is predefined as it is passed to the surface generator. The
metaphor generator passes the newly picked noun to the fol-
lowing verse generator.

Synonym in Essive This verse generator creates sentences
of a type As a synonym, it does something. How this is done,
is that a synonym is looked up for the input noun in the
Finnish WordNet by using NLTK (Bird, Klein, and Loper
2009). This is done by querying all the possible synsets for
the noun and getting the lemmas for them. Then, a noun
is picked at random from this synonym list to appear in the
essive case in the sentence. The essive corresponds to as a
noun in English.

The verb appearing in the verse is again looked up in the
semantic repository. The verb is picked based on the noun
obtained from the WordNet so that the noun can function
as its subject at weighted random. The complements of the
verb are filled based on the valency of the verb and the ob-
jects linked to it in the semantic repository. This produces
verses of the following kind.

Passipoliisina se uskoo laatuun As a patrol officer,
he believes in quality

Konnana se rötöstelee As a crook, he nicks

The first example was generated for the input noun police
and the second one for dog. It’s important to note that the
synonyms coming from the Finnish WordNet might not al-
ways be truly synonyms such as dog and crook because the
Finnish WordNet has been translated from the English one
directly and sometimes the Finnish translations are quite far
from the English originals. This generator passes the Word-
Net synonym to the next generator.



Rhetorical Question This generator looks up an adjec-
tive for the input noun in the semantic repository based on
the noun-adjective attribute relationship. The adjective is
picked at weighted random based on the frequency of co-
occurrenceIn addition, an interrogative pronoun is picked at
random to form the question. The idea behind this question
forming generator is that if we know that the noun has the
adjectival property we are forming the question of, we can
presuppose this. Instead of stating something is something,
when we know that it’the case, we can just ask why that is
the case, how and so on.

Milloin liekki on keltainen? When is a flame yellow?

Miten paha on uhka? How bad is the threat?

The examples illustrate verses generated for flame and
threat respectively. The input noun is passed as such to the
following verse generator.

Personal Pronoun Verses This category consists of four
different generators. What they have in common is that they
use a 1st or 2nd person personal pronoun either in the plural
or singular as their subjects. The simplest one of them just
looks up an adjective based on the input noun and forms a
question of a type: am I adjective?.

There are two verse generators that are used to express an
attitude. The first one forms a main clause with a personal
pronoun subject and a verb that can be used to express an
attitude, such as hope or doubt. The main clause can be
turned into negative with a 50 % chance or additionally into
a question with a 50 % chance. After producing the main
clause, a subordinate clause is added to the main clause. The
subordinate clause takes the input noun as its subject and
then proceeds into looking for a suitable verb and objects
and an adverb for it in the same manner as described for the
previous verse generators.

The other attitude expressing verse generator picks a verb
based on the pronoun picked to generate the verse. This is
also done by a weighted random based on the subject con-
nection of the verbs and the pronoun. Then it uses the input
noun as an object for this verb. In order to express an atti-
tude, an auxiliary verb is selected at random to be used in
the sentence.

The last personal pronoun verse generator formulates a
conditional subordinate clause in which the input noun is
the subject and the verb and their objects are picked as seen
before. The main clause has a verb in the conditional mood
with a personal pronoun as its subject, the verb picked is
selected on the basis of the input noun. This is done in such
a way that the verb takes a noun that can act as its object
according to the semantic repository.

Olenko huima? Am I wild?

Emmekö me ajattele, ennen Won’t we think
kuin nokkeluus pelastaa before cleverness
maan? saves the earth?

Minä haluan noudattaa I want to follow
silkkiä silk

Vaikka savut houkuttaisivat Even if the smokes
onnenonkijaa, käyttäisitkö lured a fortune
sinä savua? hunter, would you

use smoke?
The examples above are output from the verse generators

in the order of their presentation in this section. These are
produced for the nouns week, cleverness, silk and smoke re-
spectively. None of these verse generators alter the input
noun, but rather pass it as it is to the following generator.

Paraphrase The paraphrasing verse generator expresses
the input noun in other words by looking up a suitable hy-
ponym or hypernym for it in the Finnish WordNet. In ad-
dition, an adjective is picked for the input noun from the
semantic repository at weighted random. This adjective is
used to describe the noun obtained from the Finnish Word-
Net in the verse.

Vesi, tuo ihmeellinen neste Water, that wondrous
liquid

Rukous, tuo hiljainen siunaus Prayer, that silent blessing
The examples above are generated for water and prayer.

The input noun is added to the beginning of the verse, sep-
arated by a comma. The verse generator passes the noun
looked up in the WordNet to the next verse generator.

Relative clause This verse generator creates a relative
clause which takes the subject position of the main clause
in the verse. The object of the relative clause is a synonym
for the input noun based on the Finnish WordNet. The ob-
ject of the main clause is the input noun. The verbs for both
clauses are looked up from the semantic repository based on
the nouns they will have as objects.

Se, joka loppuu What ends in fun,
hauskuuteen, kertoo ilosta tells of joy

Se, joka lukee surun- Who reads condolence,
valittelua, kuuluu suruun forms part of the sorrow

The examples above are generated by using joy and sor-
row as their input. The verse generator passes the input noun
to the following generator unmodified.

Simple generators There are two extremely simple verse
generators in the system. One is used to address a noun.
What it does is that it outputs the input noun followed by
a comma. The other simple verse generator generates tau-
tologies, either in indicative or in potential, of a type Xs are
Xs.

Poika, Boy,

Pojat ovat poikia Boys will be boys



The above examples are output for boy in both generators.
Neither of them swaps the input noun, but rather passes it on
as it is.

Example Poem
Here is an example poem to illustrate how the different verse
generators can play together in a poem structure.

Usko on ihminen Faith is a human
Se pelastuu kuolemasta It is rescued

from death
Henkilönä se upottaa veteen As a person,

it sinks in water
Miten arvoinen on henkilö? How valuable is

a person?
Minä en kartuta henkilöä I don’t accumulate

a person
Olenko hieno? Am I elegant?

Evaluation
In this section, we conduct an evaluation of the poems pro-
duced by the system. Evaluating poetry, even in the case of
a human produced one, isn’t an easy task, and it is some-
thing that is very difficult to do objectively. This is why we
didn’t want to come up with an evaluation metric of our own,
rather we chose to use the same subjective evaluation metric
that was used for P. O. Eticus (Toivanen et al. 2012). An
additional advantage of this is that we can see how well our
system fares in the same evaluation as the state of the art.

The P. O. Eticus was evaluated by 20 randomly picked
university students. In order to have a better comparabil-
ity of the results, we also randomly recruited university stu-
dents for our evaluation. In the evaluation, we randomly
selected 5 poems produced by our generator and 5 poems
by the poem fragment approach (Kantosalo, Toivanen, and
Toivonen 2015) which was previously in use in the Poem
Machine. We had altogether 25 evaluators to go through
poems produced by both systems. The order in which the
poems were presented to the evaluators was randomized.

The evaluators were asked to evaluate texts rather than
telling them directly that the texts are supposed to be poems.
They weren’t told that the texts they were reading were com-
puter produced.

The evaluators were asked to answer to a binary ques-
tion with a yes/no answer whether the text they were read-
ing was a poem. In addition to that they were presented with
six ad ditional questions: (1) How typical is the text as a
poem? (2) How understandable is it? (3) How good is the
language? (4) Does the text evoke mental images? (5) Does
the text evoke emotions? (6) How much does the subject
like the text? These questions were evaluated in the Likert
scale from one (very poor) to five (very good).

As the evaluation questions are highly subjective and the
evaluators’ opinions on the poems vary a great deal, the re-
sults obtained for our approach and the poem fragment ap-
proach aren’t directly comparable with those obtained previ-
ously for P. O. Eticus. However, the results P. O. Eticus got
when it was evaluated are shown in the chart for reference
purposes.

Figure 1: Results for the binary question

Figure 2: Results for the Likert scale questions with standard
deviation: (1) How typical is the text as a poem? (2) How
understandable is it? (3) How good is the language? (4)
Does the text evoke mental images? (5) Does the text evoke
emotions? (6) How much does the subject like the text?

Figure 1 represents the results obtained in the the first bi-
nary question whether the output of the generators was con-
sidered as a poem. An important finding is that the poem
fragment approach only generates output recognizable as
poetry 64 % of the time whereas the judges agreed unani-
mously that the output produced by our method is poetry.
This is probably due to the fact that the poem fragment ap-
proach doesn’t aim towards a poem-like structure whereas
our approach uses predefined poem structures.

The results for the Likert scaled questions are shown in
Figure 2. The results show that our approach outperformed
the existing poem fragment generator in the typicality aspect
and in how good the language was. Based on these results,
we can deduce that our system is capable of producing po-
etry that is also accepted as poetry. Also the grammatical
correctness of the output is high enough to score well against
the fragment approach which essentially uses human written
fragments.

Understandability is the only parameter in which the
poem fragment approach performed better. This is could
be due to the fact that the fragments are written by humans,
which might contribute to them being easier to understand,
where as the words picked by our system to be used in a



verse, might result in a sentence that is semantically more
difficult to grasp.

The fact that our system seems to fare well in compar-
ison with the state of the art on all aspects seems promis-
ing. However, since the poems generated by both systems
were evaluated by different people, further study is needed
to draw any final conclusions on which one actually per-
forms better in this evaluation setting.

Discussion and Future Work
The generator discussed in this paper is a first step to-
wards an NLG pipeline in poem generation in Finnish. Now
that the most difficult parts of producing Finnish have been
solved, namely the rich morphosyntax of the language, and
that we are capable of producing grammatical Finnish from
abstract syntactic representation, the next step is to reduce
the hand-crafted nature of the verse generators. We are cur-
rently looking into the possibility of learning verse struc-
tures from real poetry into an abstract syntactic represen-
tation that we could fill, for instance, with the content de-
terminators already defined for the individual verse genera-
tors. This would mean that we would only need to replace
the sentence planning part of our pipeline to introduce more
freedom into the system.

We could also extend the semantic repository not only to
contain a wider list of syntactic relations but also to contain
semantic data of a different nature. This could, for exam-
ple, mean linking related words based on word embeddings.
The extension of the semantic repository is a requirement
we have already found in our initial experiments of using
learned verse structures, because the syntactic relations in
real verses are more complex than the ones modelled in our
semantic repository.

Another important aspect for future research is studying
this method in the context of the system for which it was ini-
tially built, namely the Poem Machine. Studies are currently
underway on the co-creativity aspect of the Poem Machine
in which the method described in this paper is in a collabora-
tive setting with school kids assisting them in writing poetry
of their own.

Conclusion
In this paper we have presented and evaluated an NLG ap-
proach for poem generation for the morphologically rich
Finnish. The proposed approach is currently in use in a com-
putationally creative system called Poem Machine which
makes human computer co-creativity possible. The results
of the evaluation seemed promising and we identified future
directions for this research.

As a result of the study, an open source surface generation
NLG tool for Finnish (Syntax Maker) was publicly released.
Also, the syntactic repository data set has been made openly
available for anyone interested in building their work on top
of it.

Acknowledgments
This work has been supported by the Academy of Finland
under grant 276897 (CLiC).

I thank my PhD supervisor Jack Rueter for a keen eye
on English grammar while reading this paper and his en-
thusiasm in bringing this approach to the minority language
context.

References
Bay, B.; Bodily, P.; and Ventura, D. 2017. Text transforma-
tion via constraints and word embedding. In Proceedings of
the Eighth International Conference on Computational Cre-
ativity, 49–56.
Bird, S.; Klein, E.; and Loper, E. 2009. Natural Language
Processing with Python. O’Reilly Media.
Colton, S.; Goodwin, J.; and Veale, T. 2012. Full-face po-
etry generation. In Proceedings of the Third International
Conference on Computational Creativity, 95–102.
Gervás, P. 2001. An expert system for the composi-
tion of formal spanish poetry. Knowledge-Based Systems
14(3):181–188.
Greene, E.; Bodrumlu, T.; and Knight, K. 2010. Auto-
matic analysis of rhythmic poetry with applications to gen-
eration and translation. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Process-
ing, EMNLP ’10, 524–533. Stroudsburg, PA, USA: Associ-
ation for Computational Linguistics.
Hämäläinen, M., and Rueter, J. 2018. Development of an
Open Source Natural Language Generation Tool for Finnish.
In Proceedings of the Fourth International Workshop on
Computatinal Linguistics of Uralic Languages, 51–58.
Hämäläinen, M. 2018. Syntax Maker.
https://doi.org/10.5281/zenodo.1143056.
Juntunen, T. 2012. Kirjallisuudentutkimus. In Genreana-
lyysi: tekstilajitutkimuksen käsikirja, 528–536.
Kanerva, J.; Luotolahti, J.; Laippala, V.; and Ginter, F. 2014.
Syntactic N-gram Collection from a Large-Scale Corpus of
Internet Finnish. In Proceedings of the Sixth International
Conference Baltic HLT.
Kantosalo, A.; Toivanen, J.; and Toivonen, H. 2015. Interac-
tion Evaluation for Human-Computer Co-creativity: A Case
Study. In Proceedings of the Sixth International Conference
on Computational Creativity, 276–283.
Lindén, K., and Carlson, L. 2010. FinnWordNet-WordNet
på finska via översättning. LexicoNordica Nordic Journal
of Lexicography 17:119–140.
Pirinen, T. A.; Listenmaa, I.; Johnson, R.; Tyers, F. M.; and
Kuokkala, J. 2017. Open morphology of Finnish. LIN-
DAT/CLARIN digital library at the Institute of Formal and
Applied Linguistics, Charles University.
Reiter, E. 1994. Has a Consensus NL Generation Architec-
ture Appeared, and is it Psycholinguistically Plausible? In
Proceedings of the Seventh International Workshop on Nat-
ural Language Generation, INLG ’94.
Toivanen, J.; Toivonen, H.; Valitutti, A.; and Gross, O. 2012.
Corpus-Based Generation of Content and Form in Poetry. In
Proceedings of the Third International Conference on Com-
putational Creativity.


