| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef __LINUX_UACCESS_H__ |
| 3 | #define __LINUX_UACCESS_H__ |
| 4 | |
| 5 | #include <linux/cleanup.h> |
| 6 | #include <linux/fault-inject-usercopy.h> |
| 7 | #include <linux/instrumented.h> |
| 8 | #include <linux/minmax.h> |
| 9 | #include <linux/nospec.h> |
| 10 | #include <linux/sched.h> |
| 11 | #include <linux/ucopysize.h> |
| 12 | |
| 13 | #include <asm/uaccess.h> |
| 14 | |
| 15 | /* |
| 16 | * Architectures that support memory tagging (assigning tags to memory regions, |
| 17 | * embedding these tags into addresses that point to these memory regions, and |
| 18 | * checking that the memory and the pointer tags match on memory accesses) |
| 19 | * redefine this macro to strip tags from pointers. |
| 20 | * |
| 21 | * Passing down mm_struct allows to define untagging rules on per-process |
| 22 | * basis. |
| 23 | * |
| 24 | * It's defined as noop for architectures that don't support memory tagging. |
| 25 | */ |
| 26 | #ifndef untagged_addr |
| 27 | #define untagged_addr(addr) (addr) |
| 28 | #endif |
| 29 | |
| 30 | #ifndef untagged_addr_remote |
| 31 | #define untagged_addr_remote(mm, addr) ({ \ |
| 32 | mmap_assert_locked(mm); \ |
| 33 | untagged_addr(addr); \ |
| 34 | }) |
| 35 | #endif |
| 36 | |
| 37 | #ifdef masked_user_access_begin |
| 38 | #define can_do_masked_user_access() 1 |
| 39 | # ifndef masked_user_write_access_begin |
| 40 | # define masked_user_write_access_begin masked_user_access_begin |
| 41 | # endif |
| 42 | # ifndef masked_user_read_access_begin |
| 43 | # define masked_user_read_access_begin masked_user_access_begin |
| 44 | #endif |
| 45 | #else |
| 46 | #define can_do_masked_user_access() 0 |
| 47 | #define masked_user_access_begin(src) NULL |
| 48 | #define masked_user_read_access_begin(src) NULL |
| 49 | #define masked_user_write_access_begin(src) NULL |
| 50 | #define mask_user_address(src) (src) |
| 51 | #endif |
| 52 | |
| 53 | /* |
| 54 | * Architectures should provide two primitives (raw_copy_{to,from}_user()) |
| 55 | * and get rid of their private instances of copy_{to,from}_user() and |
| 56 | * __copy_{to,from}_user{,_inatomic}(). |
| 57 | * |
| 58 | * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and |
| 59 | * return the amount left to copy. They should assume that access_ok() has |
| 60 | * already been checked (and succeeded); they should *not* zero-pad anything. |
| 61 | * No KASAN or object size checks either - those belong here. |
| 62 | * |
| 63 | * Both of these functions should attempt to copy size bytes starting at from |
| 64 | * into the area starting at to. They must not fetch or store anything |
| 65 | * outside of those areas. Return value must be between 0 (everything |
| 66 | * copied successfully) and size (nothing copied). |
| 67 | * |
| 68 | * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting |
| 69 | * at to must become equal to the bytes fetched from the corresponding area |
| 70 | * starting at from. All data past to + size - N must be left unmodified. |
| 71 | * |
| 72 | * If copying succeeds, the return value must be 0. If some data cannot be |
| 73 | * fetched, it is permitted to copy less than had been fetched; the only |
| 74 | * hard requirement is that not storing anything at all (i.e. returning size) |
| 75 | * should happen only when nothing could be copied. In other words, you don't |
| 76 | * have to squeeze as much as possible - it is allowed, but not necessary. |
| 77 | * |
| 78 | * For raw_copy_from_user() to always points to kernel memory and no faults |
| 79 | * on store should happen. Interpretation of from is affected by set_fs(). |
| 80 | * For raw_copy_to_user() it's the other way round. |
| 81 | * |
| 82 | * Both can be inlined - it's up to architectures whether it wants to bother |
| 83 | * with that. They should not be used directly; they are used to implement |
| 84 | * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) |
| 85 | * that are used instead. Out of those, __... ones are inlined. Plain |
| 86 | * copy_{to,from}_user() might or might not be inlined. If you want them |
| 87 | * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. |
| 88 | * |
| 89 | * NOTE: only copy_from_user() zero-pads the destination in case of short copy. |
| 90 | * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything |
| 91 | * at all; their callers absolutely must check the return value. |
| 92 | * |
| 93 | * Biarch ones should also provide raw_copy_in_user() - similar to the above, |
| 94 | * but both source and destination are __user pointers (affected by set_fs() |
| 95 | * as usual) and both source and destination can trigger faults. |
| 96 | */ |
| 97 | |
| 98 | static __always_inline __must_check unsigned long |
| 99 | __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) |
| 100 | { |
| 101 | unsigned long res; |
| 102 | |
| 103 | instrument_copy_from_user_before(to, from, n); |
| 104 | check_object_size(ptr: to, n, to_user: false); |
| 105 | res = raw_copy_from_user(dst: to, src: from, size: n); |
| 106 | instrument_copy_from_user_after(to, from, n, left: res); |
| 107 | return res; |
| 108 | } |
| 109 | |
| 110 | static __always_inline __must_check unsigned long |
| 111 | __copy_from_user(void *to, const void __user *from, unsigned long n) |
| 112 | { |
| 113 | unsigned long res; |
| 114 | |
| 115 | might_fault(); |
| 116 | instrument_copy_from_user_before(to, from, n); |
| 117 | if (should_fail_usercopy()) |
| 118 | return n; |
| 119 | check_object_size(ptr: to, n, to_user: false); |
| 120 | res = raw_copy_from_user(dst: to, src: from, size: n); |
| 121 | instrument_copy_from_user_after(to, from, n, left: res); |
| 122 | return res; |
| 123 | } |
| 124 | |
| 125 | /** |
| 126 | * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. |
| 127 | * @to: Destination address, in user space. |
| 128 | * @from: Source address, in kernel space. |
| 129 | * @n: Number of bytes to copy. |
| 130 | * |
| 131 | * Context: User context only. |
| 132 | * |
| 133 | * Copy data from kernel space to user space. Caller must check |
| 134 | * the specified block with access_ok() before calling this function. |
| 135 | * The caller should also make sure he pins the user space address |
| 136 | * so that we don't result in page fault and sleep. |
| 137 | */ |
| 138 | static __always_inline __must_check unsigned long |
| 139 | __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) |
| 140 | { |
| 141 | if (should_fail_usercopy()) |
| 142 | return n; |
| 143 | instrument_copy_to_user(to, from, n); |
| 144 | check_object_size(ptr: from, n, to_user: true); |
| 145 | return raw_copy_to_user(dst: to, src: from, size: n); |
| 146 | } |
| 147 | |
| 148 | static __always_inline __must_check unsigned long |
| 149 | __copy_to_user(void __user *to, const void *from, unsigned long n) |
| 150 | { |
| 151 | might_fault(); |
| 152 | if (should_fail_usercopy()) |
| 153 | return n; |
| 154 | instrument_copy_to_user(to, from, n); |
| 155 | check_object_size(ptr: from, n, to_user: true); |
| 156 | return raw_copy_to_user(dst: to, src: from, size: n); |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Architectures that #define INLINE_COPY_TO_USER use this function |
| 161 | * directly in the normal copy_to/from_user(), the other ones go |
| 162 | * through an extern _copy_to/from_user(), which expands the same code |
| 163 | * here. |
| 164 | */ |
| 165 | static inline __must_check unsigned long |
| 166 | _inline_copy_from_user(void *to, const void __user *from, unsigned long n) |
| 167 | { |
| 168 | unsigned long res = n; |
| 169 | might_fault(); |
| 170 | if (should_fail_usercopy()) |
| 171 | goto fail; |
| 172 | if (can_do_masked_user_access()) |
| 173 | from = mask_user_address(ptr: from); |
| 174 | else { |
| 175 | if (!access_ok(from, n)) |
| 176 | goto fail; |
| 177 | /* |
| 178 | * Ensure that bad access_ok() speculation will not |
| 179 | * lead to nasty side effects *after* the copy is |
| 180 | * finished: |
| 181 | */ |
| 182 | barrier_nospec(); |
| 183 | } |
| 184 | instrument_copy_from_user_before(to, from, n); |
| 185 | res = raw_copy_from_user(dst: to, src: from, size: n); |
| 186 | instrument_copy_from_user_after(to, from, n, left: res); |
| 187 | if (likely(!res)) |
| 188 | return 0; |
| 189 | fail: |
| 190 | memset(to + (n - res), 0, res); |
| 191 | return res; |
| 192 | } |
| 193 | #ifndef INLINE_COPY_FROM_USER |
| 194 | extern __must_check unsigned long |
| 195 | _copy_from_user(void *, const void __user *, unsigned long); |
| 196 | #endif |
| 197 | |
| 198 | static inline __must_check unsigned long |
| 199 | _inline_copy_to_user(void __user *to, const void *from, unsigned long n) |
| 200 | { |
| 201 | might_fault(); |
| 202 | if (should_fail_usercopy()) |
| 203 | return n; |
| 204 | if (access_ok(to, n)) { |
| 205 | instrument_copy_to_user(to, from, n); |
| 206 | n = raw_copy_to_user(dst: to, src: from, size: n); |
| 207 | } |
| 208 | return n; |
| 209 | } |
| 210 | #ifndef INLINE_COPY_TO_USER |
| 211 | extern __must_check unsigned long |
| 212 | _copy_to_user(void __user *, const void *, unsigned long); |
| 213 | #endif |
| 214 | |
| 215 | static __always_inline unsigned long __must_check |
| 216 | copy_from_user(void *to, const void __user *from, unsigned long n) |
| 217 | { |
| 218 | if (!check_copy_size(addr: to, bytes: n, is_source: false)) |
| 219 | return n; |
| 220 | #ifdef INLINE_COPY_FROM_USER |
| 221 | return _inline_copy_from_user(to, from, n); |
| 222 | #else |
| 223 | return _copy_from_user(to, from, n); |
| 224 | #endif |
| 225 | } |
| 226 | |
| 227 | static __always_inline unsigned long __must_check |
| 228 | copy_to_user(void __user *to, const void *from, unsigned long n) |
| 229 | { |
| 230 | if (!check_copy_size(addr: from, bytes: n, is_source: true)) |
| 231 | return n; |
| 232 | |
| 233 | #ifdef INLINE_COPY_TO_USER |
| 234 | return _inline_copy_to_user(to, from, n); |
| 235 | #else |
| 236 | return _copy_to_user(to, from, n); |
| 237 | #endif |
| 238 | } |
| 239 | |
| 240 | #ifndef copy_mc_to_kernel |
| 241 | /* |
| 242 | * Without arch opt-in this generic copy_mc_to_kernel() will not handle |
| 243 | * #MC (or arch equivalent) during source read. |
| 244 | */ |
| 245 | static inline unsigned long __must_check |
| 246 | copy_mc_to_kernel(void *dst, const void *src, size_t cnt) |
| 247 | { |
| 248 | memcpy(dst, src, cnt); |
| 249 | return 0; |
| 250 | } |
| 251 | #endif |
| 252 | |
| 253 | static __always_inline void pagefault_disabled_inc(void) |
| 254 | { |
| 255 | current->pagefault_disabled++; |
| 256 | } |
| 257 | |
| 258 | static __always_inline void pagefault_disabled_dec(void) |
| 259 | { |
| 260 | current->pagefault_disabled--; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * These routines enable/disable the pagefault handler. If disabled, it will |
| 265 | * not take any locks and go straight to the fixup table. |
| 266 | * |
| 267 | * User access methods will not sleep when called from a pagefault_disabled() |
| 268 | * environment. |
| 269 | */ |
| 270 | static inline void pagefault_disable(void) |
| 271 | { |
| 272 | pagefault_disabled_inc(); |
| 273 | /* |
| 274 | * make sure to have issued the store before a pagefault |
| 275 | * can hit. |
| 276 | */ |
| 277 | barrier(); |
| 278 | } |
| 279 | |
| 280 | static inline void pagefault_enable(void) |
| 281 | { |
| 282 | /* |
| 283 | * make sure to issue those last loads/stores before enabling |
| 284 | * the pagefault handler again. |
| 285 | */ |
| 286 | barrier(); |
| 287 | pagefault_disabled_dec(); |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * Is the pagefault handler disabled? If so, user access methods will not sleep. |
| 292 | */ |
| 293 | static inline bool pagefault_disabled(void) |
| 294 | { |
| 295 | return current->pagefault_disabled != 0; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * The pagefault handler is in general disabled by pagefault_disable() or |
| 300 | * when in irq context (via in_atomic()). |
| 301 | * |
| 302 | * This function should only be used by the fault handlers. Other users should |
| 303 | * stick to pagefault_disabled(). |
| 304 | * Please NEVER use preempt_disable() to disable the fault handler. With |
| 305 | * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. |
| 306 | * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. |
| 307 | */ |
| 308 | #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) |
| 309 | |
| 310 | DEFINE_LOCK_GUARD_0(pagefault, pagefault_disable(), pagefault_enable()) |
| 311 | |
| 312 | #ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS |
| 313 | |
| 314 | /** |
| 315 | * probe_subpage_writeable: probe the user range for write faults at sub-page |
| 316 | * granularity (e.g. arm64 MTE) |
| 317 | * @uaddr: start of address range |
| 318 | * @size: size of address range |
| 319 | * |
| 320 | * Returns 0 on success, the number of bytes not probed on fault. |
| 321 | * |
| 322 | * It is expected that the caller checked for the write permission of each |
| 323 | * page in the range either by put_user() or GUP. The architecture port can |
| 324 | * implement a more efficient get_user() probing if the same sub-page faults |
| 325 | * are triggered by either a read or a write. |
| 326 | */ |
| 327 | static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size) |
| 328 | { |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */ |
| 333 | |
| 334 | #ifndef ARCH_HAS_NOCACHE_UACCESS |
| 335 | |
| 336 | static inline __must_check unsigned long |
| 337 | __copy_from_user_inatomic_nocache(void *to, const void __user *from, |
| 338 | unsigned long n) |
| 339 | { |
| 340 | return __copy_from_user_inatomic(to, from, n); |
| 341 | } |
| 342 | |
| 343 | #endif /* ARCH_HAS_NOCACHE_UACCESS */ |
| 344 | |
| 345 | extern __must_check int check_zeroed_user(const void __user *from, size_t size); |
| 346 | |
| 347 | /** |
| 348 | * copy_struct_from_user: copy a struct from userspace |
| 349 | * @dst: Destination address, in kernel space. This buffer must be @ksize |
| 350 | * bytes long. |
| 351 | * @ksize: Size of @dst struct. |
| 352 | * @src: Source address, in userspace. |
| 353 | * @usize: (Alleged) size of @src struct. |
| 354 | * |
| 355 | * Copies a struct from userspace to kernel space, in a way that guarantees |
| 356 | * backwards-compatibility for struct syscall arguments (as long as future |
| 357 | * struct extensions are made such that all new fields are *appended* to the |
| 358 | * old struct, and zeroed-out new fields have the same meaning as the old |
| 359 | * struct). |
| 360 | * |
| 361 | * @ksize is just sizeof(*dst), and @usize should've been passed by userspace. |
| 362 | * The recommended usage is something like the following: |
| 363 | * |
| 364 | * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize) |
| 365 | * { |
| 366 | * int err; |
| 367 | * struct foo karg = {}; |
| 368 | * |
| 369 | * if (usize > PAGE_SIZE) |
| 370 | * return -E2BIG; |
| 371 | * if (usize < FOO_SIZE_VER0) |
| 372 | * return -EINVAL; |
| 373 | * |
| 374 | * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); |
| 375 | * if (err) |
| 376 | * return err; |
| 377 | * |
| 378 | * // ... |
| 379 | * } |
| 380 | * |
| 381 | * There are three cases to consider: |
| 382 | * * If @usize == @ksize, then it's copied verbatim. |
| 383 | * * If @usize < @ksize, then the userspace has passed an old struct to a |
| 384 | * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize) |
| 385 | * are to be zero-filled. |
| 386 | * * If @usize > @ksize, then the userspace has passed a new struct to an |
| 387 | * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize) |
| 388 | * are checked to ensure they are zeroed, otherwise -E2BIG is returned. |
| 389 | * |
| 390 | * Returns (in all cases, some data may have been copied): |
| 391 | * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src. |
| 392 | * * -EFAULT: access to userspace failed. |
| 393 | */ |
| 394 | static __always_inline __must_check int |
| 395 | copy_struct_from_user(void *dst, size_t ksize, const void __user *src, |
| 396 | size_t usize) |
| 397 | { |
| 398 | size_t size = min(ksize, usize); |
| 399 | size_t rest = max(ksize, usize) - size; |
| 400 | |
| 401 | /* Double check if ksize is larger than a known object size. */ |
| 402 | if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1))) |
| 403 | return -E2BIG; |
| 404 | |
| 405 | /* Deal with trailing bytes. */ |
| 406 | if (usize < ksize) { |
| 407 | memset(dst + size, 0, rest); |
| 408 | } else if (usize > ksize) { |
| 409 | int ret = check_zeroed_user(from: src + size, size: rest); |
| 410 | if (ret <= 0) |
| 411 | return ret ?: -E2BIG; |
| 412 | } |
| 413 | /* Copy the interoperable parts of the struct. */ |
| 414 | if (copy_from_user(to: dst, from: src, n: size)) |
| 415 | return -EFAULT; |
| 416 | return 0; |
| 417 | } |
| 418 | |
| 419 | /** |
| 420 | * copy_struct_to_user: copy a struct to userspace |
| 421 | * @dst: Destination address, in userspace. This buffer must be @ksize |
| 422 | * bytes long. |
| 423 | * @usize: (Alleged) size of @dst struct. |
| 424 | * @src: Source address, in kernel space. |
| 425 | * @ksize: Size of @src struct. |
| 426 | * @ignored_trailing: Set to %true if there was a non-zero byte in @src that |
| 427 | * userspace cannot see because they are using an smaller struct. |
| 428 | * |
| 429 | * Copies a struct from kernel space to userspace, in a way that guarantees |
| 430 | * backwards-compatibility for struct syscall arguments (as long as future |
| 431 | * struct extensions are made such that all new fields are *appended* to the |
| 432 | * old struct, and zeroed-out new fields have the same meaning as the old |
| 433 | * struct). |
| 434 | * |
| 435 | * Some syscalls may wish to make sure that userspace knows about everything in |
| 436 | * the struct, and if there is a non-zero value that userspce doesn't know |
| 437 | * about, they want to return an error (such as -EMSGSIZE) or have some other |
| 438 | * fallback (such as adding a "you're missing some information" flag). If |
| 439 | * @ignored_trailing is non-%NULL, it will be set to %true if there was a |
| 440 | * non-zero byte that could not be copied to userspace (ie. was past @usize). |
| 441 | * |
| 442 | * While unconditionally returning an error in this case is the simplest |
| 443 | * solution, for maximum backward compatibility you should try to only return |
| 444 | * -EMSGSIZE if the user explicitly requested the data that couldn't be copied. |
| 445 | * Note that structure sizes can change due to header changes and simple |
| 446 | * recompilations without code changes(!), so if you care about |
| 447 | * @ignored_trailing you probably want to make sure that any new field data is |
| 448 | * associated with a flag. Otherwise you might assume that a program knows |
| 449 | * about data it does not. |
| 450 | * |
| 451 | * @ksize is just sizeof(*src), and @usize should've been passed by userspace. |
| 452 | * The recommended usage is something like the following: |
| 453 | * |
| 454 | * SYSCALL_DEFINE2(foobar, struct foo __user *, uarg, size_t, usize) |
| 455 | * { |
| 456 | * int err; |
| 457 | * bool ignored_trailing; |
| 458 | * struct foo karg = {}; |
| 459 | * |
| 460 | * if (usize > PAGE_SIZE) |
| 461 | * return -E2BIG; |
| 462 | * if (usize < FOO_SIZE_VER0) |
| 463 | * return -EINVAL; |
| 464 | * |
| 465 | * // ... modify karg somehow ... |
| 466 | * |
| 467 | * err = copy_struct_to_user(uarg, usize, &karg, sizeof(karg), |
| 468 | * &ignored_trailing); |
| 469 | * if (err) |
| 470 | * return err; |
| 471 | * if (ignored_trailing) |
| 472 | * return -EMSGSIZE: |
| 473 | * |
| 474 | * // ... |
| 475 | * } |
| 476 | * |
| 477 | * There are three cases to consider: |
| 478 | * * If @usize == @ksize, then it's copied verbatim. |
| 479 | * * If @usize < @ksize, then the kernel is trying to pass userspace a newer |
| 480 | * struct than it supports. Thus we only copy the interoperable portions |
| 481 | * (@usize) and ignore the rest (but @ignored_trailing is set to %true if |
| 482 | * any of the trailing (@ksize - @usize) bytes are non-zero). |
| 483 | * * If @usize > @ksize, then the kernel is trying to pass userspace an older |
| 484 | * struct than userspace supports. In order to make sure the |
| 485 | * unknown-to-the-kernel fields don't contain garbage values, we zero the |
| 486 | * trailing (@usize - @ksize) bytes. |
| 487 | * |
| 488 | * Returns (in all cases, some data may have been copied): |
| 489 | * * -EFAULT: access to userspace failed. |
| 490 | */ |
| 491 | static __always_inline __must_check int |
| 492 | copy_struct_to_user(void __user *dst, size_t usize, const void *src, |
| 493 | size_t ksize, bool *ignored_trailing) |
| 494 | { |
| 495 | size_t size = min(ksize, usize); |
| 496 | size_t rest = max(ksize, usize) - size; |
| 497 | |
| 498 | /* Double check if ksize is larger than a known object size. */ |
| 499 | if (WARN_ON_ONCE(ksize > __builtin_object_size(src, 1))) |
| 500 | return -E2BIG; |
| 501 | |
| 502 | /* Deal with trailing bytes. */ |
| 503 | if (usize > ksize) { |
| 504 | if (clear_user(to: dst + size, n: rest)) |
| 505 | return -EFAULT; |
| 506 | } |
| 507 | if (ignored_trailing) |
| 508 | *ignored_trailing = ksize < usize && |
| 509 | memchr_inv(p: src + size, c: 0, size: rest) != NULL; |
| 510 | /* Copy the interoperable parts of the struct. */ |
| 511 | if (copy_to_user(to: dst, from: src, n: size)) |
| 512 | return -EFAULT; |
| 513 | return 0; |
| 514 | } |
| 515 | |
| 516 | bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size); |
| 517 | |
| 518 | long copy_from_kernel_nofault(void *dst, const void *src, size_t size); |
| 519 | long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size); |
| 520 | |
| 521 | long copy_from_user_nofault(void *dst, const void __user *src, size_t size); |
| 522 | long notrace copy_to_user_nofault(void __user *dst, const void *src, |
| 523 | size_t size); |
| 524 | |
| 525 | long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr, |
| 526 | long count); |
| 527 | |
| 528 | long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr, |
| 529 | long count); |
| 530 | long strnlen_user_nofault(const void __user *unsafe_addr, long count); |
| 531 | |
| 532 | #ifdef arch_get_kernel_nofault |
| 533 | /* |
| 534 | * Wrap the architecture implementation so that @label can be outside of a |
| 535 | * cleanup() scope. A regular C goto works correctly, but ASM goto does |
| 536 | * not. Clang rejects such an attempt, but GCC silently emits buggy code. |
| 537 | */ |
| 538 | #define __get_kernel_nofault(dst, src, type, label) \ |
| 539 | do { \ |
| 540 | __label__ local_label; \ |
| 541 | arch_get_kernel_nofault(dst, src, type, local_label); \ |
| 542 | if (0) { \ |
| 543 | local_label: \ |
| 544 | goto label; \ |
| 545 | } \ |
| 546 | } while (0) |
| 547 | |
| 548 | #define __put_kernel_nofault(dst, src, type, label) \ |
| 549 | do { \ |
| 550 | __label__ local_label; \ |
| 551 | arch_put_kernel_nofault(dst, src, type, local_label); \ |
| 552 | if (0) { \ |
| 553 | local_label: \ |
| 554 | goto label; \ |
| 555 | } \ |
| 556 | } while (0) |
| 557 | |
| 558 | #elif !defined(__get_kernel_nofault) /* arch_get_kernel_nofault */ |
| 559 | |
| 560 | #define __get_kernel_nofault(dst, src, type, label) \ |
| 561 | do { \ |
| 562 | type __user *p = (type __force __user *)(src); \ |
| 563 | type data; \ |
| 564 | if (__get_user(data, p)) \ |
| 565 | goto label; \ |
| 566 | *(type *)dst = data; \ |
| 567 | } while (0) |
| 568 | |
| 569 | #define __put_kernel_nofault(dst, src, type, label) \ |
| 570 | do { \ |
| 571 | type __user *p = (type __force __user *)(dst); \ |
| 572 | type data = *(type *)src; \ |
| 573 | if (__put_user(data, p)) \ |
| 574 | goto label; \ |
| 575 | } while (0) |
| 576 | |
| 577 | #endif /* !__get_kernel_nofault */ |
| 578 | |
| 579 | /** |
| 580 | * get_kernel_nofault(): safely attempt to read from a location |
| 581 | * @val: read into this variable |
| 582 | * @ptr: address to read from |
| 583 | * |
| 584 | * Returns 0 on success, or -EFAULT. |
| 585 | */ |
| 586 | #define get_kernel_nofault(val, ptr) ({ \ |
| 587 | const typeof(val) *__gk_ptr = (ptr); \ |
| 588 | copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\ |
| 589 | }) |
| 590 | |
| 591 | #ifdef user_access_begin |
| 592 | |
| 593 | #ifdef arch_unsafe_get_user |
| 594 | /* |
| 595 | * Wrap the architecture implementation so that @label can be outside of a |
| 596 | * cleanup() scope. A regular C goto works correctly, but ASM goto does |
| 597 | * not. Clang rejects such an attempt, but GCC silently emits buggy code. |
| 598 | * |
| 599 | * Some architectures use internal local labels already, but this extra |
| 600 | * indirection here is harmless because the compiler optimizes it out |
| 601 | * completely in any case. This construct just ensures that the ASM GOTO |
| 602 | * target is always in the local scope. The C goto 'label' works correctly |
| 603 | * when leaving a cleanup() scope. |
| 604 | */ |
| 605 | #define unsafe_get_user(x, ptr, label) \ |
| 606 | do { \ |
| 607 | __label__ local_label; \ |
| 608 | arch_unsafe_get_user(x, ptr, local_label); \ |
| 609 | if (0) { \ |
| 610 | local_label: \ |
| 611 | goto label; \ |
| 612 | } \ |
| 613 | } while (0) |
| 614 | |
| 615 | #define unsafe_put_user(x, ptr, label) \ |
| 616 | do { \ |
| 617 | __label__ local_label; \ |
| 618 | arch_unsafe_put_user(x, ptr, local_label); \ |
| 619 | if (0) { \ |
| 620 | local_label: \ |
| 621 | goto label; \ |
| 622 | } \ |
| 623 | } while (0) |
| 624 | #endif /* arch_unsafe_get_user */ |
| 625 | |
| 626 | #else /* user_access_begin */ |
| 627 | #define user_access_begin(ptr,len) access_ok(ptr, len) |
| 628 | #define user_access_end() do { } while (0) |
| 629 | #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0) |
| 630 | #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e) |
| 631 | #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e) |
| 632 | #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e) |
| 633 | #define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e) |
| 634 | static inline unsigned long user_access_save(void) { return 0UL; } |
| 635 | static inline void user_access_restore(unsigned long flags) { } |
| 636 | #endif /* !user_access_begin */ |
| 637 | |
| 638 | #ifndef user_write_access_begin |
| 639 | #define user_write_access_begin user_access_begin |
| 640 | #define user_write_access_end user_access_end |
| 641 | #endif |
| 642 | #ifndef user_read_access_begin |
| 643 | #define user_read_access_begin user_access_begin |
| 644 | #define user_read_access_end user_access_end |
| 645 | #endif |
| 646 | |
| 647 | /* Define RW variant so the below _mode macro expansion works */ |
| 648 | #define masked_user_rw_access_begin(u) masked_user_access_begin(u) |
| 649 | #define user_rw_access_begin(u, s) user_access_begin(u, s) |
| 650 | #define user_rw_access_end() user_access_end() |
| 651 | |
| 652 | /* Scoped user access */ |
| 653 | #define USER_ACCESS_GUARD(_mode) \ |
| 654 | static __always_inline void __user * \ |
| 655 | class_user_##_mode##_begin(void __user *ptr) \ |
| 656 | { \ |
| 657 | return ptr; \ |
| 658 | } \ |
| 659 | \ |
| 660 | static __always_inline void \ |
| 661 | class_user_##_mode##_end(void __user *ptr) \ |
| 662 | { \ |
| 663 | user_##_mode##_access_end(); \ |
| 664 | } \ |
| 665 | \ |
| 666 | DEFINE_CLASS(user_ ##_mode## _access, void __user *, \ |
| 667 | class_user_##_mode##_end(_T), \ |
| 668 | class_user_##_mode##_begin(ptr), void __user *ptr) \ |
| 669 | \ |
| 670 | static __always_inline class_user_##_mode##_access_t \ |
| 671 | class_user_##_mode##_access_ptr(void __user *scope) \ |
| 672 | { \ |
| 673 | return scope; \ |
| 674 | } |
| 675 | |
| 676 | USER_ACCESS_GUARD(read) |
| 677 | USER_ACCESS_GUARD(write) |
| 678 | USER_ACCESS_GUARD(rw) |
| 679 | #undef USER_ACCESS_GUARD |
| 680 | |
| 681 | /** |
| 682 | * __scoped_user_access_begin - Start a scoped user access |
| 683 | * @mode: The mode of the access class (read, write, rw) |
| 684 | * @uptr: The pointer to access user space memory |
| 685 | * @size: Size of the access |
| 686 | * @elbl: Error label to goto when the access region is rejected |
| 687 | * |
| 688 | * Internal helper for __scoped_user_access(). Don't use directly. |
| 689 | */ |
| 690 | #define __scoped_user_access_begin(mode, uptr, size, elbl) \ |
| 691 | ({ \ |
| 692 | typeof(uptr) __retptr; \ |
| 693 | \ |
| 694 | if (can_do_masked_user_access()) { \ |
| 695 | __retptr = masked_user_##mode##_access_begin(uptr); \ |
| 696 | } else { \ |
| 697 | __retptr = uptr; \ |
| 698 | if (!user_##mode##_access_begin(uptr, size)) \ |
| 699 | goto elbl; \ |
| 700 | } \ |
| 701 | __retptr; \ |
| 702 | }) |
| 703 | |
| 704 | /** |
| 705 | * __scoped_user_access - Open a scope for user access |
| 706 | * @mode: The mode of the access class (read, write, rw) |
| 707 | * @uptr: The pointer to access user space memory |
| 708 | * @size: Size of the access |
| 709 | * @elbl: Error label to goto when the access region is rejected. It |
| 710 | * must be placed outside the scope |
| 711 | * |
| 712 | * If the user access function inside the scope requires a fault label, it |
| 713 | * can use @elbl or a different label outside the scope, which requires |
| 714 | * that user access which is implemented with ASM GOTO has been properly |
| 715 | * wrapped. See unsafe_get_user() for reference. |
| 716 | * |
| 717 | * scoped_user_rw_access(ptr, efault) { |
| 718 | * unsafe_get_user(rval, &ptr->rval, efault); |
| 719 | * unsafe_put_user(wval, &ptr->wval, efault); |
| 720 | * } |
| 721 | * return 0; |
| 722 | * efault: |
| 723 | * return -EFAULT; |
| 724 | * |
| 725 | * The scope is internally implemented as a autoterminating nested for() |
| 726 | * loop, which can be left with 'return', 'break' and 'goto' at any |
| 727 | * point. |
| 728 | * |
| 729 | * When the scope is left user_##@_mode##_access_end() is automatically |
| 730 | * invoked. |
| 731 | * |
| 732 | * When the architecture supports masked user access and the access region |
| 733 | * which is determined by @uptr and @size is not a valid user space |
| 734 | * address, i.e. < TASK_SIZE, the scope sets the pointer to a faulting user |
| 735 | * space address and does not terminate early. This optimizes for the good |
| 736 | * case and lets the performance uncritical bad case go through the fault. |
| 737 | * |
| 738 | * The eventual modification of the pointer is limited to the scope. |
| 739 | * Outside of the scope the original pointer value is unmodified, so that |
| 740 | * the original pointer value is available for diagnostic purposes in an |
| 741 | * out of scope fault path. |
| 742 | * |
| 743 | * Nesting scoped user access into a user access scope is invalid and fails |
| 744 | * the build. Nesting into other guards, e.g. pagefault is safe. |
| 745 | * |
| 746 | * The masked variant does not check the size of the access and relies on a |
| 747 | * mapping hole (e.g. guard page) to catch an out of range pointer, the |
| 748 | * first access to user memory inside the scope has to be within |
| 749 | * @uptr ... @uptr + PAGE_SIZE - 1 |
| 750 | * |
| 751 | * Don't use directly. Use scoped_masked_user_$MODE_access() instead. |
| 752 | */ |
| 753 | #define __scoped_user_access(mode, uptr, size, elbl) \ |
| 754 | for (bool done = false; !done; done = true) \ |
| 755 | for (void __user *_tmpptr = __scoped_user_access_begin(mode, uptr, size, elbl); \ |
| 756 | !done; done = true) \ |
| 757 | for (CLASS(user_##mode##_access, scope)(_tmpptr); !done; done = true) \ |
| 758 | /* Force modified pointer usage within the scope */ \ |
| 759 | for (const typeof(uptr) uptr = _tmpptr; !done; done = true) |
| 760 | |
| 761 | /** |
| 762 | * scoped_user_read_access_size - Start a scoped user read access with given size |
| 763 | * @usrc: Pointer to the user space address to read from |
| 764 | * @size: Size of the access starting from @usrc |
| 765 | * @elbl: Error label to goto when the access region is rejected |
| 766 | * |
| 767 | * For further information see __scoped_user_access() above. |
| 768 | */ |
| 769 | #define scoped_user_read_access_size(usrc, size, elbl) \ |
| 770 | __scoped_user_access(read, usrc, size, elbl) |
| 771 | |
| 772 | /** |
| 773 | * scoped_user_read_access - Start a scoped user read access |
| 774 | * @usrc: Pointer to the user space address to read from |
| 775 | * @elbl: Error label to goto when the access region is rejected |
| 776 | * |
| 777 | * The size of the access starting from @usrc is determined via sizeof(*@usrc)). |
| 778 | * |
| 779 | * For further information see __scoped_user_access() above. |
| 780 | */ |
| 781 | #define scoped_user_read_access(usrc, elbl) \ |
| 782 | scoped_user_read_access_size(usrc, sizeof(*(usrc)), elbl) |
| 783 | |
| 784 | /** |
| 785 | * scoped_user_write_access_size - Start a scoped user write access with given size |
| 786 | * @udst: Pointer to the user space address to write to |
| 787 | * @size: Size of the access starting from @udst |
| 788 | * @elbl: Error label to goto when the access region is rejected |
| 789 | * |
| 790 | * For further information see __scoped_user_access() above. |
| 791 | */ |
| 792 | #define scoped_user_write_access_size(udst, size, elbl) \ |
| 793 | __scoped_user_access(write, udst, size, elbl) |
| 794 | |
| 795 | /** |
| 796 | * scoped_user_write_access - Start a scoped user write access |
| 797 | * @udst: Pointer to the user space address to write to |
| 798 | * @elbl: Error label to goto when the access region is rejected |
| 799 | * |
| 800 | * The size of the access starting from @udst is determined via sizeof(*@udst)). |
| 801 | * |
| 802 | * For further information see __scoped_user_access() above. |
| 803 | */ |
| 804 | #define scoped_user_write_access(udst, elbl) \ |
| 805 | scoped_user_write_access_size(udst, sizeof(*(udst)), elbl) |
| 806 | |
| 807 | /** |
| 808 | * scoped_user_rw_access_size - Start a scoped user read/write access with given size |
| 809 | * @uptr Pointer to the user space address to read from and write to |
| 810 | * @size: Size of the access starting from @uptr |
| 811 | * @elbl: Error label to goto when the access region is rejected |
| 812 | * |
| 813 | * For further information see __scoped_user_access() above. |
| 814 | */ |
| 815 | #define scoped_user_rw_access_size(uptr, size, elbl) \ |
| 816 | __scoped_user_access(rw, uptr, size, elbl) |
| 817 | |
| 818 | /** |
| 819 | * scoped_user_rw_access - Start a scoped user read/write access |
| 820 | * @uptr Pointer to the user space address to read from and write to |
| 821 | * @elbl: Error label to goto when the access region is rejected |
| 822 | * |
| 823 | * The size of the access starting from @uptr is determined via sizeof(*@uptr)). |
| 824 | * |
| 825 | * For further information see __scoped_user_access() above. |
| 826 | */ |
| 827 | #define scoped_user_rw_access(uptr, elbl) \ |
| 828 | scoped_user_rw_access_size(uptr, sizeof(*(uptr)), elbl) |
| 829 | |
| 830 | /** |
| 831 | * get_user_inline - Read user data inlined |
| 832 | * @val: The variable to store the value read from user memory |
| 833 | * @usrc: Pointer to the user space memory to read from |
| 834 | * |
| 835 | * Return: 0 if successful, -EFAULT when faulted |
| 836 | * |
| 837 | * Inlined variant of get_user(). Only use when there is a demonstrable |
| 838 | * performance reason. |
| 839 | */ |
| 840 | #define get_user_inline(val, usrc) \ |
| 841 | ({ \ |
| 842 | __label__ efault; \ |
| 843 | typeof(usrc) _tmpsrc = usrc; \ |
| 844 | int _ret = 0; \ |
| 845 | \ |
| 846 | scoped_user_read_access(_tmpsrc, efault) \ |
| 847 | unsafe_get_user(val, _tmpsrc, efault); \ |
| 848 | if (0) { \ |
| 849 | efault: \ |
| 850 | _ret = -EFAULT; \ |
| 851 | } \ |
| 852 | _ret; \ |
| 853 | }) |
| 854 | |
| 855 | /** |
| 856 | * put_user_inline - Write to user memory inlined |
| 857 | * @val: The value to write |
| 858 | * @udst: Pointer to the user space memory to write to |
| 859 | * |
| 860 | * Return: 0 if successful, -EFAULT when faulted |
| 861 | * |
| 862 | * Inlined variant of put_user(). Only use when there is a demonstrable |
| 863 | * performance reason. |
| 864 | */ |
| 865 | #define put_user_inline(val, udst) \ |
| 866 | ({ \ |
| 867 | __label__ efault; \ |
| 868 | typeof(udst) _tmpdst = udst; \ |
| 869 | int _ret = 0; \ |
| 870 | \ |
| 871 | scoped_user_write_access(_tmpdst, efault) \ |
| 872 | unsafe_put_user(val, _tmpdst, efault); \ |
| 873 | if (0) { \ |
| 874 | efault: \ |
| 875 | _ret = -EFAULT; \ |
| 876 | } \ |
| 877 | _ret; \ |
| 878 | }) |
| 879 | |
| 880 | #ifdef CONFIG_HARDENED_USERCOPY |
| 881 | void __noreturn usercopy_abort(const char *name, const char *detail, |
| 882 | bool to_user, unsigned long offset, |
| 883 | unsigned long len); |
| 884 | #endif |
| 885 | |
| 886 | #endif /* __LINUX_UACCESS_H__ */ |
| 887 | |