| 1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| 2 | /* |
| 3 | * Definitions for the 'struct ptr_ring' datastructure. |
| 4 | * |
| 5 | * Author: |
| 6 | * Michael S. Tsirkin <mst@redhat.com> |
| 7 | * |
| 8 | * Copyright (C) 2016 Red Hat, Inc. |
| 9 | * |
| 10 | * This is a limited-size FIFO maintaining pointers in FIFO order, with |
| 11 | * one CPU producing entries and another consuming entries from a FIFO. |
| 12 | * |
| 13 | * This implementation tries to minimize cache-contention when there is a |
| 14 | * single producer and a single consumer CPU. |
| 15 | */ |
| 16 | |
| 17 | #ifndef _LINUX_PTR_RING_H |
| 18 | #define _LINUX_PTR_RING_H 1 |
| 19 | |
| 20 | #ifdef __KERNEL__ |
| 21 | #include <linux/spinlock.h> |
| 22 | #include <linux/cache.h> |
| 23 | #include <linux/types.h> |
| 24 | #include <linux/compiler.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <asm/errno.h> |
| 28 | #endif |
| 29 | |
| 30 | struct ptr_ring { |
| 31 | int producer ____cacheline_aligned_in_smp; |
| 32 | spinlock_t producer_lock; |
| 33 | int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */ |
| 34 | int consumer_tail; /* next entry to invalidate */ |
| 35 | spinlock_t consumer_lock; |
| 36 | /* Shared consumer/producer data */ |
| 37 | /* Read-only by both the producer and the consumer */ |
| 38 | int size ____cacheline_aligned_in_smp; /* max entries in queue */ |
| 39 | int batch; /* number of entries to consume in a batch */ |
| 40 | void **queue; |
| 41 | }; |
| 42 | |
| 43 | /* Note: callers invoking this in a loop must use a compiler barrier, |
| 44 | * for example cpu_relax(). |
| 45 | * |
| 46 | * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock: |
| 47 | * see e.g. ptr_ring_full. |
| 48 | */ |
| 49 | static inline bool __ptr_ring_full(struct ptr_ring *r) |
| 50 | { |
| 51 | return r->queue[r->producer]; |
| 52 | } |
| 53 | |
| 54 | static inline bool ptr_ring_full(struct ptr_ring *r) |
| 55 | { |
| 56 | bool ret; |
| 57 | |
| 58 | spin_lock(lock: &r->producer_lock); |
| 59 | ret = __ptr_ring_full(r); |
| 60 | spin_unlock(lock: &r->producer_lock); |
| 61 | |
| 62 | return ret; |
| 63 | } |
| 64 | |
| 65 | static inline bool ptr_ring_full_irq(struct ptr_ring *r) |
| 66 | { |
| 67 | bool ret; |
| 68 | |
| 69 | spin_lock_irq(lock: &r->producer_lock); |
| 70 | ret = __ptr_ring_full(r); |
| 71 | spin_unlock_irq(lock: &r->producer_lock); |
| 72 | |
| 73 | return ret; |
| 74 | } |
| 75 | |
| 76 | static inline bool ptr_ring_full_any(struct ptr_ring *r) |
| 77 | { |
| 78 | unsigned long flags; |
| 79 | bool ret; |
| 80 | |
| 81 | spin_lock_irqsave(&r->producer_lock, flags); |
| 82 | ret = __ptr_ring_full(r); |
| 83 | spin_unlock_irqrestore(lock: &r->producer_lock, flags); |
| 84 | |
| 85 | return ret; |
| 86 | } |
| 87 | |
| 88 | static inline bool ptr_ring_full_bh(struct ptr_ring *r) |
| 89 | { |
| 90 | bool ret; |
| 91 | |
| 92 | spin_lock_bh(lock: &r->producer_lock); |
| 93 | ret = __ptr_ring_full(r); |
| 94 | spin_unlock_bh(lock: &r->producer_lock); |
| 95 | |
| 96 | return ret; |
| 97 | } |
| 98 | |
| 99 | /* Note: callers invoking this in a loop must use a compiler barrier, |
| 100 | * for example cpu_relax(). Callers must hold producer_lock. |
| 101 | * Callers are responsible for making sure pointer that is being queued |
| 102 | * points to a valid data. |
| 103 | */ |
| 104 | static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr) |
| 105 | { |
| 106 | if (unlikely(!r->size) || r->queue[r->producer]) |
| 107 | return -ENOSPC; |
| 108 | |
| 109 | /* Make sure the pointer we are storing points to a valid data. */ |
| 110 | /* Pairs with the dependency ordering in __ptr_ring_consume. */ |
| 111 | smp_wmb(); |
| 112 | |
| 113 | WRITE_ONCE(r->queue[r->producer++], ptr); |
| 114 | if (unlikely(r->producer >= r->size)) |
| 115 | r->producer = 0; |
| 116 | return 0; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Note: resize (below) nests producer lock within consumer lock, so if you |
| 121 | * consume in interrupt or BH context, you must disable interrupts/BH when |
| 122 | * calling this. |
| 123 | */ |
| 124 | static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr) |
| 125 | { |
| 126 | int ret; |
| 127 | |
| 128 | spin_lock(lock: &r->producer_lock); |
| 129 | ret = __ptr_ring_produce(r, ptr); |
| 130 | spin_unlock(lock: &r->producer_lock); |
| 131 | |
| 132 | return ret; |
| 133 | } |
| 134 | |
| 135 | static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr) |
| 136 | { |
| 137 | int ret; |
| 138 | |
| 139 | spin_lock_irq(lock: &r->producer_lock); |
| 140 | ret = __ptr_ring_produce(r, ptr); |
| 141 | spin_unlock_irq(lock: &r->producer_lock); |
| 142 | |
| 143 | return ret; |
| 144 | } |
| 145 | |
| 146 | static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr) |
| 147 | { |
| 148 | unsigned long flags; |
| 149 | int ret; |
| 150 | |
| 151 | spin_lock_irqsave(&r->producer_lock, flags); |
| 152 | ret = __ptr_ring_produce(r, ptr); |
| 153 | spin_unlock_irqrestore(lock: &r->producer_lock, flags); |
| 154 | |
| 155 | return ret; |
| 156 | } |
| 157 | |
| 158 | static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr) |
| 159 | { |
| 160 | int ret; |
| 161 | |
| 162 | spin_lock_bh(lock: &r->producer_lock); |
| 163 | ret = __ptr_ring_produce(r, ptr); |
| 164 | spin_unlock_bh(lock: &r->producer_lock); |
| 165 | |
| 166 | return ret; |
| 167 | } |
| 168 | |
| 169 | static inline void *__ptr_ring_peek(struct ptr_ring *r) |
| 170 | { |
| 171 | if (likely(r->size)) |
| 172 | return READ_ONCE(r->queue[r->consumer_head]); |
| 173 | return NULL; |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * Test ring empty status without taking any locks. |
| 178 | * |
| 179 | * NB: This is only safe to call if ring is never resized. |
| 180 | * |
| 181 | * However, if some other CPU consumes ring entries at the same time, the value |
| 182 | * returned is not guaranteed to be correct. |
| 183 | * |
| 184 | * In this case - to avoid incorrectly detecting the ring |
| 185 | * as empty - the CPU consuming the ring entries is responsible |
| 186 | * for either consuming all ring entries until the ring is empty, |
| 187 | * or synchronizing with some other CPU and causing it to |
| 188 | * re-test __ptr_ring_empty and/or consume the ring enteries |
| 189 | * after the synchronization point. |
| 190 | * |
| 191 | * Note: callers invoking this in a loop must use a compiler barrier, |
| 192 | * for example cpu_relax(). |
| 193 | */ |
| 194 | static inline bool __ptr_ring_empty(struct ptr_ring *r) |
| 195 | { |
| 196 | if (likely(r->size)) |
| 197 | return !r->queue[READ_ONCE(r->consumer_head)]; |
| 198 | return true; |
| 199 | } |
| 200 | |
| 201 | static inline bool ptr_ring_empty(struct ptr_ring *r) |
| 202 | { |
| 203 | bool ret; |
| 204 | |
| 205 | spin_lock(lock: &r->consumer_lock); |
| 206 | ret = __ptr_ring_empty(r); |
| 207 | spin_unlock(lock: &r->consumer_lock); |
| 208 | |
| 209 | return ret; |
| 210 | } |
| 211 | |
| 212 | static inline bool ptr_ring_empty_irq(struct ptr_ring *r) |
| 213 | { |
| 214 | bool ret; |
| 215 | |
| 216 | spin_lock_irq(lock: &r->consumer_lock); |
| 217 | ret = __ptr_ring_empty(r); |
| 218 | spin_unlock_irq(lock: &r->consumer_lock); |
| 219 | |
| 220 | return ret; |
| 221 | } |
| 222 | |
| 223 | static inline bool ptr_ring_empty_any(struct ptr_ring *r) |
| 224 | { |
| 225 | unsigned long flags; |
| 226 | bool ret; |
| 227 | |
| 228 | spin_lock_irqsave(&r->consumer_lock, flags); |
| 229 | ret = __ptr_ring_empty(r); |
| 230 | spin_unlock_irqrestore(lock: &r->consumer_lock, flags); |
| 231 | |
| 232 | return ret; |
| 233 | } |
| 234 | |
| 235 | static inline bool ptr_ring_empty_bh(struct ptr_ring *r) |
| 236 | { |
| 237 | bool ret; |
| 238 | |
| 239 | spin_lock_bh(lock: &r->consumer_lock); |
| 240 | ret = __ptr_ring_empty(r); |
| 241 | spin_unlock_bh(lock: &r->consumer_lock); |
| 242 | |
| 243 | return ret; |
| 244 | } |
| 245 | |
| 246 | /* Zero entries from tail to specified head. |
| 247 | * NB: if consumer_head can be >= r->size need to fixup tail later. |
| 248 | */ |
| 249 | static inline void __ptr_ring_zero_tail(struct ptr_ring *r, int consumer_head) |
| 250 | { |
| 251 | int head = consumer_head; |
| 252 | |
| 253 | /* Zero out entries in the reverse order: this way we touch the |
| 254 | * cache line that producer might currently be reading the last; |
| 255 | * producer won't make progress and touch other cache lines |
| 256 | * besides the first one until we write out all entries. |
| 257 | */ |
| 258 | while (likely(head > r->consumer_tail)) |
| 259 | r->queue[--head] = NULL; |
| 260 | |
| 261 | r->consumer_tail = consumer_head; |
| 262 | } |
| 263 | |
| 264 | /* Must only be called after __ptr_ring_peek returned !NULL */ |
| 265 | static inline void __ptr_ring_discard_one(struct ptr_ring *r) |
| 266 | { |
| 267 | /* Fundamentally, what we want to do is update consumer |
| 268 | * index and zero out the entry so producer can reuse it. |
| 269 | * Doing it naively at each consume would be as simple as: |
| 270 | * consumer = r->consumer; |
| 271 | * r->queue[consumer++] = NULL; |
| 272 | * if (unlikely(consumer >= r->size)) |
| 273 | * consumer = 0; |
| 274 | * r->consumer = consumer; |
| 275 | * but that is suboptimal when the ring is full as producer is writing |
| 276 | * out new entries in the same cache line. Defer these updates until a |
| 277 | * batch of entries has been consumed. |
| 278 | */ |
| 279 | /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty |
| 280 | * to work correctly. |
| 281 | */ |
| 282 | int consumer_head = r->consumer_head + 1; |
| 283 | |
| 284 | /* Once we have processed enough entries invalidate them in |
| 285 | * the ring all at once so producer can reuse their space in the ring. |
| 286 | * We also do this when we reach end of the ring - not mandatory |
| 287 | * but helps keep the implementation simple. |
| 288 | */ |
| 289 | if (unlikely(consumer_head - r->consumer_tail >= r->batch || |
| 290 | consumer_head >= r->size)) |
| 291 | __ptr_ring_zero_tail(r, consumer_head); |
| 292 | |
| 293 | if (unlikely(consumer_head >= r->size)) { |
| 294 | consumer_head = 0; |
| 295 | r->consumer_tail = 0; |
| 296 | } |
| 297 | /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ |
| 298 | WRITE_ONCE(r->consumer_head, consumer_head); |
| 299 | } |
| 300 | |
| 301 | static inline void *__ptr_ring_consume(struct ptr_ring *r) |
| 302 | { |
| 303 | void *ptr; |
| 304 | |
| 305 | /* The READ_ONCE in __ptr_ring_peek guarantees that anyone |
| 306 | * accessing data through the pointer is up to date. Pairs |
| 307 | * with smp_wmb in __ptr_ring_produce. |
| 308 | */ |
| 309 | ptr = __ptr_ring_peek(r); |
| 310 | if (ptr) |
| 311 | __ptr_ring_discard_one(r); |
| 312 | |
| 313 | return ptr; |
| 314 | } |
| 315 | |
| 316 | static inline int __ptr_ring_consume_batched(struct ptr_ring *r, |
| 317 | void **array, int n) |
| 318 | { |
| 319 | void *ptr; |
| 320 | int i; |
| 321 | |
| 322 | for (i = 0; i < n; i++) { |
| 323 | ptr = __ptr_ring_consume(r); |
| 324 | if (!ptr) |
| 325 | break; |
| 326 | array[i] = ptr; |
| 327 | } |
| 328 | |
| 329 | return i; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * Note: resize (below) nests producer lock within consumer lock, so if you |
| 334 | * call this in interrupt or BH context, you must disable interrupts/BH when |
| 335 | * producing. |
| 336 | */ |
| 337 | static inline void *ptr_ring_consume(struct ptr_ring *r) |
| 338 | { |
| 339 | void *ptr; |
| 340 | |
| 341 | spin_lock(lock: &r->consumer_lock); |
| 342 | ptr = __ptr_ring_consume(r); |
| 343 | spin_unlock(lock: &r->consumer_lock); |
| 344 | |
| 345 | return ptr; |
| 346 | } |
| 347 | |
| 348 | static inline void *ptr_ring_consume_irq(struct ptr_ring *r) |
| 349 | { |
| 350 | void *ptr; |
| 351 | |
| 352 | spin_lock_irq(lock: &r->consumer_lock); |
| 353 | ptr = __ptr_ring_consume(r); |
| 354 | spin_unlock_irq(lock: &r->consumer_lock); |
| 355 | |
| 356 | return ptr; |
| 357 | } |
| 358 | |
| 359 | static inline void *ptr_ring_consume_any(struct ptr_ring *r) |
| 360 | { |
| 361 | unsigned long flags; |
| 362 | void *ptr; |
| 363 | |
| 364 | spin_lock_irqsave(&r->consumer_lock, flags); |
| 365 | ptr = __ptr_ring_consume(r); |
| 366 | spin_unlock_irqrestore(lock: &r->consumer_lock, flags); |
| 367 | |
| 368 | return ptr; |
| 369 | } |
| 370 | |
| 371 | static inline void *ptr_ring_consume_bh(struct ptr_ring *r) |
| 372 | { |
| 373 | void *ptr; |
| 374 | |
| 375 | spin_lock_bh(lock: &r->consumer_lock); |
| 376 | ptr = __ptr_ring_consume(r); |
| 377 | spin_unlock_bh(lock: &r->consumer_lock); |
| 378 | |
| 379 | return ptr; |
| 380 | } |
| 381 | |
| 382 | static inline int ptr_ring_consume_batched(struct ptr_ring *r, |
| 383 | void **array, int n) |
| 384 | { |
| 385 | int ret; |
| 386 | |
| 387 | spin_lock(lock: &r->consumer_lock); |
| 388 | ret = __ptr_ring_consume_batched(r, array, n); |
| 389 | spin_unlock(lock: &r->consumer_lock); |
| 390 | |
| 391 | return ret; |
| 392 | } |
| 393 | |
| 394 | static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r, |
| 395 | void **array, int n) |
| 396 | { |
| 397 | int ret; |
| 398 | |
| 399 | spin_lock_irq(lock: &r->consumer_lock); |
| 400 | ret = __ptr_ring_consume_batched(r, array, n); |
| 401 | spin_unlock_irq(lock: &r->consumer_lock); |
| 402 | |
| 403 | return ret; |
| 404 | } |
| 405 | |
| 406 | static inline int ptr_ring_consume_batched_any(struct ptr_ring *r, |
| 407 | void **array, int n) |
| 408 | { |
| 409 | unsigned long flags; |
| 410 | int ret; |
| 411 | |
| 412 | spin_lock_irqsave(&r->consumer_lock, flags); |
| 413 | ret = __ptr_ring_consume_batched(r, array, n); |
| 414 | spin_unlock_irqrestore(lock: &r->consumer_lock, flags); |
| 415 | |
| 416 | return ret; |
| 417 | } |
| 418 | |
| 419 | static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r, |
| 420 | void **array, int n) |
| 421 | { |
| 422 | int ret; |
| 423 | |
| 424 | spin_lock_bh(lock: &r->consumer_lock); |
| 425 | ret = __ptr_ring_consume_batched(r, array, n); |
| 426 | spin_unlock_bh(lock: &r->consumer_lock); |
| 427 | |
| 428 | return ret; |
| 429 | } |
| 430 | |
| 431 | /* Cast to structure type and call a function without discarding from FIFO. |
| 432 | * Function must return a value. |
| 433 | * Callers must take consumer_lock. |
| 434 | */ |
| 435 | #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r))) |
| 436 | |
| 437 | #define PTR_RING_PEEK_CALL(r, f) ({ \ |
| 438 | typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ |
| 439 | \ |
| 440 | spin_lock(&(r)->consumer_lock); \ |
| 441 | __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ |
| 442 | spin_unlock(&(r)->consumer_lock); \ |
| 443 | __PTR_RING_PEEK_CALL_v; \ |
| 444 | }) |
| 445 | |
| 446 | #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \ |
| 447 | typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ |
| 448 | \ |
| 449 | spin_lock_irq(&(r)->consumer_lock); \ |
| 450 | __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ |
| 451 | spin_unlock_irq(&(r)->consumer_lock); \ |
| 452 | __PTR_RING_PEEK_CALL_v; \ |
| 453 | }) |
| 454 | |
| 455 | #define PTR_RING_PEEK_CALL_BH(r, f) ({ \ |
| 456 | typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ |
| 457 | \ |
| 458 | spin_lock_bh(&(r)->consumer_lock); \ |
| 459 | __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ |
| 460 | spin_unlock_bh(&(r)->consumer_lock); \ |
| 461 | __PTR_RING_PEEK_CALL_v; \ |
| 462 | }) |
| 463 | |
| 464 | #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \ |
| 465 | typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ |
| 466 | unsigned long __PTR_RING_PEEK_CALL_f;\ |
| 467 | \ |
| 468 | spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ |
| 469 | __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ |
| 470 | spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ |
| 471 | __PTR_RING_PEEK_CALL_v; \ |
| 472 | }) |
| 473 | |
| 474 | /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See |
| 475 | * documentation for vmalloc for which of them are legal. |
| 476 | */ |
| 477 | static inline void **__ptr_ring_init_queue_alloc_noprof(unsigned int size, gfp_t gfp) |
| 478 | { |
| 479 | if (size > KMALLOC_MAX_SIZE / sizeof(void *)) |
| 480 | return NULL; |
| 481 | return kvmalloc_array_noprof(size, sizeof(void *), gfp | __GFP_ZERO); |
| 482 | } |
| 483 | |
| 484 | static inline void __ptr_ring_set_size(struct ptr_ring *r, int size) |
| 485 | { |
| 486 | r->size = size; |
| 487 | r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue)); |
| 488 | /* We need to set batch at least to 1 to make logic |
| 489 | * in __ptr_ring_discard_one work correctly. |
| 490 | * Batching too much (because ring is small) would cause a lot of |
| 491 | * burstiness. Needs tuning, for now disable batching. |
| 492 | */ |
| 493 | if (r->batch > r->size / 2 || !r->batch) |
| 494 | r->batch = 1; |
| 495 | } |
| 496 | |
| 497 | static inline int ptr_ring_init_noprof(struct ptr_ring *r, int size, gfp_t gfp) |
| 498 | { |
| 499 | r->queue = __ptr_ring_init_queue_alloc_noprof(size, gfp); |
| 500 | if (!r->queue) |
| 501 | return -ENOMEM; |
| 502 | |
| 503 | __ptr_ring_set_size(r, size); |
| 504 | r->producer = r->consumer_head = r->consumer_tail = 0; |
| 505 | spin_lock_init(&r->producer_lock); |
| 506 | spin_lock_init(&r->consumer_lock); |
| 507 | |
| 508 | return 0; |
| 509 | } |
| 510 | #define ptr_ring_init(...) alloc_hooks(ptr_ring_init_noprof(__VA_ARGS__)) |
| 511 | |
| 512 | /* |
| 513 | * Return entries into ring. Destroy entries that don't fit. |
| 514 | * |
| 515 | * Note: this is expected to be a rare slow path operation. |
| 516 | * |
| 517 | * Note: producer lock is nested within consumer lock, so if you |
| 518 | * resize you must make sure all uses nest correctly. |
| 519 | * In particular if you consume ring in interrupt or BH context, you must |
| 520 | * disable interrupts/BH when doing so. |
| 521 | */ |
| 522 | static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n, |
| 523 | void (*destroy)(void *)) |
| 524 | { |
| 525 | unsigned long flags; |
| 526 | |
| 527 | spin_lock_irqsave(&r->consumer_lock, flags); |
| 528 | spin_lock(lock: &r->producer_lock); |
| 529 | |
| 530 | if (!r->size) |
| 531 | goto done; |
| 532 | |
| 533 | /* |
| 534 | * Clean out buffered entries (for simplicity). This way following code |
| 535 | * can test entries for NULL and if not assume they are valid. |
| 536 | */ |
| 537 | __ptr_ring_zero_tail(r, consumer_head: r->consumer_head); |
| 538 | |
| 539 | /* |
| 540 | * Go over entries in batch, start moving head back and copy entries. |
| 541 | * Stop when we run into previously unconsumed entries. |
| 542 | */ |
| 543 | while (n) { |
| 544 | int head = r->consumer_head - 1; |
| 545 | if (head < 0) |
| 546 | head = r->size - 1; |
| 547 | if (r->queue[head]) { |
| 548 | /* This batch entry will have to be destroyed. */ |
| 549 | goto done; |
| 550 | } |
| 551 | r->queue[head] = batch[--n]; |
| 552 | r->consumer_tail = head; |
| 553 | /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ |
| 554 | WRITE_ONCE(r->consumer_head, head); |
| 555 | } |
| 556 | |
| 557 | done: |
| 558 | /* Destroy all entries left in the batch. */ |
| 559 | while (n) |
| 560 | destroy(batch[--n]); |
| 561 | spin_unlock(lock: &r->producer_lock); |
| 562 | spin_unlock_irqrestore(lock: &r->consumer_lock, flags); |
| 563 | } |
| 564 | |
| 565 | static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue, |
| 566 | int size, gfp_t gfp, |
| 567 | void (*destroy)(void *)) |
| 568 | { |
| 569 | int producer = 0; |
| 570 | void **old; |
| 571 | void *ptr; |
| 572 | |
| 573 | while ((ptr = __ptr_ring_consume(r))) |
| 574 | if (producer < size) |
| 575 | queue[producer++] = ptr; |
| 576 | else if (destroy) |
| 577 | destroy(ptr); |
| 578 | |
| 579 | if (producer >= size) |
| 580 | producer = 0; |
| 581 | __ptr_ring_set_size(r, size); |
| 582 | r->producer = producer; |
| 583 | r->consumer_head = 0; |
| 584 | r->consumer_tail = 0; |
| 585 | old = r->queue; |
| 586 | r->queue = queue; |
| 587 | |
| 588 | return old; |
| 589 | } |
| 590 | |
| 591 | /* |
| 592 | * Note: producer lock is nested within consumer lock, so if you |
| 593 | * resize you must make sure all uses nest correctly. |
| 594 | * In particular if you consume ring in interrupt or BH context, you must |
| 595 | * disable interrupts/BH when doing so. |
| 596 | */ |
| 597 | static inline int ptr_ring_resize_noprof(struct ptr_ring *r, int size, gfp_t gfp, |
| 598 | void (*destroy)(void *)) |
| 599 | { |
| 600 | unsigned long flags; |
| 601 | void **queue = __ptr_ring_init_queue_alloc_noprof(size, gfp); |
| 602 | void **old; |
| 603 | |
| 604 | if (!queue) |
| 605 | return -ENOMEM; |
| 606 | |
| 607 | spin_lock_irqsave(&(r)->consumer_lock, flags); |
| 608 | spin_lock(lock: &(r)->producer_lock); |
| 609 | |
| 610 | old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy); |
| 611 | |
| 612 | spin_unlock(lock: &(r)->producer_lock); |
| 613 | spin_unlock_irqrestore(lock: &(r)->consumer_lock, flags); |
| 614 | |
| 615 | kvfree(addr: old); |
| 616 | |
| 617 | return 0; |
| 618 | } |
| 619 | #define ptr_ring_resize(...) alloc_hooks(ptr_ring_resize_noprof(__VA_ARGS__)) |
| 620 | |
| 621 | /* |
| 622 | * Note: producer lock is nested within consumer lock, so if you |
| 623 | * resize you must make sure all uses nest correctly. |
| 624 | * In particular if you consume ring in BH context, you must |
| 625 | * disable BH when doing so. |
| 626 | */ |
| 627 | static inline int ptr_ring_resize_multiple_bh_noprof(struct ptr_ring **rings, |
| 628 | unsigned int nrings, |
| 629 | int size, gfp_t gfp, |
| 630 | void (*destroy)(void *)) |
| 631 | { |
| 632 | void ***queues; |
| 633 | int i; |
| 634 | |
| 635 | queues = kmalloc_array_noprof(n: nrings, size: sizeof(*queues), flags: gfp); |
| 636 | if (!queues) |
| 637 | goto noqueues; |
| 638 | |
| 639 | for (i = 0; i < nrings; ++i) { |
| 640 | queues[i] = __ptr_ring_init_queue_alloc_noprof(size, gfp); |
| 641 | if (!queues[i]) |
| 642 | goto nomem; |
| 643 | } |
| 644 | |
| 645 | for (i = 0; i < nrings; ++i) { |
| 646 | spin_lock_bh(lock: &(rings[i])->consumer_lock); |
| 647 | spin_lock(lock: &(rings[i])->producer_lock); |
| 648 | queues[i] = __ptr_ring_swap_queue(r: rings[i], queue: queues[i], |
| 649 | size, gfp, destroy); |
| 650 | spin_unlock(lock: &(rings[i])->producer_lock); |
| 651 | spin_unlock_bh(lock: &(rings[i])->consumer_lock); |
| 652 | } |
| 653 | |
| 654 | for (i = 0; i < nrings; ++i) |
| 655 | kvfree(addr: queues[i]); |
| 656 | |
| 657 | kfree(objp: queues); |
| 658 | |
| 659 | return 0; |
| 660 | |
| 661 | nomem: |
| 662 | while (--i >= 0) |
| 663 | kvfree(addr: queues[i]); |
| 664 | |
| 665 | kfree(objp: queues); |
| 666 | |
| 667 | noqueues: |
| 668 | return -ENOMEM; |
| 669 | } |
| 670 | #define ptr_ring_resize_multiple_bh(...) \ |
| 671 | alloc_hooks(ptr_ring_resize_multiple_bh_noprof(__VA_ARGS__)) |
| 672 | |
| 673 | static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *)) |
| 674 | { |
| 675 | void *ptr; |
| 676 | |
| 677 | if (destroy) |
| 678 | while ((ptr = ptr_ring_consume(r))) |
| 679 | destroy(ptr); |
| 680 | kvfree(addr: r->queue); |
| 681 | } |
| 682 | |
| 683 | #endif /* _LINUX_PTR_RING_H */ |
| 684 | |