| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/arch/arm/mm/dma-mapping.c |
| 4 | * |
| 5 | * Copyright (C) 2000-2004 Russell King |
| 6 | * |
| 7 | * DMA uncached mapping support. |
| 8 | */ |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/mm.h> |
| 11 | #include <linux/genalloc.h> |
| 12 | #include <linux/gfp.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/list.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/device.h> |
| 17 | #include <linux/dma-direct.h> |
| 18 | #include <linux/dma-map-ops.h> |
| 19 | #include <linux/highmem.h> |
| 20 | #include <linux/memblock.h> |
| 21 | #include <linux/slab.h> |
| 22 | #include <linux/iommu.h> |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/vmalloc.h> |
| 25 | #include <linux/sizes.h> |
| 26 | #include <linux/cma.h> |
| 27 | |
| 28 | #include <asm/page.h> |
| 29 | #include <asm/highmem.h> |
| 30 | #include <asm/cacheflush.h> |
| 31 | #include <asm/tlbflush.h> |
| 32 | #include <asm/mach/arch.h> |
| 33 | #include <asm/dma-iommu.h> |
| 34 | #include <asm/mach/map.h> |
| 35 | #include <asm/system_info.h> |
| 36 | #include <asm/xen/xen-ops.h> |
| 37 | |
| 38 | #include "dma.h" |
| 39 | #include "mm.h" |
| 40 | |
| 41 | struct arm_dma_alloc_args { |
| 42 | struct device *dev; |
| 43 | size_t size; |
| 44 | gfp_t gfp; |
| 45 | pgprot_t prot; |
| 46 | const void *caller; |
| 47 | bool want_vaddr; |
| 48 | int coherent_flag; |
| 49 | }; |
| 50 | |
| 51 | struct arm_dma_free_args { |
| 52 | struct device *dev; |
| 53 | size_t size; |
| 54 | void *cpu_addr; |
| 55 | struct page *page; |
| 56 | bool want_vaddr; |
| 57 | }; |
| 58 | |
| 59 | #define NORMAL 0 |
| 60 | #define COHERENT 1 |
| 61 | |
| 62 | struct arm_dma_allocator { |
| 63 | void *(*alloc)(struct arm_dma_alloc_args *args, |
| 64 | struct page **ret_page); |
| 65 | void (*free)(struct arm_dma_free_args *args); |
| 66 | }; |
| 67 | |
| 68 | struct arm_dma_buffer { |
| 69 | struct list_head list; |
| 70 | void *virt; |
| 71 | struct arm_dma_allocator *allocator; |
| 72 | }; |
| 73 | |
| 74 | static LIST_HEAD(arm_dma_bufs); |
| 75 | static DEFINE_SPINLOCK(arm_dma_bufs_lock); |
| 76 | |
| 77 | static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) |
| 78 | { |
| 79 | struct arm_dma_buffer *buf, *found = NULL; |
| 80 | unsigned long flags; |
| 81 | |
| 82 | spin_lock_irqsave(&arm_dma_bufs_lock, flags); |
| 83 | list_for_each_entry(buf, &arm_dma_bufs, list) { |
| 84 | if (buf->virt == virt) { |
| 85 | list_del(entry: &buf->list); |
| 86 | found = buf; |
| 87 | break; |
| 88 | } |
| 89 | } |
| 90 | spin_unlock_irqrestore(lock: &arm_dma_bufs_lock, flags); |
| 91 | return found; |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * The DMA API is built upon the notion of "buffer ownership". A buffer |
| 96 | * is either exclusively owned by the CPU (and therefore may be accessed |
| 97 | * by it) or exclusively owned by the DMA device. These helper functions |
| 98 | * represent the transitions between these two ownership states. |
| 99 | * |
| 100 | * Note, however, that on later ARMs, this notion does not work due to |
| 101 | * speculative prefetches. We model our approach on the assumption that |
| 102 | * the CPU does do speculative prefetches, which means we clean caches |
| 103 | * before transfers and delay cache invalidation until transfer completion. |
| 104 | * |
| 105 | */ |
| 106 | |
| 107 | static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) |
| 108 | { |
| 109 | /* |
| 110 | * Ensure that the allocated pages are zeroed, and that any data |
| 111 | * lurking in the kernel direct-mapped region is invalidated. |
| 112 | */ |
| 113 | if (PageHighMem(page)) { |
| 114 | phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); |
| 115 | phys_addr_t end = base + size; |
| 116 | while (size > 0) { |
| 117 | void *ptr = kmap_atomic(page); |
| 118 | memset(ptr, 0, PAGE_SIZE); |
| 119 | if (coherent_flag != COHERENT) |
| 120 | dmac_flush_range(ptr, ptr + PAGE_SIZE); |
| 121 | kunmap_atomic(ptr); |
| 122 | page++; |
| 123 | size -= PAGE_SIZE; |
| 124 | } |
| 125 | if (coherent_flag != COHERENT) |
| 126 | outer_flush_range(base, end); |
| 127 | } else { |
| 128 | void *ptr = page_address(page); |
| 129 | memset(ptr, 0, size); |
| 130 | if (coherent_flag != COHERENT) { |
| 131 | dmac_flush_range(ptr, ptr + size); |
| 132 | outer_flush_range(__pa(ptr), __pa(ptr) + size); |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * Allocate a DMA buffer for 'dev' of size 'size' using the |
| 139 | * specified gfp mask. Note that 'size' must be page aligned. |
| 140 | */ |
| 141 | static struct page *__dma_alloc_buffer(struct device *dev, size_t size, |
| 142 | gfp_t gfp, int coherent_flag) |
| 143 | { |
| 144 | unsigned long order = get_order(size); |
| 145 | struct page *page, *p, *e; |
| 146 | |
| 147 | page = alloc_pages(gfp, order); |
| 148 | if (!page) |
| 149 | return NULL; |
| 150 | |
| 151 | /* |
| 152 | * Now split the huge page and free the excess pages |
| 153 | */ |
| 154 | split_page(page, order); |
| 155 | for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) |
| 156 | __free_page(p); |
| 157 | |
| 158 | __dma_clear_buffer(page, size, coherent_flag); |
| 159 | |
| 160 | return page; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Free a DMA buffer. 'size' must be page aligned. |
| 165 | */ |
| 166 | static void __dma_free_buffer(struct page *page, size_t size) |
| 167 | { |
| 168 | struct page *e = page + (size >> PAGE_SHIFT); |
| 169 | |
| 170 | while (page < e) { |
| 171 | __free_page(page); |
| 172 | page++; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | static void *__alloc_from_contiguous(struct device *dev, size_t size, |
| 177 | pgprot_t prot, struct page **ret_page, |
| 178 | const void *caller, bool want_vaddr, |
| 179 | int coherent_flag, gfp_t gfp); |
| 180 | |
| 181 | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, |
| 182 | pgprot_t prot, struct page **ret_page, |
| 183 | const void *caller, bool want_vaddr); |
| 184 | |
| 185 | #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K |
| 186 | static struct gen_pool *atomic_pool __ro_after_init; |
| 187 | |
| 188 | static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; |
| 189 | |
| 190 | static int __init early_coherent_pool(char *p) |
| 191 | { |
| 192 | atomic_pool_size = memparse(ptr: p, retptr: &p); |
| 193 | return 0; |
| 194 | } |
| 195 | early_param("coherent_pool" , early_coherent_pool); |
| 196 | |
| 197 | /* |
| 198 | * Initialise the coherent pool for atomic allocations. |
| 199 | */ |
| 200 | static int __init atomic_pool_init(void) |
| 201 | { |
| 202 | pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); |
| 203 | gfp_t gfp = GFP_KERNEL | GFP_DMA; |
| 204 | struct page *page; |
| 205 | void *ptr; |
| 206 | |
| 207 | atomic_pool = gen_pool_create(PAGE_SHIFT, -1); |
| 208 | if (!atomic_pool) |
| 209 | goto out; |
| 210 | /* |
| 211 | * The atomic pool is only used for non-coherent allocations |
| 212 | * so we must pass NORMAL for coherent_flag. |
| 213 | */ |
| 214 | if (dev_get_cma_area(NULL)) |
| 215 | ptr = __alloc_from_contiguous(NULL, size: atomic_pool_size, prot, |
| 216 | ret_page: &page, caller: atomic_pool_init, want_vaddr: true, NORMAL, |
| 217 | GFP_KERNEL); |
| 218 | else |
| 219 | ptr = __alloc_remap_buffer(NULL, size: atomic_pool_size, gfp, prot, |
| 220 | ret_page: &page, caller: atomic_pool_init, want_vaddr: true); |
| 221 | if (ptr) { |
| 222 | int ret; |
| 223 | |
| 224 | ret = gen_pool_add_virt(pool: atomic_pool, addr: (unsigned long)ptr, |
| 225 | page_to_phys(page), |
| 226 | size: atomic_pool_size, nid: -1); |
| 227 | if (ret) |
| 228 | goto destroy_genpool; |
| 229 | |
| 230 | gen_pool_set_algo(pool: atomic_pool, |
| 231 | algo: gen_pool_first_fit_order_align, |
| 232 | NULL); |
| 233 | pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n" , |
| 234 | atomic_pool_size / 1024); |
| 235 | return 0; |
| 236 | } |
| 237 | |
| 238 | destroy_genpool: |
| 239 | gen_pool_destroy(atomic_pool); |
| 240 | atomic_pool = NULL; |
| 241 | out: |
| 242 | pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n" , |
| 243 | atomic_pool_size / 1024); |
| 244 | return -ENOMEM; |
| 245 | } |
| 246 | /* |
| 247 | * CMA is activated by core_initcall, so we must be called after it. |
| 248 | */ |
| 249 | postcore_initcall(atomic_pool_init); |
| 250 | |
| 251 | #ifdef CONFIG_CMA_AREAS |
| 252 | struct dma_contig_early_reserve { |
| 253 | phys_addr_t base; |
| 254 | unsigned long size; |
| 255 | }; |
| 256 | |
| 257 | static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; |
| 258 | |
| 259 | static int dma_mmu_remap_num __initdata; |
| 260 | |
| 261 | #ifdef CONFIG_DMA_CMA |
| 262 | void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) |
| 263 | { |
| 264 | dma_mmu_remap[dma_mmu_remap_num].base = base; |
| 265 | dma_mmu_remap[dma_mmu_remap_num].size = size; |
| 266 | dma_mmu_remap_num++; |
| 267 | } |
| 268 | #endif |
| 269 | |
| 270 | void __init dma_contiguous_remap(void) |
| 271 | { |
| 272 | int i; |
| 273 | for (i = 0; i < dma_mmu_remap_num; i++) { |
| 274 | phys_addr_t start = dma_mmu_remap[i].base; |
| 275 | phys_addr_t end = start + dma_mmu_remap[i].size; |
| 276 | struct map_desc map; |
| 277 | unsigned long addr; |
| 278 | |
| 279 | if (end > arm_lowmem_limit) |
| 280 | end = arm_lowmem_limit; |
| 281 | if (start >= end) |
| 282 | continue; |
| 283 | |
| 284 | map.pfn = __phys_to_pfn(start); |
| 285 | map.virtual = __phys_to_virt(start); |
| 286 | map.length = end - start; |
| 287 | map.type = MT_MEMORY_DMA_READY; |
| 288 | |
| 289 | /* |
| 290 | * Clear previous low-memory mapping to ensure that the |
| 291 | * TLB does not see any conflicting entries, then flush |
| 292 | * the TLB of the old entries before creating new mappings. |
| 293 | * |
| 294 | * This ensures that any speculatively loaded TLB entries |
| 295 | * (even though they may be rare) can not cause any problems, |
| 296 | * and ensures that this code is architecturally compliant. |
| 297 | */ |
| 298 | for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); |
| 299 | addr += PMD_SIZE) |
| 300 | pmd_clear(pmdp: pmd_off_k(va: addr)); |
| 301 | |
| 302 | flush_tlb_kernel_range(start: __phys_to_virt(start), |
| 303 | end: __phys_to_virt(end)); |
| 304 | |
| 305 | iotable_init(&map, 1); |
| 306 | } |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) |
| 311 | { |
| 312 | struct page *page = virt_to_page((void *)addr); |
| 313 | pgprot_t prot = *(pgprot_t *)data; |
| 314 | |
| 315 | set_pte_ext(pte, mk_pte(page, pgprot: prot), 0); |
| 316 | return 0; |
| 317 | } |
| 318 | |
| 319 | static void __dma_remap(struct page *page, size_t size, pgprot_t prot) |
| 320 | { |
| 321 | unsigned long start = (unsigned long) page_address(page); |
| 322 | unsigned end = start + size; |
| 323 | |
| 324 | apply_to_page_range(mm: &init_mm, address: start, size, fn: __dma_update_pte, data: &prot); |
| 325 | flush_tlb_kernel_range(start, end); |
| 326 | } |
| 327 | |
| 328 | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, |
| 329 | pgprot_t prot, struct page **ret_page, |
| 330 | const void *caller, bool want_vaddr) |
| 331 | { |
| 332 | struct page *page; |
| 333 | void *ptr = NULL; |
| 334 | /* |
| 335 | * __alloc_remap_buffer is only called when the device is |
| 336 | * non-coherent |
| 337 | */ |
| 338 | page = __dma_alloc_buffer(dev, size, gfp, NORMAL); |
| 339 | if (!page) |
| 340 | return NULL; |
| 341 | if (!want_vaddr) |
| 342 | goto out; |
| 343 | |
| 344 | ptr = dma_common_contiguous_remap(page, size, prot, caller); |
| 345 | if (!ptr) { |
| 346 | __dma_free_buffer(page, size); |
| 347 | return NULL; |
| 348 | } |
| 349 | |
| 350 | out: |
| 351 | *ret_page = page; |
| 352 | return ptr; |
| 353 | } |
| 354 | |
| 355 | static void *__alloc_from_pool(size_t size, struct page **ret_page) |
| 356 | { |
| 357 | unsigned long val; |
| 358 | void *ptr = NULL; |
| 359 | |
| 360 | if (!atomic_pool) { |
| 361 | WARN(1, "coherent pool not initialised!\n" ); |
| 362 | return NULL; |
| 363 | } |
| 364 | |
| 365 | val = gen_pool_alloc(pool: atomic_pool, size); |
| 366 | if (val) { |
| 367 | phys_addr_t phys = gen_pool_virt_to_phys(pool: atomic_pool, val); |
| 368 | |
| 369 | *ret_page = phys_to_page(phys); |
| 370 | ptr = (void *)val; |
| 371 | } |
| 372 | |
| 373 | return ptr; |
| 374 | } |
| 375 | |
| 376 | static bool __in_atomic_pool(void *start, size_t size) |
| 377 | { |
| 378 | return gen_pool_has_addr(pool: atomic_pool, start: (unsigned long)start, size); |
| 379 | } |
| 380 | |
| 381 | static int __free_from_pool(void *start, size_t size) |
| 382 | { |
| 383 | if (!__in_atomic_pool(start, size)) |
| 384 | return 0; |
| 385 | |
| 386 | gen_pool_free(pool: atomic_pool, addr: (unsigned long)start, size); |
| 387 | |
| 388 | return 1; |
| 389 | } |
| 390 | |
| 391 | static void *__alloc_from_contiguous(struct device *dev, size_t size, |
| 392 | pgprot_t prot, struct page **ret_page, |
| 393 | const void *caller, bool want_vaddr, |
| 394 | int coherent_flag, gfp_t gfp) |
| 395 | { |
| 396 | unsigned long order = get_order(size); |
| 397 | size_t count = size >> PAGE_SHIFT; |
| 398 | struct page *page; |
| 399 | void *ptr = NULL; |
| 400 | |
| 401 | page = dma_alloc_from_contiguous(dev, count, order, no_warn: gfp & __GFP_NOWARN); |
| 402 | if (!page) |
| 403 | return NULL; |
| 404 | |
| 405 | __dma_clear_buffer(page, size, coherent_flag); |
| 406 | |
| 407 | if (!want_vaddr) |
| 408 | goto out; |
| 409 | |
| 410 | if (PageHighMem(page)) { |
| 411 | ptr = dma_common_contiguous_remap(page, size, prot, caller); |
| 412 | if (!ptr) { |
| 413 | dma_release_from_contiguous(dev, pages: page, count); |
| 414 | return NULL; |
| 415 | } |
| 416 | } else { |
| 417 | __dma_remap(page, size, prot); |
| 418 | ptr = page_address(page); |
| 419 | } |
| 420 | |
| 421 | out: |
| 422 | *ret_page = page; |
| 423 | return ptr; |
| 424 | } |
| 425 | |
| 426 | static void __free_from_contiguous(struct device *dev, struct page *page, |
| 427 | void *cpu_addr, size_t size, bool want_vaddr) |
| 428 | { |
| 429 | if (want_vaddr) { |
| 430 | if (PageHighMem(page)) |
| 431 | dma_common_free_remap(cpu_addr, size); |
| 432 | else |
| 433 | __dma_remap(page, size, PAGE_KERNEL); |
| 434 | } |
| 435 | dma_release_from_contiguous(dev, pages: page, count: size >> PAGE_SHIFT); |
| 436 | } |
| 437 | |
| 438 | static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) |
| 439 | { |
| 440 | prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? |
| 441 | pgprot_writecombine(prot) : |
| 442 | pgprot_dmacoherent(prot); |
| 443 | return prot; |
| 444 | } |
| 445 | |
| 446 | static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, |
| 447 | struct page **ret_page) |
| 448 | { |
| 449 | struct page *page; |
| 450 | /* __alloc_simple_buffer is only called when the device is coherent */ |
| 451 | page = __dma_alloc_buffer(dev, size, gfp, COHERENT); |
| 452 | if (!page) |
| 453 | return NULL; |
| 454 | |
| 455 | *ret_page = page; |
| 456 | return page_address(page); |
| 457 | } |
| 458 | |
| 459 | static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, |
| 460 | struct page **ret_page) |
| 461 | { |
| 462 | return __alloc_simple_buffer(dev: args->dev, size: args->size, gfp: args->gfp, |
| 463 | ret_page); |
| 464 | } |
| 465 | |
| 466 | static void simple_allocator_free(struct arm_dma_free_args *args) |
| 467 | { |
| 468 | __dma_free_buffer(page: args->page, size: args->size); |
| 469 | } |
| 470 | |
| 471 | static struct arm_dma_allocator simple_allocator = { |
| 472 | .alloc = simple_allocator_alloc, |
| 473 | .free = simple_allocator_free, |
| 474 | }; |
| 475 | |
| 476 | static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, |
| 477 | struct page **ret_page) |
| 478 | { |
| 479 | return __alloc_from_contiguous(dev: args->dev, size: args->size, prot: args->prot, |
| 480 | ret_page, caller: args->caller, |
| 481 | want_vaddr: args->want_vaddr, coherent_flag: args->coherent_flag, |
| 482 | gfp: args->gfp); |
| 483 | } |
| 484 | |
| 485 | static void cma_allocator_free(struct arm_dma_free_args *args) |
| 486 | { |
| 487 | __free_from_contiguous(dev: args->dev, page: args->page, cpu_addr: args->cpu_addr, |
| 488 | size: args->size, want_vaddr: args->want_vaddr); |
| 489 | } |
| 490 | |
| 491 | static struct arm_dma_allocator cma_allocator = { |
| 492 | .alloc = cma_allocator_alloc, |
| 493 | .free = cma_allocator_free, |
| 494 | }; |
| 495 | |
| 496 | static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, |
| 497 | struct page **ret_page) |
| 498 | { |
| 499 | return __alloc_from_pool(size: args->size, ret_page); |
| 500 | } |
| 501 | |
| 502 | static void pool_allocator_free(struct arm_dma_free_args *args) |
| 503 | { |
| 504 | __free_from_pool(start: args->cpu_addr, size: args->size); |
| 505 | } |
| 506 | |
| 507 | static struct arm_dma_allocator pool_allocator = { |
| 508 | .alloc = pool_allocator_alloc, |
| 509 | .free = pool_allocator_free, |
| 510 | }; |
| 511 | |
| 512 | static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, |
| 513 | struct page **ret_page) |
| 514 | { |
| 515 | return __alloc_remap_buffer(dev: args->dev, size: args->size, gfp: args->gfp, |
| 516 | prot: args->prot, ret_page, caller: args->caller, |
| 517 | want_vaddr: args->want_vaddr); |
| 518 | } |
| 519 | |
| 520 | static void remap_allocator_free(struct arm_dma_free_args *args) |
| 521 | { |
| 522 | if (args->want_vaddr) |
| 523 | dma_common_free_remap(cpu_addr: args->cpu_addr, size: args->size); |
| 524 | |
| 525 | __dma_free_buffer(page: args->page, size: args->size); |
| 526 | } |
| 527 | |
| 528 | static struct arm_dma_allocator remap_allocator = { |
| 529 | .alloc = remap_allocator_alloc, |
| 530 | .free = remap_allocator_free, |
| 531 | }; |
| 532 | |
| 533 | static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, |
| 534 | gfp_t gfp, pgprot_t prot, bool is_coherent, |
| 535 | unsigned long attrs, const void *caller) |
| 536 | { |
| 537 | u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); |
| 538 | struct page *page = NULL; |
| 539 | void *addr; |
| 540 | bool allowblock, cma; |
| 541 | struct arm_dma_buffer *buf; |
| 542 | struct arm_dma_alloc_args args = { |
| 543 | .dev = dev, |
| 544 | .size = PAGE_ALIGN(size), |
| 545 | .gfp = gfp, |
| 546 | .prot = prot, |
| 547 | .caller = caller, |
| 548 | .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), |
| 549 | .coherent_flag = is_coherent ? COHERENT : NORMAL, |
| 550 | }; |
| 551 | |
| 552 | #ifdef CONFIG_DMA_API_DEBUG |
| 553 | u64 limit = (mask + 1) & ~mask; |
| 554 | if (limit && size >= limit) { |
| 555 | dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n" , |
| 556 | size, mask); |
| 557 | return NULL; |
| 558 | } |
| 559 | #endif |
| 560 | |
| 561 | buf = kzalloc(sizeof(*buf), |
| 562 | gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); |
| 563 | if (!buf) |
| 564 | return NULL; |
| 565 | |
| 566 | if (mask < 0xffffffffULL) |
| 567 | gfp |= GFP_DMA; |
| 568 | |
| 569 | args.gfp = gfp; |
| 570 | |
| 571 | *handle = DMA_MAPPING_ERROR; |
| 572 | allowblock = gfpflags_allow_blocking(gfp_flags: gfp); |
| 573 | cma = allowblock ? dev_get_cma_area(dev) : NULL; |
| 574 | |
| 575 | if (cma) |
| 576 | buf->allocator = &cma_allocator; |
| 577 | else if (is_coherent) |
| 578 | buf->allocator = &simple_allocator; |
| 579 | else if (allowblock) |
| 580 | buf->allocator = &remap_allocator; |
| 581 | else |
| 582 | buf->allocator = &pool_allocator; |
| 583 | |
| 584 | addr = buf->allocator->alloc(&args, &page); |
| 585 | |
| 586 | if (page) { |
| 587 | unsigned long flags; |
| 588 | |
| 589 | *handle = phys_to_dma(dev, page_to_phys(page)); |
| 590 | buf->virt = args.want_vaddr ? addr : page; |
| 591 | |
| 592 | spin_lock_irqsave(&arm_dma_bufs_lock, flags); |
| 593 | list_add(new: &buf->list, head: &arm_dma_bufs); |
| 594 | spin_unlock_irqrestore(lock: &arm_dma_bufs_lock, flags); |
| 595 | } else { |
| 596 | kfree(objp: buf); |
| 597 | } |
| 598 | |
| 599 | return args.want_vaddr ? addr : page; |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * Free a buffer as defined by the above mapping. |
| 604 | */ |
| 605 | static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| 606 | dma_addr_t handle, unsigned long attrs, |
| 607 | bool is_coherent) |
| 608 | { |
| 609 | struct page *page = phys_to_page(dma_to_phys(dev, handle)); |
| 610 | struct arm_dma_buffer *buf; |
| 611 | struct arm_dma_free_args args = { |
| 612 | .dev = dev, |
| 613 | .size = PAGE_ALIGN(size), |
| 614 | .cpu_addr = cpu_addr, |
| 615 | .page = page, |
| 616 | .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), |
| 617 | }; |
| 618 | |
| 619 | buf = arm_dma_buffer_find(virt: cpu_addr); |
| 620 | if (WARN(!buf, "Freeing invalid buffer %p\n" , cpu_addr)) |
| 621 | return; |
| 622 | |
| 623 | buf->allocator->free(&args); |
| 624 | kfree(objp: buf); |
| 625 | } |
| 626 | |
| 627 | static void dma_cache_maint_page(phys_addr_t phys, size_t size, |
| 628 | enum dma_data_direction dir, |
| 629 | void (*op)(const void *, size_t, int)) |
| 630 | { |
| 631 | unsigned long offset = offset_in_page(phys); |
| 632 | unsigned long pfn = __phys_to_pfn(phys); |
| 633 | size_t left = size; |
| 634 | |
| 635 | /* |
| 636 | * A single sg entry may refer to multiple physically contiguous |
| 637 | * pages. But we still need to process highmem pages individually. |
| 638 | * If highmem is not configured then the bulk of this loop gets |
| 639 | * optimized out. |
| 640 | */ |
| 641 | do { |
| 642 | size_t len = left; |
| 643 | void *vaddr; |
| 644 | |
| 645 | phys = __pfn_to_phys(pfn); |
| 646 | if (PhysHighMem(phys)) { |
| 647 | if (len + offset > PAGE_SIZE) |
| 648 | len = PAGE_SIZE - offset; |
| 649 | |
| 650 | if (cache_is_vipt_nonaliasing()) { |
| 651 | vaddr = kmap_atomic_pfn(pfn); |
| 652 | op(vaddr + offset, len, dir); |
| 653 | kunmap_atomic(vaddr); |
| 654 | } else { |
| 655 | struct page *page = phys_to_page(phys); |
| 656 | |
| 657 | vaddr = kmap_high_get(page); |
| 658 | if (vaddr) { |
| 659 | op(vaddr + offset, len, dir); |
| 660 | kunmap_high(page); |
| 661 | } |
| 662 | } |
| 663 | } else { |
| 664 | phys += offset; |
| 665 | vaddr = phys_to_virt(address: phys); |
| 666 | op(vaddr, len, dir); |
| 667 | } |
| 668 | offset = 0; |
| 669 | pfn++; |
| 670 | left -= len; |
| 671 | } while (left); |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * Make an area consistent for devices. |
| 676 | * Note: Drivers should NOT use this function directly. |
| 677 | * Use the driver DMA support - see dma-mapping.h (dma_sync_*) |
| 678 | */ |
| 679 | void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, |
| 680 | enum dma_data_direction dir) |
| 681 | { |
| 682 | dma_cache_maint_page(phys: paddr, size, dir, dmac_map_area); |
| 683 | |
| 684 | if (dir == DMA_FROM_DEVICE) { |
| 685 | outer_inv_range(paddr, paddr + size); |
| 686 | } else { |
| 687 | outer_clean_range(paddr, paddr + size); |
| 688 | } |
| 689 | /* FIXME: non-speculating: flush on bidirectional mappings? */ |
| 690 | } |
| 691 | |
| 692 | void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, |
| 693 | enum dma_data_direction dir) |
| 694 | { |
| 695 | /* FIXME: non-speculating: not required */ |
| 696 | /* in any case, don't bother invalidating if DMA to device */ |
| 697 | if (dir != DMA_TO_DEVICE) { |
| 698 | outer_inv_range(paddr, paddr + size); |
| 699 | |
| 700 | dma_cache_maint_page(phys: paddr, size, dir, dmac_unmap_area); |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Mark the D-cache clean for these pages to avoid extra flushing. |
| 705 | */ |
| 706 | if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { |
| 707 | struct folio *folio = pfn_folio(pfn: paddr / PAGE_SIZE); |
| 708 | size_t offset = offset_in_folio(folio, paddr); |
| 709 | |
| 710 | for (;;) { |
| 711 | size_t sz = folio_size(folio) - offset; |
| 712 | |
| 713 | if (size < sz) |
| 714 | break; |
| 715 | if (!offset) |
| 716 | set_bit(nr: PG_dcache_clean, addr: &folio->flags.f); |
| 717 | offset = 0; |
| 718 | size -= sz; |
| 719 | if (!size) |
| 720 | break; |
| 721 | folio = folio_next(folio); |
| 722 | } |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | #ifdef CONFIG_ARM_DMA_USE_IOMMU |
| 727 | |
| 728 | static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) |
| 729 | { |
| 730 | int prot = 0; |
| 731 | |
| 732 | if (attrs & DMA_ATTR_PRIVILEGED) |
| 733 | prot |= IOMMU_PRIV; |
| 734 | |
| 735 | if (attrs & DMA_ATTR_MMIO) |
| 736 | prot |= IOMMU_MMIO; |
| 737 | |
| 738 | switch (dir) { |
| 739 | case DMA_BIDIRECTIONAL: |
| 740 | return prot | IOMMU_READ | IOMMU_WRITE; |
| 741 | case DMA_TO_DEVICE: |
| 742 | return prot | IOMMU_READ; |
| 743 | case DMA_FROM_DEVICE: |
| 744 | return prot | IOMMU_WRITE; |
| 745 | default: |
| 746 | return prot; |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | /* IOMMU */ |
| 751 | |
| 752 | static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); |
| 753 | |
| 754 | static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, |
| 755 | size_t size) |
| 756 | { |
| 757 | unsigned int order = get_order(size); |
| 758 | unsigned int align = 0; |
| 759 | unsigned int count, start; |
| 760 | size_t mapping_size = mapping->bits << PAGE_SHIFT; |
| 761 | unsigned long flags; |
| 762 | dma_addr_t iova; |
| 763 | int i; |
| 764 | |
| 765 | if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) |
| 766 | order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; |
| 767 | |
| 768 | count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 769 | align = (1 << order) - 1; |
| 770 | |
| 771 | spin_lock_irqsave(&mapping->lock, flags); |
| 772 | for (i = 0; i < mapping->nr_bitmaps; i++) { |
| 773 | start = bitmap_find_next_zero_area(mapping->bitmaps[i], |
| 774 | mapping->bits, 0, count, align); |
| 775 | |
| 776 | if (start > mapping->bits) |
| 777 | continue; |
| 778 | |
| 779 | bitmap_set(mapping->bitmaps[i], start, count); |
| 780 | break; |
| 781 | } |
| 782 | |
| 783 | /* |
| 784 | * No unused range found. Try to extend the existing mapping |
| 785 | * and perform a second attempt to reserve an IO virtual |
| 786 | * address range of size bytes. |
| 787 | */ |
| 788 | if (i == mapping->nr_bitmaps) { |
| 789 | if (extend_iommu_mapping(mapping)) { |
| 790 | spin_unlock_irqrestore(&mapping->lock, flags); |
| 791 | return DMA_MAPPING_ERROR; |
| 792 | } |
| 793 | |
| 794 | start = bitmap_find_next_zero_area(mapping->bitmaps[i], |
| 795 | mapping->bits, 0, count, align); |
| 796 | |
| 797 | if (start > mapping->bits) { |
| 798 | spin_unlock_irqrestore(&mapping->lock, flags); |
| 799 | return DMA_MAPPING_ERROR; |
| 800 | } |
| 801 | |
| 802 | bitmap_set(mapping->bitmaps[i], start, count); |
| 803 | } |
| 804 | spin_unlock_irqrestore(&mapping->lock, flags); |
| 805 | |
| 806 | iova = mapping->base + (mapping_size * i); |
| 807 | iova += start << PAGE_SHIFT; |
| 808 | |
| 809 | return iova; |
| 810 | } |
| 811 | |
| 812 | static inline void __free_iova(struct dma_iommu_mapping *mapping, |
| 813 | dma_addr_t addr, size_t size) |
| 814 | { |
| 815 | unsigned int start, count; |
| 816 | size_t mapping_size = mapping->bits << PAGE_SHIFT; |
| 817 | unsigned long flags; |
| 818 | dma_addr_t bitmap_base; |
| 819 | u32 bitmap_index; |
| 820 | |
| 821 | if (!size) |
| 822 | return; |
| 823 | |
| 824 | bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; |
| 825 | BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); |
| 826 | |
| 827 | bitmap_base = mapping->base + mapping_size * bitmap_index; |
| 828 | |
| 829 | start = (addr - bitmap_base) >> PAGE_SHIFT; |
| 830 | |
| 831 | if (addr + size > bitmap_base + mapping_size) { |
| 832 | /* |
| 833 | * The address range to be freed reaches into the iova |
| 834 | * range of the next bitmap. This should not happen as |
| 835 | * we don't allow this in __alloc_iova (at the |
| 836 | * moment). |
| 837 | */ |
| 838 | BUG(); |
| 839 | } else |
| 840 | count = size >> PAGE_SHIFT; |
| 841 | |
| 842 | spin_lock_irqsave(&mapping->lock, flags); |
| 843 | bitmap_clear(mapping->bitmaps[bitmap_index], start, count); |
| 844 | spin_unlock_irqrestore(&mapping->lock, flags); |
| 845 | } |
| 846 | |
| 847 | /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ |
| 848 | static const int iommu_order_array[] = { 9, 8, 4, 0 }; |
| 849 | |
| 850 | static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, |
| 851 | gfp_t gfp, unsigned long attrs, |
| 852 | int coherent_flag) |
| 853 | { |
| 854 | struct page **pages; |
| 855 | int count = size >> PAGE_SHIFT; |
| 856 | int array_size = count * sizeof(struct page *); |
| 857 | int i = 0; |
| 858 | int order_idx = 0; |
| 859 | |
| 860 | pages = kvzalloc(array_size, GFP_KERNEL); |
| 861 | if (!pages) |
| 862 | return NULL; |
| 863 | |
| 864 | if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) |
| 865 | { |
| 866 | unsigned long order = get_order(size); |
| 867 | struct page *page; |
| 868 | |
| 869 | page = dma_alloc_from_contiguous(dev, count, order, |
| 870 | gfp & __GFP_NOWARN); |
| 871 | if (!page) |
| 872 | goto error; |
| 873 | |
| 874 | __dma_clear_buffer(page, size, coherent_flag); |
| 875 | |
| 876 | for (i = 0; i < count; i++) |
| 877 | pages[i] = page + i; |
| 878 | |
| 879 | return pages; |
| 880 | } |
| 881 | |
| 882 | /* Go straight to 4K chunks if caller says it's OK. */ |
| 883 | if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
| 884 | order_idx = ARRAY_SIZE(iommu_order_array) - 1; |
| 885 | |
| 886 | /* |
| 887 | * IOMMU can map any pages, so himem can also be used here |
| 888 | */ |
| 889 | gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| 890 | |
| 891 | while (count) { |
| 892 | int j, order; |
| 893 | |
| 894 | order = iommu_order_array[order_idx]; |
| 895 | |
| 896 | /* Drop down when we get small */ |
| 897 | if (__fls(count) < order) { |
| 898 | order_idx++; |
| 899 | continue; |
| 900 | } |
| 901 | |
| 902 | if (order) { |
| 903 | /* See if it's easy to allocate a high-order chunk */ |
| 904 | pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); |
| 905 | |
| 906 | /* Go down a notch at first sign of pressure */ |
| 907 | if (!pages[i]) { |
| 908 | order_idx++; |
| 909 | continue; |
| 910 | } |
| 911 | } else { |
| 912 | pages[i] = alloc_pages(gfp, 0); |
| 913 | if (!pages[i]) |
| 914 | goto error; |
| 915 | } |
| 916 | |
| 917 | if (order) { |
| 918 | split_page(pages[i], order); |
| 919 | j = 1 << order; |
| 920 | while (--j) |
| 921 | pages[i + j] = pages[i] + j; |
| 922 | } |
| 923 | |
| 924 | __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); |
| 925 | i += 1 << order; |
| 926 | count -= 1 << order; |
| 927 | } |
| 928 | |
| 929 | return pages; |
| 930 | error: |
| 931 | while (i--) |
| 932 | if (pages[i]) |
| 933 | __free_pages(pages[i], 0); |
| 934 | kvfree(pages); |
| 935 | return NULL; |
| 936 | } |
| 937 | |
| 938 | static int __iommu_free_buffer(struct device *dev, struct page **pages, |
| 939 | size_t size, unsigned long attrs) |
| 940 | { |
| 941 | int count = size >> PAGE_SHIFT; |
| 942 | int i; |
| 943 | |
| 944 | if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { |
| 945 | dma_release_from_contiguous(dev, pages[0], count); |
| 946 | } else { |
| 947 | for (i = 0; i < count; i++) |
| 948 | if (pages[i]) |
| 949 | __free_pages(pages[i], 0); |
| 950 | } |
| 951 | |
| 952 | kvfree(pages); |
| 953 | return 0; |
| 954 | } |
| 955 | |
| 956 | /* |
| 957 | * Create a mapping in device IO address space for specified pages |
| 958 | */ |
| 959 | static dma_addr_t |
| 960 | __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, |
| 961 | unsigned long attrs) |
| 962 | { |
| 963 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 964 | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 965 | dma_addr_t dma_addr, iova; |
| 966 | int i; |
| 967 | |
| 968 | dma_addr = __alloc_iova(mapping, size); |
| 969 | if (dma_addr == DMA_MAPPING_ERROR) |
| 970 | return dma_addr; |
| 971 | |
| 972 | iova = dma_addr; |
| 973 | for (i = 0; i < count; ) { |
| 974 | int ret; |
| 975 | |
| 976 | unsigned int next_pfn = page_to_pfn(pages[i]) + 1; |
| 977 | phys_addr_t phys = page_to_phys(pages[i]); |
| 978 | unsigned int len, j; |
| 979 | |
| 980 | for (j = i + 1; j < count; j++, next_pfn++) |
| 981 | if (page_to_pfn(pages[j]) != next_pfn) |
| 982 | break; |
| 983 | |
| 984 | len = (j - i) << PAGE_SHIFT; |
| 985 | ret = iommu_map(mapping->domain, iova, phys, len, |
| 986 | __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs), |
| 987 | GFP_KERNEL); |
| 988 | if (ret < 0) |
| 989 | goto fail; |
| 990 | iova += len; |
| 991 | i = j; |
| 992 | } |
| 993 | return dma_addr; |
| 994 | fail: |
| 995 | iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); |
| 996 | __free_iova(mapping, dma_addr, size); |
| 997 | return DMA_MAPPING_ERROR; |
| 998 | } |
| 999 | |
| 1000 | static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) |
| 1001 | { |
| 1002 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 1003 | |
| 1004 | /* |
| 1005 | * add optional in-page offset from iova to size and align |
| 1006 | * result to page size |
| 1007 | */ |
| 1008 | size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); |
| 1009 | iova &= PAGE_MASK; |
| 1010 | |
| 1011 | iommu_unmap(mapping->domain, iova, size); |
| 1012 | __free_iova(mapping, iova, size); |
| 1013 | return 0; |
| 1014 | } |
| 1015 | |
| 1016 | static struct page **__atomic_get_pages(void *addr) |
| 1017 | { |
| 1018 | struct page *page; |
| 1019 | phys_addr_t phys; |
| 1020 | |
| 1021 | phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); |
| 1022 | page = phys_to_page(phys); |
| 1023 | |
| 1024 | return (struct page **)page; |
| 1025 | } |
| 1026 | |
| 1027 | static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) |
| 1028 | { |
| 1029 | if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) |
| 1030 | return __atomic_get_pages(cpu_addr); |
| 1031 | |
| 1032 | if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) |
| 1033 | return cpu_addr; |
| 1034 | |
| 1035 | return dma_common_find_pages(cpu_addr); |
| 1036 | } |
| 1037 | |
| 1038 | static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, |
| 1039 | dma_addr_t *handle, int coherent_flag, |
| 1040 | unsigned long attrs) |
| 1041 | { |
| 1042 | struct page *page; |
| 1043 | void *addr; |
| 1044 | |
| 1045 | if (coherent_flag == COHERENT) |
| 1046 | addr = __alloc_simple_buffer(dev, size, gfp, &page); |
| 1047 | else |
| 1048 | addr = __alloc_from_pool(size, &page); |
| 1049 | if (!addr) |
| 1050 | return NULL; |
| 1051 | |
| 1052 | *handle = __iommu_create_mapping(dev, &page, size, attrs); |
| 1053 | if (*handle == DMA_MAPPING_ERROR) |
| 1054 | goto err_mapping; |
| 1055 | |
| 1056 | return addr; |
| 1057 | |
| 1058 | err_mapping: |
| 1059 | __free_from_pool(addr, size); |
| 1060 | return NULL; |
| 1061 | } |
| 1062 | |
| 1063 | static void __iommu_free_atomic(struct device *dev, void *cpu_addr, |
| 1064 | dma_addr_t handle, size_t size, int coherent_flag) |
| 1065 | { |
| 1066 | __iommu_remove_mapping(dev, handle, size); |
| 1067 | if (coherent_flag == COHERENT) |
| 1068 | __dma_free_buffer(virt_to_page(cpu_addr), size); |
| 1069 | else |
| 1070 | __free_from_pool(cpu_addr, size); |
| 1071 | } |
| 1072 | |
| 1073 | static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, |
| 1074 | dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| 1075 | { |
| 1076 | pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); |
| 1077 | struct page **pages; |
| 1078 | void *addr = NULL; |
| 1079 | int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; |
| 1080 | |
| 1081 | *handle = DMA_MAPPING_ERROR; |
| 1082 | size = PAGE_ALIGN(size); |
| 1083 | |
| 1084 | if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) |
| 1085 | return __iommu_alloc_simple(dev, size, gfp, handle, |
| 1086 | coherent_flag, attrs); |
| 1087 | |
| 1088 | pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); |
| 1089 | if (!pages) |
| 1090 | return NULL; |
| 1091 | |
| 1092 | *handle = __iommu_create_mapping(dev, pages, size, attrs); |
| 1093 | if (*handle == DMA_MAPPING_ERROR) |
| 1094 | goto err_buffer; |
| 1095 | |
| 1096 | if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) |
| 1097 | return pages; |
| 1098 | |
| 1099 | addr = dma_common_pages_remap(pages, size, prot, |
| 1100 | __builtin_return_address(0)); |
| 1101 | if (!addr) |
| 1102 | goto err_mapping; |
| 1103 | |
| 1104 | return addr; |
| 1105 | |
| 1106 | err_mapping: |
| 1107 | __iommu_remove_mapping(dev, *handle, size); |
| 1108 | err_buffer: |
| 1109 | __iommu_free_buffer(dev, pages, size, attrs); |
| 1110 | return NULL; |
| 1111 | } |
| 1112 | |
| 1113 | static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| 1114 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 1115 | unsigned long attrs) |
| 1116 | { |
| 1117 | struct page **pages = __iommu_get_pages(cpu_addr, attrs); |
| 1118 | unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 1119 | int err; |
| 1120 | |
| 1121 | if (!pages) |
| 1122 | return -ENXIO; |
| 1123 | |
| 1124 | if (vma->vm_pgoff >= nr_pages) |
| 1125 | return -ENXIO; |
| 1126 | |
| 1127 | if (!dev->dma_coherent) |
| 1128 | vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); |
| 1129 | |
| 1130 | err = vm_map_pages(vma, pages, nr_pages); |
| 1131 | if (err) |
| 1132 | pr_err("Remapping memory failed: %d\n" , err); |
| 1133 | |
| 1134 | return err; |
| 1135 | } |
| 1136 | |
| 1137 | /* |
| 1138 | * free a page as defined by the above mapping. |
| 1139 | * Must not be called with IRQs disabled. |
| 1140 | */ |
| 1141 | static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| 1142 | dma_addr_t handle, unsigned long attrs) |
| 1143 | { |
| 1144 | int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; |
| 1145 | struct page **pages; |
| 1146 | size = PAGE_ALIGN(size); |
| 1147 | |
| 1148 | if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { |
| 1149 | __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); |
| 1150 | return; |
| 1151 | } |
| 1152 | |
| 1153 | pages = __iommu_get_pages(cpu_addr, attrs); |
| 1154 | if (!pages) { |
| 1155 | WARN(1, "trying to free invalid coherent area: %p\n" , cpu_addr); |
| 1156 | return; |
| 1157 | } |
| 1158 | |
| 1159 | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) |
| 1160 | dma_common_free_remap(cpu_addr, size); |
| 1161 | |
| 1162 | __iommu_remove_mapping(dev, handle, size); |
| 1163 | __iommu_free_buffer(dev, pages, size, attrs); |
| 1164 | } |
| 1165 | |
| 1166 | static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, |
| 1167 | void *cpu_addr, dma_addr_t dma_addr, |
| 1168 | size_t size, unsigned long attrs) |
| 1169 | { |
| 1170 | unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 1171 | struct page **pages = __iommu_get_pages(cpu_addr, attrs); |
| 1172 | |
| 1173 | if (!pages) |
| 1174 | return -ENXIO; |
| 1175 | |
| 1176 | return sg_alloc_table_from_pages(sgt, pages, count, 0, size, |
| 1177 | GFP_KERNEL); |
| 1178 | } |
| 1179 | |
| 1180 | /* |
| 1181 | * Map a part of the scatter-gather list into contiguous io address space |
| 1182 | */ |
| 1183 | static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, |
| 1184 | size_t size, dma_addr_t *handle, |
| 1185 | enum dma_data_direction dir, unsigned long attrs) |
| 1186 | { |
| 1187 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 1188 | dma_addr_t iova, iova_base; |
| 1189 | int ret = 0; |
| 1190 | unsigned int count; |
| 1191 | struct scatterlist *s; |
| 1192 | int prot; |
| 1193 | |
| 1194 | size = PAGE_ALIGN(size); |
| 1195 | *handle = DMA_MAPPING_ERROR; |
| 1196 | |
| 1197 | iova_base = iova = __alloc_iova(mapping, size); |
| 1198 | if (iova == DMA_MAPPING_ERROR) |
| 1199 | return -ENOMEM; |
| 1200 | |
| 1201 | for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { |
| 1202 | phys_addr_t phys = page_to_phys(sg_page(s)); |
| 1203 | unsigned int len = PAGE_ALIGN(s->offset + s->length); |
| 1204 | |
| 1205 | if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 1206 | arch_sync_dma_for_device(sg_phys(s), s->length, dir); |
| 1207 | |
| 1208 | prot = __dma_info_to_prot(dir, attrs); |
| 1209 | |
| 1210 | ret = iommu_map(mapping->domain, iova, phys, len, prot, |
| 1211 | GFP_KERNEL); |
| 1212 | if (ret < 0) |
| 1213 | goto fail; |
| 1214 | count += len >> PAGE_SHIFT; |
| 1215 | iova += len; |
| 1216 | } |
| 1217 | *handle = iova_base; |
| 1218 | |
| 1219 | return 0; |
| 1220 | fail: |
| 1221 | iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); |
| 1222 | __free_iova(mapping, iova_base, size); |
| 1223 | return ret; |
| 1224 | } |
| 1225 | |
| 1226 | /** |
| 1227 | * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA |
| 1228 | * @dev: valid struct device pointer |
| 1229 | * @sg: list of buffers |
| 1230 | * @nents: number of buffers to map |
| 1231 | * @dir: DMA transfer direction |
| 1232 | * |
| 1233 | * Map a set of buffers described by scatterlist in streaming mode for DMA. |
| 1234 | * The scatter gather list elements are merged together (if possible) and |
| 1235 | * tagged with the appropriate dma address and length. They are obtained via |
| 1236 | * sg_dma_{address,length}. |
| 1237 | */ |
| 1238 | static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, |
| 1239 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 1240 | { |
| 1241 | struct scatterlist *s = sg, *dma = sg, *start = sg; |
| 1242 | int i, count = 0, ret; |
| 1243 | unsigned int offset = s->offset; |
| 1244 | unsigned int size = s->offset + s->length; |
| 1245 | unsigned int max = dma_get_max_seg_size(dev); |
| 1246 | |
| 1247 | for (i = 1; i < nents; i++) { |
| 1248 | s = sg_next(s); |
| 1249 | |
| 1250 | s->dma_length = 0; |
| 1251 | |
| 1252 | if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { |
| 1253 | ret = __map_sg_chunk(dev, start, size, |
| 1254 | &dma->dma_address, dir, attrs); |
| 1255 | if (ret < 0) |
| 1256 | goto bad_mapping; |
| 1257 | |
| 1258 | dma->dma_address += offset; |
| 1259 | dma->dma_length = size - offset; |
| 1260 | |
| 1261 | size = offset = s->offset; |
| 1262 | start = s; |
| 1263 | dma = sg_next(dma); |
| 1264 | count += 1; |
| 1265 | } |
| 1266 | size += s->length; |
| 1267 | } |
| 1268 | ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs); |
| 1269 | if (ret < 0) |
| 1270 | goto bad_mapping; |
| 1271 | |
| 1272 | dma->dma_address += offset; |
| 1273 | dma->dma_length = size - offset; |
| 1274 | |
| 1275 | return count+1; |
| 1276 | |
| 1277 | bad_mapping: |
| 1278 | for_each_sg(sg, s, count, i) |
| 1279 | __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); |
| 1280 | if (ret == -ENOMEM) |
| 1281 | return ret; |
| 1282 | return -EINVAL; |
| 1283 | } |
| 1284 | |
| 1285 | /** |
| 1286 | * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg |
| 1287 | * @dev: valid struct device pointer |
| 1288 | * @sg: list of buffers |
| 1289 | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) |
| 1290 | * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| 1291 | * |
| 1292 | * Unmap a set of streaming mode DMA translations. Again, CPU access |
| 1293 | * rules concerning calls here are the same as for dma_unmap_single(). |
| 1294 | */ |
| 1295 | static void arm_iommu_unmap_sg(struct device *dev, |
| 1296 | struct scatterlist *sg, int nents, |
| 1297 | enum dma_data_direction dir, |
| 1298 | unsigned long attrs) |
| 1299 | { |
| 1300 | struct scatterlist *s; |
| 1301 | int i; |
| 1302 | |
| 1303 | for_each_sg(sg, s, nents, i) { |
| 1304 | if (sg_dma_len(s)) |
| 1305 | __iommu_remove_mapping(dev, sg_dma_address(s), |
| 1306 | sg_dma_len(s)); |
| 1307 | if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 1308 | arch_sync_dma_for_cpu(sg_phys(s), s->length, dir); |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | /** |
| 1313 | * arm_iommu_sync_sg_for_cpu |
| 1314 | * @dev: valid struct device pointer |
| 1315 | * @sg: list of buffers |
| 1316 | * @nents: number of buffers to map (returned from dma_map_sg) |
| 1317 | * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| 1318 | */ |
| 1319 | static void arm_iommu_sync_sg_for_cpu(struct device *dev, |
| 1320 | struct scatterlist *sg, |
| 1321 | int nents, enum dma_data_direction dir) |
| 1322 | { |
| 1323 | struct scatterlist *s; |
| 1324 | int i; |
| 1325 | |
| 1326 | if (dev->dma_coherent) |
| 1327 | return; |
| 1328 | |
| 1329 | for_each_sg(sg, s, nents, i) |
| 1330 | arch_sync_dma_for_cpu(sg_phys(s), s->length, dir); |
| 1331 | |
| 1332 | } |
| 1333 | |
| 1334 | /** |
| 1335 | * arm_iommu_sync_sg_for_device |
| 1336 | * @dev: valid struct device pointer |
| 1337 | * @sg: list of buffers |
| 1338 | * @nents: number of buffers to map (returned from dma_map_sg) |
| 1339 | * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| 1340 | */ |
| 1341 | static void arm_iommu_sync_sg_for_device(struct device *dev, |
| 1342 | struct scatterlist *sg, |
| 1343 | int nents, enum dma_data_direction dir) |
| 1344 | { |
| 1345 | struct scatterlist *s; |
| 1346 | int i; |
| 1347 | |
| 1348 | if (dev->dma_coherent) |
| 1349 | return; |
| 1350 | |
| 1351 | for_each_sg(sg, s, nents, i) |
| 1352 | arch_sync_dma_for_device(sg_phys(s), s->length, dir); |
| 1353 | } |
| 1354 | |
| 1355 | /** |
| 1356 | * arm_iommu_map_phys |
| 1357 | * @dev: valid struct device pointer |
| 1358 | * @phys: physical address that buffer resides in |
| 1359 | * @size: size of buffer to map |
| 1360 | * @dir: DMA transfer direction |
| 1361 | * @attrs: DMA mapping attributes |
| 1362 | * |
| 1363 | * IOMMU aware version of arm_dma_map_page() |
| 1364 | */ |
| 1365 | static dma_addr_t arm_iommu_map_phys(struct device *dev, phys_addr_t phys, |
| 1366 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 1367 | { |
| 1368 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 1369 | int len = PAGE_ALIGN(size + offset_in_page(phys)); |
| 1370 | phys_addr_t addr = phys & PAGE_MASK; |
| 1371 | dma_addr_t dma_addr; |
| 1372 | int ret, prot; |
| 1373 | |
| 1374 | if (!dev->dma_coherent && |
| 1375 | !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) |
| 1376 | arch_sync_dma_for_device(phys, size, dir); |
| 1377 | |
| 1378 | dma_addr = __alloc_iova(mapping, len); |
| 1379 | if (dma_addr == DMA_MAPPING_ERROR) |
| 1380 | return dma_addr; |
| 1381 | |
| 1382 | prot = __dma_info_to_prot(dir, attrs); |
| 1383 | |
| 1384 | ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL); |
| 1385 | if (ret < 0) |
| 1386 | goto fail; |
| 1387 | |
| 1388 | return dma_addr + offset_in_page(phys); |
| 1389 | fail: |
| 1390 | __free_iova(mapping, dma_addr, len); |
| 1391 | return DMA_MAPPING_ERROR; |
| 1392 | } |
| 1393 | |
| 1394 | /** |
| 1395 | * arm_iommu_unmap_page |
| 1396 | * @dev: valid struct device pointer |
| 1397 | * @handle: DMA address of buffer |
| 1398 | * @size: size of buffer (same as passed to dma_map_page) |
| 1399 | * @dir: DMA transfer direction (same as passed to dma_map_page) |
| 1400 | * @attrs: DMA mapping attributes |
| 1401 | * |
| 1402 | * IOMMU aware version of arm_dma_unmap_phys() |
| 1403 | */ |
| 1404 | static void arm_iommu_unmap_phys(struct device *dev, dma_addr_t handle, |
| 1405 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 1406 | { |
| 1407 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 1408 | dma_addr_t iova = handle & PAGE_MASK; |
| 1409 | int offset = handle & ~PAGE_MASK; |
| 1410 | int len = PAGE_ALIGN(size + offset); |
| 1411 | |
| 1412 | if (!iova) |
| 1413 | return; |
| 1414 | |
| 1415 | if (!dev->dma_coherent && |
| 1416 | !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) { |
| 1417 | phys_addr_t phys = iommu_iova_to_phys(mapping->domain, iova); |
| 1418 | |
| 1419 | arch_sync_dma_for_cpu(phys + offset, size, dir); |
| 1420 | } |
| 1421 | |
| 1422 | iommu_unmap(mapping->domain, iova, len); |
| 1423 | __free_iova(mapping, iova, len); |
| 1424 | } |
| 1425 | |
| 1426 | static void arm_iommu_sync_single_for_cpu(struct device *dev, |
| 1427 | dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| 1428 | { |
| 1429 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 1430 | dma_addr_t iova = handle & PAGE_MASK; |
| 1431 | unsigned int offset = handle & ~PAGE_MASK; |
| 1432 | phys_addr_t phys; |
| 1433 | |
| 1434 | if (dev->dma_coherent || !iova) |
| 1435 | return; |
| 1436 | |
| 1437 | phys = iommu_iova_to_phys(mapping->domain, iova); |
| 1438 | arch_sync_dma_for_cpu(phys + offset, size, dir); |
| 1439 | } |
| 1440 | |
| 1441 | static void arm_iommu_sync_single_for_device(struct device *dev, |
| 1442 | dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| 1443 | { |
| 1444 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 1445 | dma_addr_t iova = handle & PAGE_MASK; |
| 1446 | unsigned int offset = handle & ~PAGE_MASK; |
| 1447 | phys_addr_t phys; |
| 1448 | |
| 1449 | if (dev->dma_coherent || !iova) |
| 1450 | return; |
| 1451 | |
| 1452 | phys = iommu_iova_to_phys(mapping->domain, iova); |
| 1453 | arch_sync_dma_for_device(phys + offset, size, dir); |
| 1454 | } |
| 1455 | |
| 1456 | static const struct dma_map_ops iommu_ops = { |
| 1457 | .alloc = arm_iommu_alloc_attrs, |
| 1458 | .free = arm_iommu_free_attrs, |
| 1459 | .mmap = arm_iommu_mmap_attrs, |
| 1460 | .get_sgtable = arm_iommu_get_sgtable, |
| 1461 | |
| 1462 | .map_phys = arm_iommu_map_phys, |
| 1463 | .unmap_phys = arm_iommu_unmap_phys, |
| 1464 | .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, |
| 1465 | .sync_single_for_device = arm_iommu_sync_single_for_device, |
| 1466 | |
| 1467 | .map_sg = arm_iommu_map_sg, |
| 1468 | .unmap_sg = arm_iommu_unmap_sg, |
| 1469 | .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, |
| 1470 | .sync_sg_for_device = arm_iommu_sync_sg_for_device, |
| 1471 | }; |
| 1472 | |
| 1473 | /** |
| 1474 | * arm_iommu_create_mapping |
| 1475 | * @dev: pointer to the client device (for IOMMU calls) |
| 1476 | * @base: start address of the valid IO address space |
| 1477 | * @size: maximum size of the valid IO address space |
| 1478 | * |
| 1479 | * Creates a mapping structure which holds information about used/unused |
| 1480 | * IO address ranges, which is required to perform memory allocation and |
| 1481 | * mapping with IOMMU aware functions. |
| 1482 | * |
| 1483 | * The client device need to be attached to the mapping with |
| 1484 | * arm_iommu_attach_device function. |
| 1485 | */ |
| 1486 | struct dma_iommu_mapping * |
| 1487 | arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size) |
| 1488 | { |
| 1489 | unsigned int bits = size >> PAGE_SHIFT; |
| 1490 | unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); |
| 1491 | struct dma_iommu_mapping *mapping; |
| 1492 | int extensions = 1; |
| 1493 | int err = -ENOMEM; |
| 1494 | |
| 1495 | /* currently only 32-bit DMA address space is supported */ |
| 1496 | if (size > DMA_BIT_MASK(32) + 1) |
| 1497 | return ERR_PTR(-ERANGE); |
| 1498 | |
| 1499 | if (!bitmap_size) |
| 1500 | return ERR_PTR(-EINVAL); |
| 1501 | |
| 1502 | if (bitmap_size > PAGE_SIZE) { |
| 1503 | extensions = bitmap_size / PAGE_SIZE; |
| 1504 | bitmap_size = PAGE_SIZE; |
| 1505 | } |
| 1506 | |
| 1507 | mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); |
| 1508 | if (!mapping) |
| 1509 | goto err; |
| 1510 | |
| 1511 | mapping->bitmap_size = bitmap_size; |
| 1512 | mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), |
| 1513 | GFP_KERNEL); |
| 1514 | if (!mapping->bitmaps) |
| 1515 | goto err2; |
| 1516 | |
| 1517 | mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); |
| 1518 | if (!mapping->bitmaps[0]) |
| 1519 | goto err3; |
| 1520 | |
| 1521 | mapping->nr_bitmaps = 1; |
| 1522 | mapping->extensions = extensions; |
| 1523 | mapping->base = base; |
| 1524 | mapping->bits = BITS_PER_BYTE * bitmap_size; |
| 1525 | |
| 1526 | spin_lock_init(&mapping->lock); |
| 1527 | |
| 1528 | mapping->domain = iommu_paging_domain_alloc(dev); |
| 1529 | if (IS_ERR(mapping->domain)) { |
| 1530 | err = PTR_ERR(mapping->domain); |
| 1531 | goto err4; |
| 1532 | } |
| 1533 | |
| 1534 | kref_init(&mapping->kref); |
| 1535 | return mapping; |
| 1536 | err4: |
| 1537 | kfree(mapping->bitmaps[0]); |
| 1538 | err3: |
| 1539 | kfree(mapping->bitmaps); |
| 1540 | err2: |
| 1541 | kfree(mapping); |
| 1542 | err: |
| 1543 | return ERR_PTR(err); |
| 1544 | } |
| 1545 | EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); |
| 1546 | |
| 1547 | static void release_iommu_mapping(struct kref *kref) |
| 1548 | { |
| 1549 | int i; |
| 1550 | struct dma_iommu_mapping *mapping = |
| 1551 | container_of(kref, struct dma_iommu_mapping, kref); |
| 1552 | |
| 1553 | iommu_domain_free(mapping->domain); |
| 1554 | for (i = 0; i < mapping->nr_bitmaps; i++) |
| 1555 | kfree(mapping->bitmaps[i]); |
| 1556 | kfree(mapping->bitmaps); |
| 1557 | kfree(mapping); |
| 1558 | } |
| 1559 | |
| 1560 | static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) |
| 1561 | { |
| 1562 | int next_bitmap; |
| 1563 | |
| 1564 | if (mapping->nr_bitmaps >= mapping->extensions) |
| 1565 | return -EINVAL; |
| 1566 | |
| 1567 | next_bitmap = mapping->nr_bitmaps; |
| 1568 | mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, |
| 1569 | GFP_ATOMIC); |
| 1570 | if (!mapping->bitmaps[next_bitmap]) |
| 1571 | return -ENOMEM; |
| 1572 | |
| 1573 | mapping->nr_bitmaps++; |
| 1574 | |
| 1575 | return 0; |
| 1576 | } |
| 1577 | |
| 1578 | void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) |
| 1579 | { |
| 1580 | if (mapping) |
| 1581 | kref_put(&mapping->kref, release_iommu_mapping); |
| 1582 | } |
| 1583 | EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); |
| 1584 | |
| 1585 | static int __arm_iommu_attach_device(struct device *dev, |
| 1586 | struct dma_iommu_mapping *mapping) |
| 1587 | { |
| 1588 | int err; |
| 1589 | |
| 1590 | err = iommu_attach_device(mapping->domain, dev); |
| 1591 | if (err) |
| 1592 | return err; |
| 1593 | |
| 1594 | kref_get(&mapping->kref); |
| 1595 | to_dma_iommu_mapping(dev) = mapping; |
| 1596 | |
| 1597 | pr_debug("Attached IOMMU controller to %s device.\n" , dev_name(dev)); |
| 1598 | return 0; |
| 1599 | } |
| 1600 | |
| 1601 | /** |
| 1602 | * arm_iommu_attach_device |
| 1603 | * @dev: valid struct device pointer |
| 1604 | * @mapping: io address space mapping structure (returned from |
| 1605 | * arm_iommu_create_mapping) |
| 1606 | * |
| 1607 | * Attaches specified io address space mapping to the provided device. |
| 1608 | * This replaces the dma operations (dma_map_ops pointer) with the |
| 1609 | * IOMMU aware version. |
| 1610 | * |
| 1611 | * More than one client might be attached to the same io address space |
| 1612 | * mapping. |
| 1613 | */ |
| 1614 | int arm_iommu_attach_device(struct device *dev, |
| 1615 | struct dma_iommu_mapping *mapping) |
| 1616 | { |
| 1617 | int err; |
| 1618 | |
| 1619 | err = __arm_iommu_attach_device(dev, mapping); |
| 1620 | if (err) |
| 1621 | return err; |
| 1622 | |
| 1623 | set_dma_ops(dev, &iommu_ops); |
| 1624 | return 0; |
| 1625 | } |
| 1626 | EXPORT_SYMBOL_GPL(arm_iommu_attach_device); |
| 1627 | |
| 1628 | /** |
| 1629 | * arm_iommu_detach_device |
| 1630 | * @dev: valid struct device pointer |
| 1631 | * |
| 1632 | * Detaches the provided device from a previously attached map. |
| 1633 | * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. |
| 1634 | */ |
| 1635 | void arm_iommu_detach_device(struct device *dev) |
| 1636 | { |
| 1637 | struct dma_iommu_mapping *mapping; |
| 1638 | |
| 1639 | mapping = to_dma_iommu_mapping(dev); |
| 1640 | if (!mapping) { |
| 1641 | dev_warn(dev, "Not attached\n" ); |
| 1642 | return; |
| 1643 | } |
| 1644 | |
| 1645 | iommu_detach_device(mapping->domain, dev); |
| 1646 | kref_put(&mapping->kref, release_iommu_mapping); |
| 1647 | to_dma_iommu_mapping(dev) = NULL; |
| 1648 | set_dma_ops(dev, NULL); |
| 1649 | |
| 1650 | pr_debug("Detached IOMMU controller from %s device.\n" , dev_name(dev)); |
| 1651 | } |
| 1652 | EXPORT_SYMBOL_GPL(arm_iommu_detach_device); |
| 1653 | |
| 1654 | static void arm_setup_iommu_dma_ops(struct device *dev) |
| 1655 | { |
| 1656 | struct dma_iommu_mapping *mapping; |
| 1657 | u64 dma_base = 0, size = 1ULL << 32; |
| 1658 | |
| 1659 | if (dev->dma_range_map) { |
| 1660 | dma_base = dma_range_map_min(dev->dma_range_map); |
| 1661 | size = dma_range_map_max(dev->dma_range_map) - dma_base; |
| 1662 | } |
| 1663 | mapping = arm_iommu_create_mapping(dev, dma_base, size); |
| 1664 | if (IS_ERR(mapping)) { |
| 1665 | pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n" , |
| 1666 | size, dev_name(dev)); |
| 1667 | return; |
| 1668 | } |
| 1669 | |
| 1670 | if (__arm_iommu_attach_device(dev, mapping)) { |
| 1671 | pr_warn("Failed to attached device %s to IOMMU_mapping\n" , |
| 1672 | dev_name(dev)); |
| 1673 | arm_iommu_release_mapping(mapping); |
| 1674 | return; |
| 1675 | } |
| 1676 | |
| 1677 | set_dma_ops(dev, &iommu_ops); |
| 1678 | } |
| 1679 | |
| 1680 | static void arm_teardown_iommu_dma_ops(struct device *dev) |
| 1681 | { |
| 1682 | struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| 1683 | |
| 1684 | if (!mapping) |
| 1685 | return; |
| 1686 | |
| 1687 | arm_iommu_detach_device(dev); |
| 1688 | arm_iommu_release_mapping(mapping); |
| 1689 | } |
| 1690 | |
| 1691 | #else |
| 1692 | |
| 1693 | static void arm_setup_iommu_dma_ops(struct device *dev) |
| 1694 | { |
| 1695 | } |
| 1696 | |
| 1697 | static void arm_teardown_iommu_dma_ops(struct device *dev) { } |
| 1698 | |
| 1699 | #endif /* CONFIG_ARM_DMA_USE_IOMMU */ |
| 1700 | |
| 1701 | void arch_setup_dma_ops(struct device *dev, bool coherent) |
| 1702 | { |
| 1703 | /* |
| 1704 | * Due to legacy code that sets the ->dma_coherent flag from a bus |
| 1705 | * notifier we can't just assign coherent to the ->dma_coherent flag |
| 1706 | * here, but instead have to make sure we only set but never clear it |
| 1707 | * for now. |
| 1708 | */ |
| 1709 | if (coherent) |
| 1710 | dev->dma_coherent = true; |
| 1711 | |
| 1712 | /* |
| 1713 | * Don't override the dma_ops if they have already been set. Ideally |
| 1714 | * this should be the only location where dma_ops are set, remove this |
| 1715 | * check when all other callers of set_dma_ops will have disappeared. |
| 1716 | */ |
| 1717 | if (dev->dma_ops) |
| 1718 | return; |
| 1719 | |
| 1720 | if (device_iommu_mapped(dev)) |
| 1721 | arm_setup_iommu_dma_ops(dev); |
| 1722 | |
| 1723 | xen_setup_dma_ops(dev); |
| 1724 | dev->archdata.dma_ops_setup = true; |
| 1725 | } |
| 1726 | |
| 1727 | void arch_teardown_dma_ops(struct device *dev) |
| 1728 | { |
| 1729 | if (!dev->archdata.dma_ops_setup) |
| 1730 | return; |
| 1731 | |
| 1732 | arm_teardown_iommu_dma_ops(dev); |
| 1733 | /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ |
| 1734 | set_dma_ops(dev, NULL); |
| 1735 | } |
| 1736 | |
| 1737 | void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 1738 | gfp_t gfp, unsigned long attrs) |
| 1739 | { |
| 1740 | return __dma_alloc(dev, size, handle: dma_handle, gfp, |
| 1741 | prot: __get_dma_pgprot(attrs, PAGE_KERNEL), is_coherent: false, |
| 1742 | attrs, caller: __builtin_return_address(0)); |
| 1743 | } |
| 1744 | |
| 1745 | void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| 1746 | dma_addr_t dma_handle, unsigned long attrs) |
| 1747 | { |
| 1748 | __arm_dma_free(dev, size, cpu_addr, handle: dma_handle, attrs, is_coherent: false); |
| 1749 | } |
| 1750 | |