| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Virtual PTP 1588 clock for use with LM-safe VMclock device. |
| 4 | * |
| 5 | * Copyright © 2024 Amazon.com, Inc. or its affiliates. |
| 6 | */ |
| 7 | |
| 8 | #include <linux/acpi.h> |
| 9 | #include <linux/device.h> |
| 10 | #include <linux/err.h> |
| 11 | #include <linux/file.h> |
| 12 | #include <linux/fs.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/miscdevice.h> |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/module.h> |
| 18 | #include <linux/platform_device.h> |
| 19 | #include <linux/slab.h> |
| 20 | |
| 21 | #include <uapi/linux/vmclock-abi.h> |
| 22 | |
| 23 | #include <linux/ptp_clock_kernel.h> |
| 24 | |
| 25 | #ifdef CONFIG_X86 |
| 26 | #include <asm/pvclock.h> |
| 27 | #include <asm/kvmclock.h> |
| 28 | #endif |
| 29 | |
| 30 | #ifdef CONFIG_KVM_GUEST |
| 31 | #define SUPPORT_KVMCLOCK |
| 32 | #endif |
| 33 | |
| 34 | static DEFINE_IDA(vmclock_ida); |
| 35 | |
| 36 | ACPI_MODULE_NAME("vmclock" ); |
| 37 | |
| 38 | struct vmclock_state { |
| 39 | struct resource res; |
| 40 | struct vmclock_abi *clk; |
| 41 | struct miscdevice miscdev; |
| 42 | struct ptp_clock_info ptp_clock_info; |
| 43 | struct ptp_clock *ptp_clock; |
| 44 | enum clocksource_ids cs_id, sys_cs_id; |
| 45 | int index; |
| 46 | char *name; |
| 47 | }; |
| 48 | |
| 49 | #define VMCLOCK_MAX_WAIT ms_to_ktime(100) |
| 50 | |
| 51 | /* Require at least the flags field to be present. All else can be optional. */ |
| 52 | #define VMCLOCK_MIN_SIZE offsetof(struct vmclock_abi, pad) |
| 53 | |
| 54 | #define VMCLOCK_FIELD_PRESENT(_c, _f) \ |
| 55 | (le32_to_cpu((_c)->size) >= (offsetof(struct vmclock_abi, _f) + \ |
| 56 | sizeof((_c)->_f))) |
| 57 | |
| 58 | /* |
| 59 | * Multiply a 64-bit count by a 64-bit tick 'period' in units of seconds >> 64 |
| 60 | * and add the fractional second part of the reference time. |
| 61 | * |
| 62 | * The result is a 128-bit value, the top 64 bits of which are seconds, and |
| 63 | * the low 64 bits are (seconds >> 64). |
| 64 | */ |
| 65 | static uint64_t mul_u64_u64_shr_add_u64(uint64_t *res_hi, uint64_t delta, |
| 66 | uint64_t period, uint8_t shift, |
| 67 | uint64_t frac_sec) |
| 68 | { |
| 69 | unsigned __int128 res = (unsigned __int128)delta * period; |
| 70 | |
| 71 | res >>= shift; |
| 72 | res += frac_sec; |
| 73 | *res_hi = res >> 64; |
| 74 | return (uint64_t)res; |
| 75 | } |
| 76 | |
| 77 | static bool tai_adjust(struct vmclock_abi *clk, uint64_t *sec) |
| 78 | { |
| 79 | if (likely(clk->time_type == VMCLOCK_TIME_UTC)) |
| 80 | return true; |
| 81 | |
| 82 | if (clk->time_type == VMCLOCK_TIME_TAI && |
| 83 | (le64_to_cpu(clk->flags) & VMCLOCK_FLAG_TAI_OFFSET_VALID)) { |
| 84 | if (sec) |
| 85 | *sec += (int16_t)le16_to_cpu(clk->tai_offset_sec); |
| 86 | return true; |
| 87 | } |
| 88 | return false; |
| 89 | } |
| 90 | |
| 91 | static int vmclock_get_crosststamp(struct vmclock_state *st, |
| 92 | struct ptp_system_timestamp *sts, |
| 93 | struct system_counterval_t *system_counter, |
| 94 | struct timespec64 *tspec) |
| 95 | { |
| 96 | ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT); |
| 97 | struct system_time_snapshot systime_snapshot; |
| 98 | uint64_t cycle, delta, seq, frac_sec; |
| 99 | |
| 100 | #ifdef CONFIG_X86 |
| 101 | /* |
| 102 | * We'd expect the hypervisor to know this and to report the clock |
| 103 | * status as VMCLOCK_STATUS_UNRELIABLE. But be paranoid. |
| 104 | */ |
| 105 | if (check_tsc_unstable()) |
| 106 | return -EINVAL; |
| 107 | #endif |
| 108 | |
| 109 | while (1) { |
| 110 | seq = le32_to_cpu(st->clk->seq_count) & ~1ULL; |
| 111 | |
| 112 | /* |
| 113 | * This pairs with a write barrier in the hypervisor |
| 114 | * which populates this structure. |
| 115 | */ |
| 116 | virt_rmb(); |
| 117 | |
| 118 | if (st->clk->clock_status == VMCLOCK_STATUS_UNRELIABLE) |
| 119 | return -EINVAL; |
| 120 | |
| 121 | /* |
| 122 | * When invoked for gettimex64(), fill in the pre/post system |
| 123 | * times. The simple case is when system time is based on the |
| 124 | * same counter as st->cs_id, in which case all three times |
| 125 | * will be derived from the *same* counter value. |
| 126 | * |
| 127 | * If the system isn't using the same counter, then the value |
| 128 | * from ktime_get_snapshot() will still be used as pre_ts, and |
| 129 | * ptp_read_system_postts() is called to populate postts after |
| 130 | * calling get_cycles(). |
| 131 | * |
| 132 | * The conversion to timespec64 happens further down, outside |
| 133 | * the seq_count loop. |
| 134 | */ |
| 135 | if (sts) { |
| 136 | ktime_get_snapshot(systime_snapshot: &systime_snapshot); |
| 137 | if (systime_snapshot.cs_id == st->cs_id) { |
| 138 | cycle = systime_snapshot.cycles; |
| 139 | } else { |
| 140 | cycle = get_cycles(); |
| 141 | ptp_read_system_postts(sts); |
| 142 | } |
| 143 | } else { |
| 144 | cycle = get_cycles(); |
| 145 | } |
| 146 | |
| 147 | delta = cycle - le64_to_cpu(st->clk->counter_value); |
| 148 | |
| 149 | frac_sec = mul_u64_u64_shr_add_u64(res_hi: &tspec->tv_sec, delta, |
| 150 | le64_to_cpu(st->clk->counter_period_frac_sec), |
| 151 | shift: st->clk->counter_period_shift, |
| 152 | le64_to_cpu(st->clk->time_frac_sec)); |
| 153 | tspec->tv_nsec = mul_u64_u64_shr(a: frac_sec, NSEC_PER_SEC, shift: 64); |
| 154 | tspec->tv_sec += le64_to_cpu(st->clk->time_sec); |
| 155 | |
| 156 | if (!tai_adjust(clk: st->clk, sec: &tspec->tv_sec)) |
| 157 | return -EINVAL; |
| 158 | |
| 159 | /* |
| 160 | * This pairs with a write barrier in the hypervisor |
| 161 | * which populates this structure. |
| 162 | */ |
| 163 | virt_rmb(); |
| 164 | if (seq == le32_to_cpu(st->clk->seq_count)) |
| 165 | break; |
| 166 | |
| 167 | if (ktime_after(cmp1: ktime_get(), cmp2: deadline)) |
| 168 | return -ETIMEDOUT; |
| 169 | } |
| 170 | |
| 171 | if (system_counter) { |
| 172 | system_counter->cycles = cycle; |
| 173 | system_counter->cs_id = st->cs_id; |
| 174 | } |
| 175 | |
| 176 | if (sts) { |
| 177 | sts->pre_ts = ktime_to_timespec64(systime_snapshot.real); |
| 178 | if (systime_snapshot.cs_id == st->cs_id) |
| 179 | sts->post_ts = sts->pre_ts; |
| 180 | } |
| 181 | |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | #ifdef SUPPORT_KVMCLOCK |
| 186 | /* |
| 187 | * In the case where the system is using the KVM clock for timekeeping, convert |
| 188 | * the TSC value into a KVM clock time in order to return a paired reading that |
| 189 | * get_device_system_crosststamp() can cope with. |
| 190 | */ |
| 191 | static int vmclock_get_crosststamp_kvmclock(struct vmclock_state *st, |
| 192 | struct ptp_system_timestamp *sts, |
| 193 | struct system_counterval_t *system_counter, |
| 194 | struct timespec64 *tspec) |
| 195 | { |
| 196 | struct pvclock_vcpu_time_info *pvti = this_cpu_pvti(); |
| 197 | unsigned int pvti_ver; |
| 198 | int ret; |
| 199 | |
| 200 | preempt_disable_notrace(); |
| 201 | |
| 202 | do { |
| 203 | pvti_ver = pvclock_read_begin(src: pvti); |
| 204 | |
| 205 | ret = vmclock_get_crosststamp(st, sts, system_counter, tspec); |
| 206 | if (ret) |
| 207 | break; |
| 208 | |
| 209 | system_counter->cycles = __pvclock_read_cycles(src: pvti, |
| 210 | tsc: system_counter->cycles); |
| 211 | system_counter->cs_id = CSID_X86_KVM_CLK; |
| 212 | |
| 213 | /* |
| 214 | * This retry should never really happen; if the TSC is |
| 215 | * stable and reliable enough across vCPUS that it is sane |
| 216 | * for the hypervisor to expose a VMCLOCK device which uses |
| 217 | * it as the reference counter, then the KVM clock sohuld be |
| 218 | * in 'master clock mode' and basically never changed. But |
| 219 | * the KVM clock is a fickle and often broken thing, so do |
| 220 | * it "properly" just in case. |
| 221 | */ |
| 222 | } while (pvclock_read_retry(src: pvti, version: pvti_ver)); |
| 223 | |
| 224 | preempt_enable_notrace(); |
| 225 | |
| 226 | return ret; |
| 227 | } |
| 228 | #endif |
| 229 | |
| 230 | static int ptp_vmclock_get_time_fn(ktime_t *device_time, |
| 231 | struct system_counterval_t *system_counter, |
| 232 | void *ctx) |
| 233 | { |
| 234 | struct vmclock_state *st = ctx; |
| 235 | struct timespec64 tspec; |
| 236 | int ret; |
| 237 | |
| 238 | #ifdef SUPPORT_KVMCLOCK |
| 239 | if (READ_ONCE(st->sys_cs_id) == CSID_X86_KVM_CLK) |
| 240 | ret = vmclock_get_crosststamp_kvmclock(st, NULL, system_counter, |
| 241 | tspec: &tspec); |
| 242 | else |
| 243 | #endif |
| 244 | ret = vmclock_get_crosststamp(st, NULL, system_counter, tspec: &tspec); |
| 245 | |
| 246 | if (!ret) |
| 247 | *device_time = timespec64_to_ktime(ts: tspec); |
| 248 | |
| 249 | return ret; |
| 250 | } |
| 251 | |
| 252 | static int ptp_vmclock_getcrosststamp(struct ptp_clock_info *ptp, |
| 253 | struct system_device_crosststamp *xtstamp) |
| 254 | { |
| 255 | struct vmclock_state *st = container_of(ptp, struct vmclock_state, |
| 256 | ptp_clock_info); |
| 257 | int ret = get_device_system_crosststamp(get_time_fn: ptp_vmclock_get_time_fn, ctx: st, |
| 258 | NULL, xtstamp); |
| 259 | #ifdef SUPPORT_KVMCLOCK |
| 260 | /* |
| 261 | * On x86, the KVM clock may be used for the system time. We can |
| 262 | * actually convert a TSC reading to that, and return a paired |
| 263 | * timestamp that get_device_system_crosststamp() *can* handle. |
| 264 | */ |
| 265 | if (ret == -ENODEV) { |
| 266 | struct system_time_snapshot systime_snapshot; |
| 267 | |
| 268 | ktime_get_snapshot(systime_snapshot: &systime_snapshot); |
| 269 | |
| 270 | if (systime_snapshot.cs_id == CSID_X86_TSC || |
| 271 | systime_snapshot.cs_id == CSID_X86_KVM_CLK) { |
| 272 | WRITE_ONCE(st->sys_cs_id, systime_snapshot.cs_id); |
| 273 | ret = get_device_system_crosststamp(get_time_fn: ptp_vmclock_get_time_fn, |
| 274 | ctx: st, NULL, xtstamp); |
| 275 | } |
| 276 | } |
| 277 | #endif |
| 278 | return ret; |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * PTP clock operations |
| 283 | */ |
| 284 | |
| 285 | static int ptp_vmclock_adjfine(struct ptp_clock_info *ptp, long delta) |
| 286 | { |
| 287 | return -EOPNOTSUPP; |
| 288 | } |
| 289 | |
| 290 | static int ptp_vmclock_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| 291 | { |
| 292 | return -EOPNOTSUPP; |
| 293 | } |
| 294 | |
| 295 | static int ptp_vmclock_settime(struct ptp_clock_info *ptp, |
| 296 | const struct timespec64 *ts) |
| 297 | { |
| 298 | return -EOPNOTSUPP; |
| 299 | } |
| 300 | |
| 301 | static int ptp_vmclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts, |
| 302 | struct ptp_system_timestamp *sts) |
| 303 | { |
| 304 | struct vmclock_state *st = container_of(ptp, struct vmclock_state, |
| 305 | ptp_clock_info); |
| 306 | |
| 307 | return vmclock_get_crosststamp(st, sts, NULL, tspec: ts); |
| 308 | } |
| 309 | |
| 310 | static int ptp_vmclock_enable(struct ptp_clock_info *ptp, |
| 311 | struct ptp_clock_request *rq, int on) |
| 312 | { |
| 313 | return -EOPNOTSUPP; |
| 314 | } |
| 315 | |
| 316 | static const struct ptp_clock_info ptp_vmclock_info = { |
| 317 | .owner = THIS_MODULE, |
| 318 | .max_adj = 0, |
| 319 | .n_ext_ts = 0, |
| 320 | .n_pins = 0, |
| 321 | .pps = 0, |
| 322 | .adjfine = ptp_vmclock_adjfine, |
| 323 | .adjtime = ptp_vmclock_adjtime, |
| 324 | .gettimex64 = ptp_vmclock_gettimex, |
| 325 | .settime64 = ptp_vmclock_settime, |
| 326 | .enable = ptp_vmclock_enable, |
| 327 | .getcrosststamp = ptp_vmclock_getcrosststamp, |
| 328 | }; |
| 329 | |
| 330 | static struct ptp_clock *vmclock_ptp_register(struct device *dev, |
| 331 | struct vmclock_state *st) |
| 332 | { |
| 333 | enum clocksource_ids cs_id; |
| 334 | |
| 335 | if (IS_ENABLED(CONFIG_ARM64) && |
| 336 | st->clk->counter_id == VMCLOCK_COUNTER_ARM_VCNT) { |
| 337 | /* Can we check it's the virtual counter? */ |
| 338 | cs_id = CSID_ARM_ARCH_COUNTER; |
| 339 | } else if (IS_ENABLED(CONFIG_X86) && |
| 340 | st->clk->counter_id == VMCLOCK_COUNTER_X86_TSC) { |
| 341 | cs_id = CSID_X86_TSC; |
| 342 | } else { |
| 343 | return NULL; |
| 344 | } |
| 345 | |
| 346 | /* Only UTC, or TAI with offset */ |
| 347 | if (!tai_adjust(clk: st->clk, NULL)) { |
| 348 | dev_info(dev, "vmclock does not provide unambiguous UTC\n" ); |
| 349 | return NULL; |
| 350 | } |
| 351 | |
| 352 | st->sys_cs_id = cs_id; |
| 353 | st->cs_id = cs_id; |
| 354 | st->ptp_clock_info = ptp_vmclock_info; |
| 355 | strscpy(st->ptp_clock_info.name, st->name); |
| 356 | |
| 357 | return ptp_clock_register(info: &st->ptp_clock_info, parent: dev); |
| 358 | } |
| 359 | |
| 360 | static int vmclock_miscdev_mmap(struct file *fp, struct vm_area_struct *vma) |
| 361 | { |
| 362 | struct vmclock_state *st = container_of(fp->private_data, |
| 363 | struct vmclock_state, miscdev); |
| 364 | |
| 365 | if ((vma->vm_flags & (VM_READ|VM_WRITE)) != VM_READ) |
| 366 | return -EROFS; |
| 367 | |
| 368 | if (vma->vm_end - vma->vm_start != PAGE_SIZE || vma->vm_pgoff) |
| 369 | return -EINVAL; |
| 370 | |
| 371 | if (io_remap_pfn_range(vma, addr: vma->vm_start, |
| 372 | orig_pfn: st->res.start >> PAGE_SHIFT, PAGE_SIZE, |
| 373 | orig_prot: vma->vm_page_prot)) |
| 374 | return -EAGAIN; |
| 375 | |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | static ssize_t vmclock_miscdev_read(struct file *fp, char __user *buf, |
| 380 | size_t count, loff_t *ppos) |
| 381 | { |
| 382 | struct vmclock_state *st = container_of(fp->private_data, |
| 383 | struct vmclock_state, miscdev); |
| 384 | ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT); |
| 385 | size_t max_count; |
| 386 | uint32_t seq; |
| 387 | |
| 388 | if (*ppos >= PAGE_SIZE) |
| 389 | return 0; |
| 390 | |
| 391 | max_count = PAGE_SIZE - *ppos; |
| 392 | if (count > max_count) |
| 393 | count = max_count; |
| 394 | |
| 395 | while (1) { |
| 396 | seq = le32_to_cpu(st->clk->seq_count) & ~1U; |
| 397 | /* Pairs with hypervisor wmb */ |
| 398 | virt_rmb(); |
| 399 | |
| 400 | if (copy_to_user(to: buf, from: ((char *)st->clk) + *ppos, n: count)) |
| 401 | return -EFAULT; |
| 402 | |
| 403 | /* Pairs with hypervisor wmb */ |
| 404 | virt_rmb(); |
| 405 | if (seq == le32_to_cpu(st->clk->seq_count)) |
| 406 | break; |
| 407 | |
| 408 | if (ktime_after(cmp1: ktime_get(), cmp2: deadline)) |
| 409 | return -ETIMEDOUT; |
| 410 | } |
| 411 | |
| 412 | *ppos += count; |
| 413 | return count; |
| 414 | } |
| 415 | |
| 416 | static const struct file_operations vmclock_miscdev_fops = { |
| 417 | .owner = THIS_MODULE, |
| 418 | .mmap = vmclock_miscdev_mmap, |
| 419 | .read = vmclock_miscdev_read, |
| 420 | }; |
| 421 | |
| 422 | /* module operations */ |
| 423 | |
| 424 | static void vmclock_remove(void *data) |
| 425 | { |
| 426 | struct vmclock_state *st = data; |
| 427 | |
| 428 | if (st->ptp_clock) |
| 429 | ptp_clock_unregister(ptp: st->ptp_clock); |
| 430 | |
| 431 | if (st->miscdev.minor != MISC_DYNAMIC_MINOR) |
| 432 | misc_deregister(misc: &st->miscdev); |
| 433 | } |
| 434 | |
| 435 | static acpi_status vmclock_acpi_resources(struct acpi_resource *ares, void *data) |
| 436 | { |
| 437 | struct vmclock_state *st = data; |
| 438 | struct resource_win win; |
| 439 | struct resource *res = &win.res; |
| 440 | |
| 441 | if (ares->type == ACPI_RESOURCE_TYPE_END_TAG) |
| 442 | return AE_OK; |
| 443 | |
| 444 | /* There can be only one */ |
| 445 | if (resource_type(res: &st->res) == IORESOURCE_MEM) |
| 446 | return AE_ERROR; |
| 447 | |
| 448 | if (acpi_dev_resource_memory(ares, res) || |
| 449 | acpi_dev_resource_address_space(ares, win: &win)) { |
| 450 | |
| 451 | if (resource_type(res) != IORESOURCE_MEM || |
| 452 | resource_size(res) < sizeof(st->clk)) |
| 453 | return AE_ERROR; |
| 454 | |
| 455 | st->res = *res; |
| 456 | return AE_OK; |
| 457 | } |
| 458 | |
| 459 | return AE_ERROR; |
| 460 | } |
| 461 | |
| 462 | static int vmclock_probe_acpi(struct device *dev, struct vmclock_state *st) |
| 463 | { |
| 464 | struct acpi_device *adev = ACPI_COMPANION(dev); |
| 465 | acpi_status status; |
| 466 | |
| 467 | /* |
| 468 | * This should never happen as this function is only called when |
| 469 | * has_acpi_companion(dev) is true, but the logic is sufficiently |
| 470 | * complex that Coverity can't see the tautology. |
| 471 | */ |
| 472 | if (!adev) |
| 473 | return -ENODEV; |
| 474 | |
| 475 | status = acpi_walk_resources(device: adev->handle, METHOD_NAME__CRS, |
| 476 | user_function: vmclock_acpi_resources, context: st); |
| 477 | if (ACPI_FAILURE(status) || resource_type(res: &st->res) != IORESOURCE_MEM) { |
| 478 | dev_err(dev, "failed to get resources\n" ); |
| 479 | return -ENODEV; |
| 480 | } |
| 481 | |
| 482 | return 0; |
| 483 | } |
| 484 | |
| 485 | static void vmclock_put_idx(void *data) |
| 486 | { |
| 487 | struct vmclock_state *st = data; |
| 488 | |
| 489 | ida_free(&vmclock_ida, id: st->index); |
| 490 | } |
| 491 | |
| 492 | static int vmclock_probe(struct platform_device *pdev) |
| 493 | { |
| 494 | struct device *dev = &pdev->dev; |
| 495 | struct vmclock_state *st; |
| 496 | int ret; |
| 497 | |
| 498 | st = devm_kzalloc(dev, size: sizeof(*st), GFP_KERNEL); |
| 499 | if (!st) |
| 500 | return -ENOMEM; |
| 501 | |
| 502 | if (has_acpi_companion(dev)) |
| 503 | ret = vmclock_probe_acpi(dev, st); |
| 504 | else |
| 505 | ret = -EINVAL; /* Only ACPI for now */ |
| 506 | |
| 507 | if (ret) { |
| 508 | dev_info(dev, "Failed to obtain physical address: %d\n" , ret); |
| 509 | return ret; |
| 510 | } |
| 511 | |
| 512 | if (resource_size(res: &st->res) < VMCLOCK_MIN_SIZE) { |
| 513 | dev_info(dev, "Region too small (0x%llx)\n" , |
| 514 | resource_size(&st->res)); |
| 515 | return -EINVAL; |
| 516 | } |
| 517 | st->clk = devm_memremap(dev, offset: st->res.start, size: resource_size(res: &st->res), |
| 518 | flags: MEMREMAP_WB | MEMREMAP_DEC); |
| 519 | if (IS_ERR(ptr: st->clk)) { |
| 520 | ret = PTR_ERR(ptr: st->clk); |
| 521 | dev_info(dev, "failed to map shared memory\n" ); |
| 522 | st->clk = NULL; |
| 523 | return ret; |
| 524 | } |
| 525 | |
| 526 | if (le32_to_cpu(st->clk->magic) != VMCLOCK_MAGIC || |
| 527 | le32_to_cpu(st->clk->size) > resource_size(res: &st->res) || |
| 528 | le16_to_cpu(st->clk->version) != 1) { |
| 529 | dev_info(dev, "vmclock magic fields invalid\n" ); |
| 530 | return -EINVAL; |
| 531 | } |
| 532 | |
| 533 | ret = ida_alloc(ida: &vmclock_ida, GFP_KERNEL); |
| 534 | if (ret < 0) |
| 535 | return ret; |
| 536 | |
| 537 | st->index = ret; |
| 538 | ret = devm_add_action_or_reset(&pdev->dev, vmclock_put_idx, st); |
| 539 | if (ret) |
| 540 | return ret; |
| 541 | |
| 542 | st->name = devm_kasprintf(dev: &pdev->dev, GFP_KERNEL, fmt: "vmclock%d" , st->index); |
| 543 | if (!st->name) |
| 544 | return -ENOMEM; |
| 545 | |
| 546 | st->miscdev.minor = MISC_DYNAMIC_MINOR; |
| 547 | |
| 548 | ret = devm_add_action_or_reset(&pdev->dev, vmclock_remove, st); |
| 549 | if (ret) |
| 550 | return ret; |
| 551 | |
| 552 | /* |
| 553 | * If the structure is big enough, it can be mapped to userspace. |
| 554 | * Theoretically a guest OS even using larger pages could still |
| 555 | * use 4KiB PTEs to map smaller MMIO regions like this, but let's |
| 556 | * cross that bridge if/when we come to it. |
| 557 | */ |
| 558 | if (le32_to_cpu(st->clk->size) >= PAGE_SIZE) { |
| 559 | st->miscdev.fops = &vmclock_miscdev_fops; |
| 560 | st->miscdev.name = st->name; |
| 561 | |
| 562 | ret = misc_register(misc: &st->miscdev); |
| 563 | if (ret) |
| 564 | return ret; |
| 565 | } |
| 566 | |
| 567 | /* If there is valid clock information, register a PTP clock */ |
| 568 | if (VMCLOCK_FIELD_PRESENT(st->clk, time_frac_sec)) { |
| 569 | /* Can return a silent NULL, or an error. */ |
| 570 | st->ptp_clock = vmclock_ptp_register(dev, st); |
| 571 | if (IS_ERR(ptr: st->ptp_clock)) { |
| 572 | ret = PTR_ERR(ptr: st->ptp_clock); |
| 573 | st->ptp_clock = NULL; |
| 574 | return ret; |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | if (!st->miscdev.minor && !st->ptp_clock) { |
| 579 | /* Neither miscdev nor PTP registered */ |
| 580 | dev_info(dev, "vmclock: Neither miscdev nor PTP available; not registering\n" ); |
| 581 | return -ENODEV; |
| 582 | } |
| 583 | |
| 584 | dev_info(dev, "%s: registered %s%s%s\n" , st->name, |
| 585 | st->miscdev.minor ? "miscdev" : "" , |
| 586 | (st->miscdev.minor && st->ptp_clock) ? ", " : "" , |
| 587 | st->ptp_clock ? "PTP" : "" ); |
| 588 | |
| 589 | return 0; |
| 590 | } |
| 591 | |
| 592 | static const struct acpi_device_id vmclock_acpi_ids[] = { |
| 593 | { "AMZNC10C" , 0 }, |
| 594 | {} |
| 595 | }; |
| 596 | MODULE_DEVICE_TABLE(acpi, vmclock_acpi_ids); |
| 597 | |
| 598 | static struct platform_driver vmclock_platform_driver = { |
| 599 | .probe = vmclock_probe, |
| 600 | .driver = { |
| 601 | .name = "vmclock" , |
| 602 | .acpi_match_table = vmclock_acpi_ids, |
| 603 | }, |
| 604 | }; |
| 605 | |
| 606 | module_platform_driver(vmclock_platform_driver) |
| 607 | |
| 608 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>" ); |
| 609 | MODULE_DESCRIPTION("PTP clock using VMCLOCK" ); |
| 610 | MODULE_LICENSE("GPL" ); |
| 611 | |